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Abstract

In this paper, we give a new higher dimensional Hermite-Hadamard inequality for a

n

function f : [][as,bi] € R™ — R which is semiconvex of rate (k1, k2, ..., k,,) on the co-
i=1

ordinates. This generalizes some existing results on Hermite-Hadamard inequalities of S.S.

Dragomir. In addition, we explain the Hermite-Hadamard inequality from the point of view
of optimal mass transportation with cost function c(z,y) = f(y — ) + Sr, &

n
Yi 2, where f(-) : [][ai,bi] — [0,00) is semiconvex of rate (k1, ke, ..., k,) on the co-

i=1

n
ordinates and = = (1,22, ..., Zpn), ¥ = (Y1, Y2, ---, Yn) € [] [ai, b;]. Furthermore, by using
i=1
the higher dimensional Hermite-Hadamard inequality, we compare the transport cost in
different transport models on the sphere S2.

Keywords. Convex functions, Hermite-Hadamard inequality, Optimal mass transportation

1 Introduction

The classical Hermite-Hadamard inequality for convex functions f on [a, b] is usually stated as

a+b /f fla) + f(b).

. (1.1)

which was first published in [4].
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In the 2-dimensional situation, for any function f : [a,b] X [¢,d] — R which is convex
on the co-ordinates on [a, b] X [c, d], Dragomir proved in 2001 the following two-dimensional
Hermite-Hadamard inequality (Theorem 1 in [2]):

d
f(a—;b7c%2—d)§%[b_ /fxl,c+d)dx1+ 1 /f(a;b’b)d@]

(b C— / / f il')l,l'g dl’ldl'z

<1 flar.od +— fler. )

=3 b— T, C)axry xla X1
/faxgdngr—/fbxgdmg]

d—c

< fla,c) + f(a,d) + f(b,c)+ f(b,d)
- 4

(1.2)

Interested readers are also refered to [3] for more details. On the other hand, Hermite-Hadamard
Inequality has also been extended to various other contexts, including for example Hermite-
Hadamard’s type inequalities involving two functions, Hermite-Hadamard inequality for log-
convex functions, etc. Details can be found in [7] and [11], respectively.

In this paper, inspired by the Hermite-Hadamard inequality for semiconvex functions f :
la,b] — R in [6], in Section 2, we establish a higher dimensional refinement of the Hermite-
Hadamard inequality (1.2) for a function f : [][a;, b;] C R™ — R which is continuous and

i=1
semiconvex of rate (ki, ko, ..., k) on the co-ordinates. Here a; < b;(i = 1,...,n). Dragomir’s
result (1.2), and the Hermite-Hadamard inequality for 1- and higher dimensional semiconvex
functions (see Theorem 2.2 and Remark 2.5, respectively) can all be seen as special cases. In
Section 3, we interpret the meaning of the new higher dimensional Hermite-Hadamard inequal-
ity from the point of view of optimal mass transportation problems by studying and comparing
the optimal transportation costs of five transport models in the hyper-rectangles [ ] [a;, b;]. Five
i=1

transport models on the sphere S? are also studied. In addition, by making use of the the new
higher dimensional Hermite-Hadamard inequality, comparison of the transport costs in such
models on the sphere is given.

2 Higher dimensional Hermite-Hadamard inequality for semi-
convex functions of rate (k;, ko, ..., k,) on the co-ordinates

We first recall some preliminaries on semiconvexity and the one-dimensional Hermite-Hadamard
inequality for semiconvex functions f : [a,b] — R of rate k € R.

Definition 2.1. ([5], [6],[8]) A function f defined on a convex set in R" is said to be semiconvex
of rate k if the function



Secondary Variational Problems 3

is convex for some real constant k. Here || - || is the usual Euclidean norm.

Theorem 2.2. ([6]) If v is a Borel probability measure on an interval [a, b] with barycenter

b
b, :/ zdp(zx) (2.1)

then for every semiconvex function f : [a,b] — R of rate k, we have

/f )dp(x /Ix—b dp(x) (2.2)

by by
b_a (a) + 35— —1(b) + (b —a)(b—1b,). (2.3)

Motivated by these results, we establish a higher dimensional Hermite-Hadamard inequality
for semiconvex function of rate (ki, ko, ..., k,) on the co-ordinates. We start by recalling the
following definition.

Definition 2.3. Let k1, ko, ..., k, € R, a function f : [][a;, b;] — R is said to be semiconvex of
i=1
rate (ky, ka, ..., k) on the co-ordinates if for all x; € [a;, b;], the partial maps

fa,(u) 2 Jai, bi] = R, fa,(u) := f(@1, o, Tim1, Uy Tig1, oy), 0 =1,2,.00m
are semiconvex of rate k;, © = 1,2, ..., n, respectively.

We also fix our notations as follows. Forany ¢ = 1,...,n,b,, = fab x;dp;(z;) is the barycen-
ter of a Borel probability measure y; on an interval [a;, b;], respectively,
Ti = (T1y ey Tim1, Ti1,y -oTy) € R
(fi, U) = (‘1'17 vy Li—1, Uy, Ty q, iL’n) e R" ,
by = (buy,--sbp,) € R,

~

(buyyw) = (buys oo bpy by, by, ) € R™

// f (e w)dis(z) = / F (0 0) s (21) © o ® 151 (T12) © friss (Teg).. © ().

[T [a;.b5] [1 [a;.b5]
J#i JF#i

Theorem 2.4. If j1;,7 = 1,2...,n are Borel probability measures on the intervals la;, b;],1 =
1, 2..., n, respectively, then for every continuous and semiconvex function f : H [a;,b;]] — R of

=1
rate (ky, ko, ..., k,) on the co-ordinates, we have

F(buys vy b)) (2.4)

Z/ 1o ““xz Japui(z:) +Z 2n/ - bm| dpi(z;) (2.5)
n k. b;

< // f(xla...71?n)dul($1)®...®Mn<q;n)-|—25’/ |xi_bM 2
=1 aq

dpi(z;) (2.6)
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S Z // uz :Bz;az dﬂz Z; +Z // b _a mzab)d/LZ(xz)

et o
- (n - 1)’%’ bi 9 k;
+ ; o / |z; — by, [P dpi () + ; %(bm —a;)(b; — by, (2.7)
< UG T #3350, —a)bi—b,). 08
mszizor b;, H (bz — ai) i=1
Sl 1

bi—by, i vi=aq
where g(x;) = { b, —Zi if xi="b;’

Proof. Tt follows from Definition 2.3 that fy, (u) : [a;,b;] — R, ¢ = 1,2, ..., n are semiconvex

of rate k;, ©+ = 1,2, ..., n, respectively.
Applying Theorem 2.2 to f;,(u), ¢ = 1,2, ..., n, respectively, one has

b; kz b;
fii(by;) < / fa. (i) dpi(;) + 5/ |25 — by, |?

Taking z; = b »t=1,2,...,n1n (2.9), and adding the n resulting inequalities, one has

b;
nf(bmv p2s un < Z |:/ fb Z; sz 5[1) k / |x_b ‘ d,uz(l'z):|

=1,...,n

and so

n

1
f(bmvbuzv“' Kn SE

1=

ki
L/m.n et + 5 [ e ()
1 @i
which proves inequality (2.5).

Foralli=1,2,..,n, f,- (x;) can be seen as a function of b,,. By using (2.2), one gets

ki [
/ fb d,uz xz) 5/ |xz - bui

i k by
< [ st it + 5 [ = a0 o

ki [
+§/ |z — by,

b; b1
= / l f(xl’bmv"'7bui—1vxi7bm+1v"'7bun)dﬂl(x1):| d:ui(xi)

ki

b1 k. b;
5 [ o= b PG + 5 [ e = b (e,
al a;

2dpi(s)

*dp; ()
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Note that f(x1,bp,, ..., by 15 T, b,y -5 by, ) can also be seen as a function of b

again and repeating the above steps, we get

ki [
/ fi leddutz) + 5 [ o= b (o)

< // F (@1, e 20) i (21) @ . ()

[T [a:bi]
i=1,...,n
n k. b;
i=1 @i

Hence

n

[/ fb;i (zi)dpi(zi) + 5/ |z; — b,
=1 a; a;

<n // F@s s )i (1) @ . @ pin (1)

2dpi(z;)

IT Tab
n k- b;
+n25]"m—m%Mm,
=1 ai

which implies inequality (2.6)
We proceed to prove (2.7) by using (2.3). Note that for all 7 = 1,2

ki [
/ (1, 20)dpn (1) @ oo @ pn(T0) + = 7 / i — by, |Pdpi(;)
T "

.....

y ey T

// e (@ adm(E) + [

[T [a;,bs] [1 [a;,b5]
J#u JF#i

$ub )dﬂz< 2)

Adding these n inequalities and dividing the sum by n, one gets

/ f L1y ooy T )dpn (1) @ oo @ pin (T, +22n/ i—b

.....

Hi

<
_; // (b —al)f(xz,az divi(z; +Z // b@—al (&3, b;)d i (z;)
T [ay.b5)

[T la;.b; ;5]
J#i

JF#L
n ]CZ
+) oy s — i) (bi = b) .
i=1

ki
5 (O — ai)(bi —

2y ()

0+ Using (2.2)

// [f(xla T2,y Tn) + Em = by [P () @ pa(21) @ pa(w2) @ .o @ pin ()

by).

(2.10)
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Adding

2dpi(;)

- n—lk:z bi
Sy

i=1

to both sides of (2.10), one proves inequality (2.7).

To end the prove we show inequality (2.8) by induction on n. If n = 1, then (2.8) is actually
an equality. Assume (2.8) hods for n — 1, then

S N S

[ajb] [a;,b;
J#'LJ 1,..,n ]#7.] 1,..,n
+) | lEi b 2dpa(zi) + ) oy, (O — @) (b = by)
i=1 @i i=1 n
LS e Gt © - e o)
= Tiy Q4 n— n— n\4Ln
no o, (n—1)(b; — ay) Hi Hn—1{(En—1) [0 (T
= aj;bj

(n—1)(bi — a;)

n—1 " (n—2k [

e e e
n—1 [ & k;

! / 2 50—y s = @) (B = Bl ()

b, — by, — an

// n(bn - Zn F @ an) & 2 5 @ )i (21) @ oo @ pine (1)

e ) DI | B = e AP PR E WS

2dpi ()] dpan(20)

: \ ., (n=1Dk,
2n

b
n kn
| = b Pl + 320, )b =)

n—1

n_ bn T1)...0(Tn—1 i
1 / S St )+ 30 B — )b~ bl (e

” fa;f.ffni lj (b —a) =
n(b, — ay) ’
j=1,..,n— 1[% b] _=1H _1[aj,bj]
n—1 b .
ki Z (n B 1)kn " k,
2 %/ o = by P + D [ b Papa) + 52 b, — )0 b,
=1 a; an
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n— L1)...9(Tp_1 bn . bn )
_n=-1 3 g9(z1)...g( )/ [f(xl,..-,:vn)+%/ (20 — by, 2] dpin ()

n n—1

x;=a; or by, H( R )
iél,?f“.,n—ll - bl a;
=1

bn—l

bn —-b n —~ kn—l
o J] ] e+ S b

n

j=1,..,n—2
b an, - Kp—
+ n(l;)n 4 )[f(xna bn) + Tllxn—l - bun71 |2]d/v‘n—1(xn—1) @ dpy @ ... @ djty_2
n—2 b n
ki ¢ kn (TL B 1)k1
+) o | 17— bu 2dpi(x;) + oy Oun = @n)(bn = by,) + > 5 (b — ai)(b
i=1 ai j=

=1
b n an kn
+ I:n_—anf(xl; Ly eny bn) + ?(bun - an)(bn — b#n)]
bn — b“n b"*1 B b/‘nfl
+ // n(b, — an) [ b — fxy, 29, .y Gy, an)
T a5,
j=1,..,n—2
Opin 1 — Gn— ko
+ “" 1f(x1,x2, ey bp—1,ap) + ! (b s — A1) (b1 — b, )]
-1 — Qp— l 2
bnf - b n—1
// b _an [bnfll_a'u;lfl f<x1’x2,“"an71’bn)
laj,b5]
Jj=1,. n72
Dyn1 = n- K
+ e 1f<x1a Loy eny bn—la bn) + ! (b'un71 — an_l)(bn_l — an71>]

2

bn 1 — Qn—1

ki ”1 K " (n— 1)k
+ Z o = () 5 b = )b i) + 30T b — b
n—1
z;ff‘z or by, H (bl - az) =1
12, P
k, "\ (n— 1)k
+ %(bﬂn an)(bn bﬂn) + 27’L (bﬂz a’l)(b’l bﬂz)

I
]
o
T 0
D3
S o
||
,_\
—~
@‘
S
S
S—

]

Remark 2.5. If k; = k,i = 1,2, ..., n, then a function which is semiconvex of rate (k1, k2, ..., k)
on the co-ordinates is actually semiconvex of rate k, and one has the Hermite-Hadamard in-

- b#i)

)
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equality for n-dimensional semiconvex functions of rate & after taking k; = k,2 = 1,2,...,n in
Theorem 2.4.

1 1
Remark 2.6. In the two dimensional case, by taking p; = v , g = v ,
b—a lap] d—c lid
b d
where v is the 1-dimensional Lebsegue measure, then b, = %, bu, = % , and Theorem

2.4 reduces to Dragomir’s result (1.2) for a function which is convex on the co-ordinates (see
[2]). Such a function, in fact, is also semiconvex of rate (0, 0) on the co-ordinates.

Remark 2.7. Theorem 2.2 which is a one-dimensional Hermite-Hadamard inequality can also
be seen as a special case of Theroem 2.4. In fact, observe that when the intervals [a;, b;],i =
2,...n degenerate to points, the function f(zq, s, ...,x,) in Theroem 2.4 reduces to a semi-
convex function f(z) : [a,b] — R. With suitable modifications, (2.5), (2.6), (2.7) and (2.8) in
Theroem 2.4 reduce to (2.2) and (2.3) in Theorem 2.2.

n

Remark 2.8. For higher dimensional convex functions f on a hyper-rectangle [ | [a;, b;], we also
i=1
refer to [1] in which the Hermite-Hadamard inequality is expressed in probabilistic terms, that

is, f(ES) < Ef(&) < Ef(£*), where E denotes mathematical expectation, and £ (respectively
£*) is a random vector. By taking £ = (i, ..., &;, ...&,) a random vector with &; having uniform
distribution on [a;, b;],7 = 2, ...n, then f(F¢{) < Ef(§) < Ef(£*) implies

a, + by an+b

1
RS / f(zq, .y xy)dry..dx, < Z 2—nf(x1,...,xn).

z;=a; or b;,
[az 7, =1,2,...,n

i

It can also be reduced by using Theroem 2.4 in which f is taken as a convex function and
1

Hi= b; — a; . [aibi]
bi+—ai
2

i = 1,...,n, where v is the 1-dimensional Lebsegue measure, then b,, =

i =1,....n.

3 Mass transportation and Hermite-Hadamard inequality

In this section, we interpret the meaning of the new Hermite-Hadamard Inequality obtained in
the previous section from the point of view of optimal mass transportation problems.

A typical optimal mass transport problem is the Kantorovich problem, which is formulated
as:

min / c(x,y) dy(z,y), (3.1
R xR"™

v€Ell(v2,v2)

where vy, 1, € P(R"™) with P(R™) meaning the space of Borel probability measures on R",
c(x,y) : R" x R" — [0, +00) is a cost function, and

vy, 1n) :=={y € P(R" x R") : (m)yy = 11, (m2)sy = 12}
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is the set of transport plans between v and v,. Here 7y, m5 : R” x R™ — R" are the canonical
projections on the first and second factors, respectively. We refer to [9, 10] for more information
and references on optimal mass transportation theory.

Before proceeding, we first recall some standard notations. Let 1i; € P([a;, b)),i = 1,2,...,n
and 0, denotes the Dirac measure at the point z € R. The product measure d, ® ... ® 0, €
P(R") of 6, ,i=1,2,...,nis given by

1 if b, €Ani=12,.n

5% ®..® 6an(A1 X X Ap) = { 0 otherwise

for any Borel measurable A; C [a;, b;],71 = 1,2, ...

7

3.1 Mass transportation meaning of the Hermite-Hadamard Inequality

After adding the constant > ;" 21 b2 to each term in the Hermite-Hadamard inequality in The-
orem 2.4, we can prove that each new term equals to the mass transport cost in the following
series of transportation models with initial measure v, = §y®...®Jy € P(R") and cost function

c(x,y) : R" x R" — [0, +00) given by

c(z,y) = c(x1.02, ..., T, Y1, Y2, - Yn) = fly — ) + Z E(xz - yi)2 ) (3.2)
i=1

where .
£ Jlai.b:] = [0,+00)
=1

is continuous and semiconvex of rate (k1, ko, ..., k,) on the co-ordinates.

Example 3.1. Take vy = 50@...@(507 Vo = 6bu1 ®®(5an S P(Rn), then H(V17 VQ) = {I/1®l/2}
is a singleton, and the optimal transportation cost from v; to 1, is the sum of expression (2.4)
and Y7 Bb2 .

Example 3.2. Take vy = §y ® ... ® dg, 1o = Z Oy, @ -.0p, @i @0, @0, € PR,

then II(1v, 15) = {11 ® 1} is a singleton, and the optimal transportation cost from v; to v is
the expression (2.5) in Theorem 2.4 plus > g2 |

=1 2 “pi’

Kit1

Example 3.3. Take V1 = 50@ ®(50, Vo = U1 X... ®,un € P(Rn), then H(Vl, VQ) = {Vl ®l/2} is
a singleton, and the optimal transportation cost from v, to v is the expression (2.6) in Theorem
24 plus > A2

Example 3.4. Take 1y = 6y ® ... ® p,

n bl—b
VQ:Z n(h; —a )“1® @ i1 ® gy @ i1 @ oo @ fiy

+Z TR u1® L@ Jlic1 ® O, ® i1 ® . @ i
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in P(R"), then I1(v1,v5) = {11 ® 1»} is a singleton, and the optimal transportation cost from
vy to 1y is the expression (2.7) in Theorem 2.4 plus >, %bi

Example 3.5. Take 14 = 6y ® ... ® o,
g(z1)g(x2)...9(2n)
Bz or bs, H (bl — ai)

32,0, n i1

vy = Oy @0y @ ... ® Oy,

in P(R"). Here g(-) is defined as that in Theorem 2.4. Then I1(v, 12) = {v1 ®1»} is a singleton,
and the optimal transportation cost from v to v 1s the expression (2.8) in Theorem 2.4 plus

n k12
Zi:l 2 b/.lq

v, @ v ——va—
P pp— L -
SAEE ==y & === S o 7 -
Lo z / 8 ’ / 121 4 121 / Lg!
OCoordinate origin Coordinate origin Q Coordinate origin O Coordinate origin QO Coordinate origin
Example 3.1 Example 3.2 Example 33 Example 3.4 Example 35

Figure 1: Mass transportation meaning of Theorem 2.4

As the transport costs from v to v5 in Examples 3.1, 3.2, 3.3, 3.4 and 3.5 equal to each
term (adding ) ", %bii) in the Hermite-Hadamard inequality in Theorem 2.4, respectively, it
follows that the transfer costs in these examples become more and more expensive (see Figure

1: For simplicity, the figures are drawn in three-dimension).

3.2 Mass transportation models in the unit ball

We consider mass transportation models in the unit ball. For simplicity, we give examples in
3-dimension. Here we take c*(z,y) = ||z — y||* : R® x R® — [0, +00) and the initial measure
being 0(9,0,0), the Dirac measure at the origin in R3. These transportation models in the unit
ball can be seen as models in a hyper-rectangle I3 := [0, 1] x [0, 2x] x [0, 7], and hence one
can use the Hermite-Hadamard inequality in Theorem 2.4 and the interpretation in Section 3.1
to compare the transport costs in different models in the unit ball via the comparison of the
transport costs in the corresponding models in hyper-rectangles.

Set c(z,w) = (r, —ry)? : I3 x I3 — [0, +00), where 2 = (1.,0.,0.),w = (Tw, O, Pu)-
Set pi, = 3r%dr € P([0,1]), pp = 5=df € P([0,27]), and p, = *22dyp € P([0,7]). Then
b, = %, bug = m, by, = 5, and p1, ® pig @ p, € P(I3). By performing the following change of
coordinates

g2 Ny r] = rsmgpcgs@
T::c:(:c Ta,s) 2= (r,0,0) {wgz rsingsind
1,42,+43 O, @ T3 = TCOSQ

3
one has c¢*(0,z) = ||z]|? = Y 2? = r? = ¢(0, T'z).
=1
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Example 3.6. Take 1] = 0(0,0,0), 5 = 03 ® 6o @ &y € P(S?). Then I1(v},v3) = {v; @ v3} is
a singleton, and the optimal transportation cost from v; to v for the cost function ¢*(z,y) =
[l —yl*is

* * * 3
| e o = ().
S52x 52

Correspondingly, take vy = d(0,0,0), V2 = 0p,, @ 5% ® 51% = 5(%77%) € P(I3). Then
(v, v5) = {v1 ® 11} is a singleton, and the optimal transportation cost from v to v, for the

cost function ¢(z,w) = (r, — ry,)?* is

| e o mtew) = 0,07 = QF

Hence the optimal transport cost in the two models coincide (see Figure 2).

Example 3.6 Example 3.7 Example 3.8 Example 3.9 Example 3.10

Figure 2: Comparison of optimal transport costs

Example 3.7. Take I/ik = (5(0’070), V; = %/Lr X 50 X 50 + %ﬂLl X (50 + %,LLL2 (029 (50 € P(Sz)
24,2 _ (3)2 — _ [(3y2 _ .2

Here L, : { j_—i_oy (4) , Lo : { t (4) “" are curves in S? and pr, € P(L;)

such that iy, (A) = [, ds,i = 1,2, where ds is the arc length element. Then II(v},v;) =

{v; ® 15} is a singleton, and the optimal transportation cost from v to v for the cost function

(o) = llo = ol i
[ cpai o)
52x 52

1
1 3 1 3 13
/?J% - 3yidy, + 3 /(Z)2dﬂm + 3 /(Z)QdﬂLz =10
0

L1 LZ

W
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Correspondingly, take v1 = 80,00)> Y2 = 30, @ Ob,, @ fp + 30b,, @ Hg @ Oy, + 3 @
Oty ® O, € P(I3). Then II(v1, v2) = {1 ® 15} is a singleton, and the optimal transportation
cost from vy to v for the cost function c(z, w) = (r, — r,)?% is

/ c(z,w)r @ ve(z,w)
13 ><13

2 T 1

113, 1 (.3, 1/2
— A + = [ CO2dp, + = [ 2,

0 0 0

1

1 2 3. 13
== et 4 2 (22 = 22
3/r ety (=g

0

Hence the optimal transport cost in the two models coincide.

Example 3.8. Take v; = §(0,0) and v; € P(S?)) such that dvy = 2 dz w3, then (1], 1) =
{v; ® 15} is a singleton, and the optimal transportation cost from v to v for the cost function
(z,y) = |lz = yl[*is

/S2Xs2 ¢z, y)dvi @ v3(x,y) ///Zy dyryays

1 27w
3
= 3 / //r2r23mg0d7"d0d<p = -
s 3
00 0

Correspondingly, take v = (90,0, V2 = ftr & pto @ ft, € P(I3). Then (11, 15) = {11 @1}
is a singleton, and the optimal transportation cost from v, to v, for the cost function c(z, w) =
(r, — ry)?is

/ c(z,w)ry @ 1y(z,w) = / r2dpe @ pio @ py(r,0,¢)
If;)([;

1 27 =«
/ / / r23r2dr - — —df - s”wd ?

Once again, the optimal transport cost in the two models coincide.

Example 3.9. Take v{ = 6000), 5 = 1500000) + i5tos2 + 5is + s € P(S?), where
2 | 2
r]+ag <

1 such that dus =
To =

posz € P(0S?)), ps is the probability measure on the plane s : {

0 < xT3 < 1
T = T9 = 0
that duuy, = 3z3dzs. Then TI(v5, v3) = {v; ® 13} is a singleton, and the optimal transportation

%\/xf + x2dz1drs, and puy, is the probability measure on the line L : { such
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cost from v to v for the cost function ¢*(z,y) = ||z — y||? is

[ it oy
52x52

1
1 3 1 3 / 1
0

82

1
1 13
3 27r/ / r-rdrd9+§/x3 3x3drs = 20
0

Correspondingly, take 11 = 6(0,0,0), Y2 = 1500 ® 1o © i+ 1501 @ pg @ s + £ by @ 8o @ 1+
%ﬂr®5gﬁ®u¢+%ﬂr®u9®50+%[LT®[L9®5W in P(I3). Then I1(vy, 1) = {11 @y} is a singleton,
and the optimal transportation cost from v to v for the cost function ¢(z, w) = (r, — r,,)? is

1
1 4 13
—0+—=-1+4+= - 3r2dr =
/I3XI3C(27?U)V1®V2(Z,U)) B + B +6/ rédr = 20
0

Again, the optimal transport cost in the two models coincide.

Example 3.10. Take Vik = 5(070’0), Vék = i6(0’070) + %(50 (029 (50 ® (51 + %(50 &® (50 ® (5,1 € P(Sg)
Then T1(v], v3) = {vf ® v5} is a singleton, and the optimal transportation cost from v to v
for the cost function c*(z,y) = ||z — y||? is

1 3 3 3
C*(xvy)dy*®y*(xvy) == 0+=--14+=--1=-.
/5'2><S2 ' ? 4 8 8 4
Correspondingly, take v1 = d(0,0,0)»

Vo = E50®52ﬂ'®50+E50®52ﬂ'®5 + 650®50®50

3
+—50®5O®5 +_51®527r®(50+1_651®527r®67r

E5l®5o®50+—651®50®5

in P(R™), then I1(11, 1) = {11 ® 1} is a singleton, and the optimal transportation cost from
V1 to vy for the cost function ¢(z, w) = (1, — )% is

3 3
clzy,w)v Qua(z,w) = — -4 =—.
/I3xl3 16 4

Once again, the optimal transport cost in the two models coincide.

Applying Theorem 2.4 to the convex continuous function f(zy, s, x3) = 23 : I3 — [0,1]
and Borel probability measures /i1 = fi,, {10 = [1g, i3 = [i, On the intervals [0, 1], [0, 27, [0, 7],
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respectively, one gets that each term in the Hermite-Hadamard inequality for f(zy, xo, z3) = 2
equals the optimal transfer cost |’ Lixt, €7 w)v1 ® vo(2, w) in the cube I3 in Examples 3.6, 3.7,
3.8, 3.9 and 3.10, respectively. Hence the transfer costs in these examples become more and
more expensive (see Figure 2). Furthermore, as the transport costs from v to v on the sphere
S? equals to the transport costs from v; to 15 in the cube I3, it follows that the transfer costs on
the sphere in these examples become more and more expensive (see Figure 2).
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