Data Availability Statement
The data used to support the findings of this study are included within the article.

References

Andreo B, Martín-Martín M, Martín-Algarra A (1999). Hydrochemistry of spring water associated with travertines. Example of the Sierra de la Alfaguara (Granada, southern Spain). Surface Geoscience 328(11): 745–750.
Asta MP, Auqué LF, Sanz FJ, Gemeno MJ, Acero P, Blasco M, Garcia-Alix A, Gomez J, Delgado-Huertas A, Mandado J (2017). Travertines associated with the Alhama-Jaraba thermal waters (NE, Spain): Genesis and geochemistry. Sedimentary Geology 347: 100-116.
Acikel S, Ekmekci M (2016). Hydrochemical characterization of Pamukkale travertines, Denizli, Turkey, for remediative measures. Environmental Earth Sciences 75(22): 1456.
Apambire WB, Boyle DR, Michel FA (1997). Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana . Environmental Geology 33: 13-24.
Bureau of Geology and Mineral Resources of Yunnan Province. (1990). Regional Geology of Yunnan Province. Geological Publishing House (Beijing). (in Chinese)
Chae GT, Yun ST, Kwon M J (2006). Batch dissolution of granite and biotite in water: Implication for fluorine geochemistry in groundwater. Geochemical Journal 40 (1): 95-102.
Chafetz HS, Utech NM, Fitzmaurice SP (1991) Differences in the delta 18 O and delta 13 C signatures of seasonal laminae comprising travertine stromatolites. Journal of Sedimentary Research 61(6): 1015-1028.
Dilsiz C, Marques JM, Carreira PMM (2004). The impact of hydrological changes on travertine deposits related to thermal springs in the Pamukkale area (SW Turkey). Environmental Geology 45(6): 808-817.
Dilsiz C (2006). Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data. Hydrogeology Journal. 14(4): 562-572.
Dandurand JL, Gout R, Hoefs J, Menschel G, Schott J, Usdowski E (1982). Kinetically controlled variations of major components and carbon isotopes in a calcite-precipitating stream. Chemical Geology. 36(3-4), 299-315.
Erdoğan Y (2011). Engineering properties of Turkish travertines. Scientific Research and Essays. 6(21): 4551-4566.
Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC, Discipulo MK (2000). Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). Journal of Sedimentary Research. 70(3): 565-585.
Fouke BW (2011). Hot-spring Systems Geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology. 58(1): 170-219.
Fedoseev GS, Vorontsov AA, Orekhov AA (2017). Fossil travertines and quasi-travertine in the Minusa basin (West Siberia): structure, composition, and comparative analysis. Russian Geology & Geophysics. 58(8): 922-934.
Frery E, Gratier JP, Ellouz-Zimmerman N, Deschamps P, Blamart D, Hamelin B, Swennen R (2017). Geochemical transect through a travertine mount: A detailed record of CO2-enriched fluid leakage from Late Pleistocene to present-day-Little Grand Wash fault (Utah, USA). Quaternary International. 437: 98-106.
Freeze RA, Cherry JA (1979). Groundwater: Englewood Cliffs, NJ: Prentice-Hall, 604P.
Folk RL (1994). Interaction between bacteria, nanobacteria, and mineral precipitation in hot springs of central Italy. Géographie Physique et Quaternaire. 48: 233–246.
Ford TD, Pedley HM (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews. 41(3–4): 117-175.
Jones B, Renaut RW, Owen RB, Torfason H (2005). Growth patterns and implications of complex dendrites in calcite travertines from Lýsuhóll, Snæfellsnes, Iceland. Sedimentology, 52(6): 1277–1301.
Jones B, Peng X (2016). Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China. Sedimentary Geology. 345, 103-125.
Kele S, Demény A, Siklósy Z, Nemeth T, Toth M, Kovacs MB (2008) Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: Depositional facies and non-equilibrium fractionation. Sedimentary Geology. 211(3): 53-72.
Kele S, Özkul M, Fórizs I, Gokgoz A, Baykara MO, Alcicek MC, Nemeth T (2011). Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation. Sedimentary Geology. 238(1): 191-212.
Kawai T, Kano A, Hori M (2009). Geochemical and hydrological controls on biannual lamination of tufa deposits. Sedimentary Geology. 213(1-2): 41-50.
Li G, Robert R (1998). Hot‐spring travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy. Sedimentology. 45(1): 163-180.
Lorah MM, Herman JS, (1988). The chemical evolution of a travertine-depositing stream: Geochemical processes and mass transfer reactions. Water Resources Research. 24(9): 1541-1552.
Liu, Z. H., Svensson, U., Dreybrodt, W., Yuan, D. X., Buhmann, D., (1995). Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurements and theoretical prediction of deposition rates. Geochimica Et Cosmochimica Acta. 59(15): 3087-3097.
Liu, Y. P., Zhou, X., Fang, B., Zhou, H. Y, Yamanaka, T., (2012). A preliminary analysis of the formation of travertine and travertine cones in the Jifei hot spring, Yunnan, China. Environmental Earth Science. 66: 1887–1896.
Minvielle, S., Lastennet, R., Denis, A., Peyraube, N., 2015. Characterization of karst systems using SIc-pCO2, method coupled with PCA and frequency distribution analysis. Application to karst systems in the Vaucluse county (Southeastern France). Environmental Earth Sciences. 74(12): 7593-7604.
Naroa, G.I., Aitziber, S.B., Salvador,B., (2018). Paleoenvironmental and paleoclimatic interpretation of the stratigraphic sequence of Lezetxiki II Cave (Basque Country, Iberian Peninsula) inferred from small vertebrate assemblages. Quaternary Research, 90(1): 164-179.
Piper, A. M., (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos Transactions American Geophysical Union. 25(6): 27-39.
Pentecost, A., (1995a). The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews. 14(10): 1005-1028.
Pentecost, A., (1995b). Geochemistry of carbon dioxide in six travertine-depositing waters of Italy. Journal of Hydrology. 167(1–4): 263-278.
Pentecost, A., (1999). The origin and development of the travertines and associated thermal waters at Matlock Bath, Derbyshire. Proceedings of the Geologists Association. 110(3): 217-232.
Pentecost, A., (2005). Travertines. The Netherlands: Springer.
Parkhurst, D. L. and Appelo, C. A. J., (1999). User’s guide to PHREEQC (Version 2)-a computer program for speciation, batch -reaction, one-dimensional transport and inverse geochemical calculations. U.S. geological. Survey Water Resources Investigations Report. 99-4259.
Pasvanoğlu, S., (2013). Hydrogeochemistry of thermal and mineralized waters in the Diyadin (Ağri) area, Eastern Turkey. Applied Geochemistry. 38(3): 70-81.
Rossi, C., Lozano, R. P, (2016). Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters. Geochimica et Cosmochimica Acta. 192: 70–96.
Shen, Z. L., Zhu, W. H., Zhong, Z. S., (1993). Fundamentals of hydrogeochemistry. Geological Publishing House, Beijing, 5-15. (in Chinese)
Viles, H. A. and Goudie, A. S., (1990). Tufas, travertines and allied carbonate deposits. Progress in Physical Geography. 14(1): 19-41.
Veysey, J., Fouke, B. W., Kandianis, M. T., Schickel, T. J., Johnson, R. W., Goldenfeld, N., (2008). Reconstruction of water temperature, pH, and flux of ancient hot springs from travertine depositional facies. Journal of Sedimentary Research. 78(1-2):69-76.
Wang, X. C., Zhou, X., Zhao, J. B., Zheng, Y. H., Song, C., Long, M., (2015). Hydrochemical evolution and reaction simulation of travertine deposition of the Lianchangping hot springs in Yunnan, China. Quaternary International. 374: 62-75.
Yesertener, C., Elhatip, H., (1997). Evaluation of Groundwater Flow by Means of Dye-Tracing Techniques, Pamukkale Thermal Springs, Western Turkey. Hydrogeology Journal. 5(4): 51-59.
Zhou, X., Hu, F. S., He, J. T., Wang, X. S., Fang, B., (2014). Introduction to Groundwater Sciences. 2nd ed. Geological Publishing House, Beijing. (in Chinese.)
Zhou, X., Jin, X. M., Liang, S. H., Shen, Y., Zhang, H. M., (2017). Special Topics on Groundwater Sciences. 2nd ed. Geological Publishing House, Beijing. (in Chinese)