Data Availability Statement
The data used to support the findings of this study are included within
the article.
References
Andreo B, Martín-Martín M, Martín-Algarra A (1999). Hydrochemistry of
spring water associated with travertines. Example of the Sierra de la
Alfaguara (Granada, southern Spain). Surface Geoscience 328(11):
745–750.
Asta MP, Auqué LF, Sanz FJ, Gemeno MJ, Acero P, Blasco M, Garcia-Alix A,
Gomez J, Delgado-Huertas A, Mandado J (2017). Travertines associated
with the Alhama-Jaraba thermal waters (NE, Spain): Genesis and
geochemistry. Sedimentary Geology 347: 100-116.
Acikel S, Ekmekci M (2016). Hydrochemical characterization of Pamukkale
travertines, Denizli, Turkey, for remediative measures. Environmental
Earth Sciences 75(22): 1456.
Apambire WB, Boyle DR, Michel FA (1997). Geochemistry, genesis, and
health implications of fluoriferous groundwaters in the upper regions of
Ghana . Environmental Geology 33: 13-24.
Bureau of Geology and Mineral Resources of Yunnan Province. (1990).
Regional Geology of Yunnan Province. Geological Publishing House
(Beijing). (in Chinese)
Chae GT, Yun ST, Kwon M J (2006). Batch dissolution of granite and
biotite in water: Implication for fluorine geochemistry in groundwater.
Geochemical Journal 40 (1): 95-102.
Chafetz HS, Utech NM, Fitzmaurice SP (1991) Differences in the
delta 18 O and delta 13 C signatures
of seasonal laminae comprising travertine stromatolites. Journal of
Sedimentary Research 61(6): 1015-1028.
Dilsiz C, Marques JM, Carreira PMM (2004). The impact of hydrological
changes on travertine deposits related to thermal springs in the
Pamukkale area (SW Turkey). Environmental Geology 45(6): 808-817.
Dilsiz C (2006). Conceptual hydrodynamic model of the Pamukkale
hydrothermal field, southwestern Turkey, based on hydrochemical and
isotopic data. Hydrogeology Journal. 14(4): 562-572.
Dandurand JL, Gout R, Hoefs J, Menschel G, Schott J, Usdowski E (1982).
Kinetically controlled variations of major components and carbon
isotopes in a calcite-precipitating stream. Chemical Geology. 36(3-4),
299-315.
Erdoğan Y (2011). Engineering properties of Turkish travertines.
Scientific Research and Essays. 6(21): 4551-4566.
Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC,
Discipulo MK (2000). Depositional facies and aqueous-solid geochemistry
of travertine-depositing hot springs (Angel Terrace, Mammoth Hot
Springs, Yellowstone National Park, U.S.A.). Journal of Sedimentary
Research. 70(3): 565-585.
Fouke BW (2011). Hot-spring Systems Geobiology: abiotic and biotic
influences on travertine formation at Mammoth Hot Springs, Yellowstone
National Park, USA. Sedimentology. 58(1): 170-219.
Fedoseev GS, Vorontsov AA, Orekhov AA (2017). Fossil travertines and
quasi-travertine in the Minusa basin (West Siberia): structure,
composition, and comparative analysis. Russian Geology & Geophysics.
58(8): 922-934.
Frery E, Gratier JP, Ellouz-Zimmerman N, Deschamps P, Blamart D, Hamelin
B, Swennen R (2017). Geochemical transect
through a travertine mount: A detailed record of
CO2-enriched fluid leakage from Late Pleistocene to
present-day-Little Grand Wash fault (Utah, USA). Quaternary
International. 437: 98-106.
Freeze RA, Cherry JA (1979). Groundwater: Englewood Cliffs, NJ:
Prentice-Hall, 604P.
Folk RL (1994). Interaction between bacteria, nanobacteria, and mineral
precipitation in hot springs of central Italy. Géographie Physique et
Quaternaire. 48: 233–246.
Ford TD, Pedley HM (1996). A review of tufa and travertine deposits of
the world. Earth-Science Reviews. 41(3–4): 117-175.
Jones B, Renaut RW, Owen RB, Torfason H (2005). Growth patterns and
implications of complex dendrites in calcite travertines from Lýsuhóll,
Snæfellsnes, Iceland. Sedimentology, 52(6): 1277–1301.
Jones B, Peng X (2016). Mineralogical, crystallographic, and isotopic
constraints on the precipitation of aragonite and calcite at Shiqiang
and other hot springs in Yunnan Province, China. Sedimentary Geology.
345, 103-125.
Kele S, Demény A, Siklósy Z, Nemeth T, Toth M, Kovacs MB (2008) Chemical
and stable isotope composition of recent hot-water travertines and
associated thermal waters, from Egerszalók, Hungary: Depositional facies
and non-equilibrium fractionation. Sedimentary Geology. 211(3): 53-72.
Kele S, Özkul M, Fórizs I, Gokgoz A, Baykara MO, Alcicek MC, Nemeth T
(2011). Stable isotope geochemical study of Pamukkale travertines: New
evidences of low-temperature non-equilibrium calcite-water
fractionation. Sedimentary Geology. 238(1): 191-212.
Kawai T, Kano A, Hori M (2009). Geochemical and hydrological controls on
biannual lamination of tufa deposits. Sedimentary Geology. 213(1-2):
41-50.
Li G, Robert R (1998). Hot‐spring travertine facies and sequences, Late
Pleistocene, Rapolano Terme, Italy. Sedimentology. 45(1): 163-180.
Lorah MM, Herman JS, (1988). The chemical evolution of a
travertine-depositing stream: Geochemical processes and mass transfer
reactions. Water Resources Research. 24(9): 1541-1552.
Liu, Z. H., Svensson, U., Dreybrodt, W., Yuan, D. X., Buhmann, D.,
(1995). Hydrodynamic control of inorganic calcite precipitation in
Huanglong Ravine, China: Field measurements and theoretical prediction
of deposition rates. Geochimica Et Cosmochimica Acta. 59(15): 3087-3097.
Liu, Y. P., Zhou, X., Fang, B., Zhou, H. Y, Yamanaka, T., (2012). A
preliminary analysis of the formation of travertine and travertine cones
in the Jifei hot spring, Yunnan, China. Environmental Earth Science. 66:
1887–1896.
Minvielle, S., Lastennet, R., Denis, A., Peyraube, N., 2015.
Characterization of karst systems using SIc-pCO2, method
coupled with PCA and frequency distribution analysis. Application to
karst systems in the Vaucluse county (Southeastern France).
Environmental Earth Sciences. 74(12): 7593-7604.
Naroa, G.I., Aitziber, S.B., Salvador,B., (2018). Paleoenvironmental and
paleoclimatic interpretation of the stratigraphic sequence of Lezetxiki
II Cave (Basque Country, Iberian Peninsula) inferred from small
vertebrate assemblages. Quaternary Research, 90(1): 164-179.
Piper, A. M., (1944). A graphic procedure in the geochemical
interpretation of water-analyses. Eos Transactions American Geophysical
Union. 25(6): 27-39.
Pentecost, A., (1995a). The Quaternary travertine deposits of Europe and
Asia Minor. Quaternary Science Reviews. 14(10): 1005-1028.
Pentecost, A., (1995b). Geochemistry of carbon dioxide in six
travertine-depositing waters of Italy. Journal of Hydrology. 167(1–4):
263-278.
Pentecost, A., (1999). The origin and development of the travertines and
associated thermal waters at Matlock Bath, Derbyshire. Proceedings of
the Geologists Association. 110(3): 217-232.
Pentecost, A., (2005). Travertines. The Netherlands: Springer.
Parkhurst, D. L. and Appelo, C. A. J., (1999). User’s guide to PHREEQC
(Version 2)-a computer program for speciation, batch -reaction,
one-dimensional transport and inverse geochemical calculations. U.S.
geological. Survey Water Resources Investigations Report. 99-4259.
Pasvanoğlu, S., (2013). Hydrogeochemistry of thermal and mineralized
waters in the Diyadin (Ağri) area, Eastern Turkey. Applied Geochemistry.
38(3): 70-81.
Rossi, C., Lozano, R. P, (2016). Hydrochemical controls on aragonite
versus calcite precipitation in cave dripwaters. Geochimica et
Cosmochimica Acta. 192: 70–96.
Shen, Z. L., Zhu, W. H., Zhong, Z. S., (1993). Fundamentals of
hydrogeochemistry. Geological Publishing House, Beijing, 5-15. (in
Chinese)
Viles, H. A. and Goudie, A. S., (1990). Tufas, travertines and allied
carbonate deposits. Progress in Physical Geography. 14(1): 19-41.
Veysey, J., Fouke, B. W., Kandianis, M. T., Schickel, T. J., Johnson, R.
W., Goldenfeld, N., (2008). Reconstruction of water temperature, pH, and
flux of ancient hot springs from travertine depositional facies. Journal
of Sedimentary Research. 78(1-2):69-76.
Wang, X. C., Zhou, X., Zhao, J. B., Zheng, Y. H., Song, C., Long, M.,
(2015). Hydrochemical evolution and reaction simulation of travertine
deposition of the Lianchangping hot springs in Yunnan, China. Quaternary
International. 374: 62-75.
Yesertener, C., Elhatip, H., (1997). Evaluation of Groundwater Flow by
Means of Dye-Tracing Techniques, Pamukkale Thermal Springs, Western
Turkey. Hydrogeology Journal. 5(4): 51-59.
Zhou, X., Hu, F. S., He, J. T., Wang, X. S., Fang, B., (2014).
Introduction to Groundwater Sciences. 2nd ed.
Geological Publishing House, Beijing. (in Chinese.)
Zhou, X., Jin, X. M., Liang, S. H., Shen, Y., Zhang, H. M., (2017).
Special Topics on Groundwater Sciences. 2nd ed.
Geological Publishing House, Beijing. (in Chinese)