References
1 Horton, R.H., Lucassen, A.M. (2019). Recent developments in genetic/genomic medicine. Clin Sci (Lond) . 133(5), 697‐708. doi:10.1042/CS20180436
2 http://www.hgmd.cf.ac.uk
3 https://swissvar.expasy.org/cgi-bin/swissvar/home)
4 https://cancer.sanger.ac.uk/cosmic
5 https://www.iitm.ac.in/bioinfo/huvarbase
6 https://omictools.com/analytics/bioinformatics/database/humsavar
7 https://www.ncbi.nlm.nih.gov/clinvar
8 Stenson, P.D., Mort, M., Ball, E.V., Shaw, K., Phillips, A., Cooper, D.N. (2014). The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 133(1), 1‐9. doi:10.1007/s00439-013-1358-4
9 Kulshreshtha, S., Chaudhary, V., Goswami, G.K., Mathur, N. (2016). Computational approaches for predicting mutant protein stability.J Comput Aided Mol Des. 30(5), 401‐412. doi:10.1007/s10822-016-9914-3
10 Capriotti, E., Fariselli, P., Casadio, R. (2004). A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics . 20 Suppl 1:i63‐i68. doi:10.1093/bioinformatics/bth928
11 Fariselli, P., Martelli, P.L., Savojardo, C., Casadio, R. (2015). INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics . 31(17), 2816‐2821. doi:10.1093/bioinformatics/btv291
12 Pires, D.E., Chen, J., Blundell, T.L., Ascher, D.B. (2016). In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Sci Rep. 6:19848. doi:10.1038/srep19848
13 Pandurangan, A.P., Ochoa-Montaño, B., Ascher, D.B., Blundell, T.L. (2017). SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res. 45(1), 229‐235. doi:10.1093/nar/gkx439
14 Sahni, N., Yi, S., Taipale, M., et al. (2015). Widespread macromolecular interaction perturbations in human genetic disorders.Cell . 161(3), 647‐660. doi:10.1016/j.cell.2015.04.013
15 Zhong, Q., Simonis, N., Li, Q.R., et al. (2009). Edgetic perturbation models of human inherited disorders. Mol Syst Biol . 5, 321. doi:10.1038/msb.2009.80
16 Sahni, N., Yi, S., Zhong, Q., et al. (2013). Edgotype: a fundamental link between genotype and phenotype. Curr Opin Genet Dev .23(6), 649‐657. doi:10.1016/j.gde.2013.11.002
17 Berman, H.M., Westbrook, J., Feng, Z., et al. (2000). The Protein Data Bank. Nucleic Acids Res . 28(1), 235‐242. doi:10.1093/nar/28.1.235
18 Krissinel, E., Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J Mol Biol. 372(3), 774‐797. doi:10.1016/j.jmb.2007.05.022
19 Stephenson, J.D., Laskowski, R.A., Nightingale, A., Hurles, M.E., Thornton, J.M. (2019). VarMap: a web tool for mapping genomic coordinates to protein sequence and structure and retrieving protein structural annotations. Bioinformatics. 35(22), 4854–4856.
20 Cavallo, L., Kleinjung, J., Fraternali, F. (2003). POPS: A fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res . 31(13), 3364-3366. doi:10.1093/nar/gkg601
21 https://pymol.org
22 O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R. (2011). Open Babel: An open chemical toolbox. J Cheminform . 3, 33. doi:10.1186/1758-2946-3-33
23https://github.com/PietroMSB/ClinVarAnalyzer
24 Landrum, M.J., Lee, J.M., Riley, G.R., et al. (2014). ClinVar: public archive of relationships among sequence variation and human phenotype.Nucleic Acids Res . 42(Database issue), 980‐985. doi:10.1093/nar/gkt1113
25 Henikoff, S., Henikoff, J.G. (1992). Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A . 89(22), 10915-10919. doi:10.1073/pnas.89.22.10915
26 Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol. 215(3), 403-410. doi:10.1016/S0022-2836(05)80360-2
27 Vitkup, D., Sander, C., Church, G.M. (2003). The amino-acid mutational spectrum of human genetic disease. Genome Biol. 4(11), 72. doi:10.1186/gb-2003-4-11-r72
28 Antonarakis, S.E., Krawczak, M., Cooper, D.N. (2000). Disease-causing mutations in the human genome. Eur J Pediatr . 159 Suppl 3, 173-178. doi:10.1007/pl00014395
29 Gardini, S., Furini, S., Santucci, A., Niccolai, N. (2017). A structural bioinformatics investigation on protein-DNA complexes delineates their modes of interaction. Mol Biosyst . 13(5), 1010-1017. doi:10.1039/c7mb00071e
30 Bongini, P., Niccolai, N., Bianchini, M. (2019). Glycine-induced formation and druggability score prediction of protein surface pockets.J Bioinform Comput Biol . 17(5), 1950026. doi:10.1142/S0219720019500264
31 Patel, A., Yang, P., Tinkham, M., et al. (2018). DNA Conformation Induces Adaptable Binding by Tandem Zinc Finger Proteins. Cell.173(1), 221-233. doi:10.1016/j.cell.2018.02.058
32 Li, Y., Wu, B., Liu, H., et al. (2018). Structural basis for multiple gene regulation by human DUX4. Biochem Biophys Res Commun . 505(4), 1161-1167. doi:10.1016/j.bbrc.2018.10.056