REFERENCES
Abedini, M., Md Said, M.A., Ahmad, F., 2012. Effectiveness of check dam to control soil erosion in a tropical catchment (The Ulu Kinta Basin). Catena 97, 63–70. https://doi.org/10.1016/j.catena.2012.05.003
Aneseyee, A.B., Elias, E., Soromessa, T., Feyisa, G.L., 2020. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 728, 138776. https://doi.org/10.1016/j.scitotenv.2020.138776
Bai, L., Wang, N., Jiao, J., Chen, Yixian, Tang, B., Wang, H., Chen, Yulan, Yan, X., Wang, Z., 2020. Soil erosion and sediment interception by check dams in a watershed for an extreme rainstorm on the Loess Plateau, China. Int. J. Sediment Res. 35(4), 408–416. https://doi.org/10.1016/j.ijsrc.2020.03.005
Bellin, N., Vanacker, V., van Wesemael, B., Solé-Benet, A., Bakker, M.M., 2011. Natural and anthropogenic controls on soil erosion in the internal betic Cordillera (southeast Spain). Catena 87(2), 190–200. https://doi.org/10.1016/j.catena.2011.05.022
Boix-Fayos, C., de Vente, J., Martínez-Mena, M., Barberá, G.G., Castillo, V., 2008. The impact of land use change and check-dams on catchment sediment yield. Hydrol. Process. 22(25), 4922–4935. https://doi.org/10.1002/hyp.7115
Borja, P., Molina, A., Govers, G., Vanacker, V., 2018. Check dams and afforestation reducing sediment mobilization in active gully systems in the Andean mountains. Catena 165, 42–53. https://doi.org/10.1016/j.catena.2018.01.013
Bruijnzeel, L.A., 2004. Hydrological functions of tropical forests: Not seeing the soil for the trees?, Agriculture, Ecosystems and Environment. https://doi.org/10.1016/j.agee.2004.01.015
Cai, C., Ding, S., Shi, Z., Huang, L., Zhang, G., 2000. Study of Applying USLE and Geographical Information System IDRISI to Predict Soil Erosion in Small Watershed. J. Soil Water Conserv. 14(02), 20-24 (in Chinese). https://doi.org/10.13870/j.cnki.stbcxb.2000.02.005
Cai, J., Zhou, Z., Liu, J., Wang, H., Jia, Y., Xu, C.Y., 2019. A three-process-based distributed soil erosion model at catchment scale on the Loess Plateau of China. J. Hydrol. 578, 124005. https://doi.org/10.1016/j.jhydrol.2019.124005
Castillo, V.M., Mosch, W.M., García, C.C., Barberá, G.G., Cano, J.A.N., López-Bermúdez, F., 2007. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). Catena 70(3), 416–427. https://doi.org/10.1016/j.catena.2006.11.009
Chen, L., Wei, W., Fu, B., Lü, Y., 2007. Soil and water conservation on the Loess Plateau in China: Review and perspective. Prog. Phys. Geogr. 31(4), 389–403. https://doi.org/10.1177/0309133307081290
Choukri, F., Raclot, D., Naimi, M., Chikhaoui, M., Nunes, J.P., Huard, F., Hérivaux, C., Sabir, M., Pépin, Y., 2020. Distinct and combined impacts of climate and land use scenarios on water availability and sediment loads for a water supply reservoir in northern Morocco. Int. Soil Water Conserv. Res. 8, 141–153. https://doi.org/10.1016/j.iswcr.2020.03.003
Fang, H., 2017. Impact of land use change and dam construction on soil erosion and sediment yield in the black soil region, Northeastern China. L. Degrad. Dev. 28(4), 1482–1492. https://doi.org/10.1002/ldr.2677
Fernandez, C., Wu, J.Q., McCool, D.K., Stöckle, C.O., 2003. Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. J. Soil Water Conserv. 58(3), 128–136.
Ferro, V., Minacapilli, M., 1995. Sediment delivery processes at basin scale. Hydrol. Sci. J. 40, 703–717. https://doi.org/10.1080/02626669509491460
Ferro, V., Porto, P., 2000. Sediment delivery distributed (SEDD) model. J. Hydrol. Eng. 5(4), 411–422. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(411)
Fortugno, D., Boix-Fayos, C., Bombino, G., Denisi, P., Quiñonero Rubio, J.M., Tamburino, V., Zema, D.A., 2017. Adjustments in channel morphology due to land-use changes and check dam installation in mountain torrents of Calabria (southern Italy). Earth Surf. Process. Landforms 42(14), 2469–2483. https://doi.org/10.1002/esp.4197
Fu, B., Liu, Y., Lü, Y., He, C., Zeng, Y., Wu, B., 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 8(4), 284–293. https://doi.org/10.1016/j.ecocom.2011.07.003
Fu, G., Chen, S., McCool, D.K., 2006. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil Tillage Res. 85(1–2), 38–49. https://doi.org/10.1016/j.still.2004.11.009
Fu, S., Liu, B., Zhou, G., Sun, Z., Zhu, X., 2015. Calculation tool of topographic factors. Sci. Soil Water Conserv. 13(05), 109-114(in Chinese). https://doi.org/10.16843/j.sswc.2015.05.018
Gao, P., Deng, J., Chai, X., Mu, X., Zhao, G., Shao, H., Sun, W., 2017. Dynamic sediment discharge in the Hekou – Longmen region of Yellow River and soil and water conservation implications. Sci. Total Environ. 578, 56–66. https://doi.org/10.1016/j.scitotenv.2016.06.128
Gashaw, T., Tulu, T., Argaw, M., Worqlul, A.W., 2019. Modeling the impacts of land use–land cover changes on soil erosion and sediment yield in the Andassa watershed, upper Blue Nile basin, Ethiopia. Environ. Earth Sci. 78(24). https://doi.org/10.1007/s12665-019-8726-x
Jin, Z., Cui, B., Song, Y., Shi, W., Wang, K., Wang, Y., Liang, J., 2012. How many check dams do we need to build on the loess plateau? Environ. Sci. Technol. 46(12), 8527–8528. https://doi.org/10.1021/es302835r
Lantican, M.A., Guerra, L.C., Bhuiyan, S.I., 2003. Impacts of soil erosion in the upper Manupali watershed on irrigated lowlands in the Philippines. Paddy Water Environ. 1(1), 19–26. https://doi.org/10.1007/s10333-002-0004-x
Li, E., Mu, X., Zhao, G., Gao, P., Sun, W., 2017. Effects of check dams on runoff and sediment load in a semi-arid river basin of the Yellow River. Stoch. Environ. Res. Risk Assess. 31(7), 1791–1803. https://doi.org/10.1007/s00477-016-1333-4
Marques, M.J., Bienes, R., Pérez-Rodríguez, R., Jiménez, L., 2008. Soil degradation in Central Spain due to sheet water erosion by low-intensity rainfall events. Earth Surf. Process. Landforms 33(3), 414–423. https://doi.org/10.1002/esp.1564
Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. U. S. A. 104, 13268–13272. https://doi.org/10.1073/pnas.0611508104
Mu, X., Zhang, X., Shao, H., Gao, P., Wang, F., Jiao, J., Zhu, J., 2012. Dynamic Changes of Sediment Discharge and the Influencing Factors in the Yellow River, China, for the Recent 90 Years. Clean - Soil, Air, Water 40(3), 303–309. https://doi.org/10.1002/clen.201000319
Polyakov, V.O., Nichols, M.H., McClaran, M.P., Nearing, M.A., 2014. Effect of check dams on runoff, sediment yield, and retention on small semiarid watersheds. J. Soil Water Conserv. 69(5), 414–421. https://doi.org/10.2489/jswc.69.5.414
Qiankun, G., Zhaowei, D., Wei, Q., Wenhong, C., Wen, L., Xiaomei, X., Zhe, Y., 2019. Changes in sediment load in a typical watershed in the tableland and gully region of the Loess Plateau, China. Catena 182, 104132. https://doi.org/10.1016/j.catena.2019.104132
Quiñonero-Rubio, J.M., Nadeu, E., Boix-Fayos, C., de Vente, J., 2016. Evaluation of the Effectiveness of Forest Restoration and Check-Dams to Reduce Catchment Sediment Yield. L. Degrad. Dev. 27(4), 1018–1031. https://doi.org/10.1002/ldr.2331
Ran, D.C., Luo, Q.H., Zhou, Z.H., Wang, G.Q., Zhang, X.H., 2008. Sediment retention by check dams in the Hekouzhen-Longmen Section of the Yellow River. Int. J. Sediment Res. 23(2), 159–166. https://doi.org/10.1016/S1001-6279(08)60015-3
Rao, E., Ouyang, Z., Yu, X., Xiao, Y., 2014. Spatial patterns and impacts of soil conservation service in China. Geomorphology 207, 64–70. https://doi.org/10.1016/j.geomorph.2013.10.027
Rey, F., Isselin-Nondedeu, F., Bédécarrats, A., 2005. Vegetation dynamics on sediment deposits upstream of bioengineering works in mountainous marly gullies in a Mediterranean climate (Southern Alps, France). Plant Soil 278(1–2), 149–158. https://doi.org/10.1007/s11104-005-8422-3
Romano, G., Abdelwahab, O.M.M., Gentile, F., 2018. Modeling land use changes and their impact on sediment load in a Mediterranean watershed. Catena 163, 342–353. https://doi.org/10.1016/j.catena.2017.12.039
Rustomji, P., Zhang, X.P., Hairsine, P.B., Zhang, L., Zhao, J., 2008. River sediment load and concentration responses to changes in hydrology and catchment management in the loess plateau region of china. Water Resour. Res. 45, 1–17. https://doi.org/10.1029/2007WR006656
Shi, P., Zhang, Y., Ren, Z., Yu, Y., Li, P., Gong, J., 2019. Land-use changes and check dams reducing runoff and sediment yield on the Loess Plateau of China. Sci. Total Environ. 664, 984–994. https://doi.org/10.1016/j.scitotenv.2019.01.430
Sun, P., Wu, Y., Wei, X., Sivakumar, B., Qiu, L., Mu, X., Chen, J., Gao, J., 2020. Quantifying the contributions of climate variation, land use change, and engineering measures for dramatic reduction in streamflow and sediment in a typical loess watershed, China. Ecol. Eng. 142, 105611. https://doi.org/10.1016/j.ecoleng.2019.105611
Sun, Q., Miao, C., Duan, Q., Wang, Y., 2015. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Glob. Planet. Change 132, 1–10. https://doi.org/10.1016/j.gloplacha.2015.05.011
Sushanth, K., Bhardwaj, A., 2019. Assessment of landuse change impact on runoff and sediment yield of Patiala-Ki-Rao watershed in Shivalik foot-hills of northwest India. Environ. Monit. Assess. 191(12). https://doi.org/10.1007/s10661-019-7932-z
Tang, Q., Xu, Y., Bennett, S.J., Li, Y., 2015. Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China. Environ. Earth Sci. 73(4), 1715–1724. https://doi.org/10.1007/s12665-014-3523-z
Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Poesen, J., Deckers, J., Kubik, P., 2007. Restoring dense vegetation can slow mountain erosion to near natural benchmark levels. Geology 35(4), 303–306. https://doi.org/10.1130/G23109A.1
Wang, G., 2020. Erosion Characteristics and Simulation in Typical Watersheds of More Sediment and Coarse Sediment Region in the Middle Reaches of the Yellow River (Dissertation, Hohai University).
Wang, Y., Fang, N., Tong, L., Shi, Z., 2017. Source identification and budget evaluation of eroded organic carbon in an intensive agricultural catchment. Agric. Ecosyst. Environ. 247, 290–297. https://doi.org/10.1016/j.agee.2017.07.011
Williams, J.R., Jones, C.A., Dyke, P.T., 1984. A modelling approach to determining the relationship between erosion and soil productivity. Trans. - Am. Soc. Agric. Eng. https://doi.org/10.13031/2013.32748
Wischmeier, W., Smith, D., 1978. Predicting rainfall erosion losses: a guide to conservation planning, U.S. Department of Agriculture Handbook No. 537. https://doi.org/10.1029/TR039i002p00285
Wu, X., Wang, H., Bi, N., Saito, Y., Xu, J., Zhang, Y., Lu, T., Cong, S., Yang, Z., 2020. Climate and human battle for dominance over the Yellow River’s sediment discharge: From the Mid-Holocene to the Anthropocene. Mar. Geol. 425, 106188. https://doi.org/10.1016/j.margeo.2020.106188
Xin, Z., Ran, L., Lu, X.X., 2012. Soil Erosion Control and Sediment Load Reduction in the Loess Plateau: Policy Perspectives. Int. J. Water Resour. Dev. 28(2), 325–341. https://doi.org/10.1080/07900627.2012.668650
Xu, Y.D., Fu, B.J., He, C.S., 2013. Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations. Hydrol. Earth Syst. Sci. 17(16), 2185–2193. https://doi.org/10.5194/hess-17-2185-2013
Yang, X., Sun, W., Li, P., Mu, X., Gao, P., Zhao, G., 2018. Reduced sediment transport in the Chinese Loess Plateau due to climate change and human activities. Sci. Total Environ. 642, 591–600. https://doi.org/10.1016/j.scitotenv.2018.06.061
Yue, X., Mu, X., Zhao, G., Shao, H., Gao, P., 2014. Dynamic changes of sediment load in the middle reaches of the Yellow River basin , China and implications for eco-restoration. Ecol. Eng. 73, 64–72. https://doi.org/10.1016/j.ecoleng.2014.09.014
Zema, D.A., Bombino, G., Boix-Fayos, C., Tamburino, V., Zimbone, S.M., Fortugno, D., 2014. Evaluation and modeling of scouring and sedimentation around check dams in a Mediterranean torrent in Calabria, Italy. J. Soil Water Conserv. 69(4), 316–329. https://doi.org/10.2489/jswc.69.4.316
Zhang, W., Xie, Y., Liu, B., 2002. Rainfall erosivity estimation using daily rainfall amounts. Sci. Geogr. Sin. 22(6), 705-711 (In chinese).
Zhang, X., She, D., Wang, G., Huang, X., 2020. Source identification of soil elements and risk assessment of trace elements under different land uses on the Loess. Environ. Geochem. Health. https://doi.org/10.1007/s10653-020-00624-0
Zhao, G., Kondolf, G.M., Mu, X., Han, M., He, Z., Rubin, Z., Wang, F., Gao, P., Sun, W., 2017. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 148, 126–137. https://doi.org/10.1016/j.catena.2016.05.010
Zhao, G., Mu, X., Jiao, J., An, Z., Klik, A., Wang, F., Jiao, F., Yue, X., Gao, P., Sun, W., 2016. Evidence and Causes of Spatiotemporal Changes in Runoff and Sediment Yield on the Chinese Loess Plateau. L. Degrad. Dev. 28(2), 579–590. https://doi.org/10.1002/ldr.2534
Zhao, Q., Wang, L., Liu, H., Zhang, Q., 2019. Runoff and sediment variation and attribution over 60 years in typical Loess Plateau basins. J. Soils Sediments 19(10), 3631–3647. https://doi.org/10.1007/s11368-019-02345-z
Zhou, M., Deng, J., Lin, Y., Belete, M., Wang, K., Comber, A., Huang, L., Gan, M., 2019. Identifying the effects of land use change on sediment export: Integrating sediment source and sediment delivery in the Qiantang River Basin, China. Sci. Total Environ. 686, 38–49. https://doi.org/10.1016/j.scitotenv.2019.05.336
Zuo, D., Xu, Z., Yao, W., Jin, S., Xiao, P., Ran, D., 2016. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 544, 238–250. https://doi.org/10.1016/j.scitotenv.2015.11.060
Table 1 Schemes for distinguishing the contribution of three factors to soil erosion and sediment load