References
Abbo, S., Lev-Yadun, S., and Galwey, N. (2002). Vernalization response of wild chickpea. New Phytologist , 154, 695-701.
Baluška, F., Mancuso, S., Volkmann, D., and Barlow, P.W. (2010). Root apex transition zone: a signalling–response nexus in the root. Trends in Plant Science , 15, 402-408.
Benizri, E., Baudoin, E., and Guckert, A. (2001). Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Science and Technology , 11, 557-574.
Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A. et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology , 37, 852-857.
Brown, S.P., Grillo, M.A., Podowski, J.C., and Heath, K.D. (2020). Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula . Microbiome , 8.
Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E.V.L., Ahmadinejad, N., Assenza, F. et al. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature , 488, 91-95.
Bulgarelli D., Schlaeppi K., Spaepen S., Van Themaat E.V.L. & Schulze-Lefert P. (2013) Structure and functions of the bacterial microbiota of plants. Annual review of plant biology , 64, 807-838.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data.Nature Methods , 13, 581-583.
Canarini, A., Kaiser, C., Merchant, A., Richter, A., and Wanek, W. (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science , 10, 157.
Conselvan, G.B., Fuentes, D., Merchant, A., Peggion, C., Francioso, O., and Carletti, P. (2018). Effects of humic substances and indole-3-acetic acid on Arabidopsis sugar and amino acid metabolic profile. Plant and Soil , 426, 1-16.
Cotton, T.E.A., Petriacq, P., Cameron, D.D., Al Meselmani, M., Schwarzenbacher, R., Rolfe, S.A., and Ton, J. (2019). Metabolic regulation of the maize rhizobiome by benzoxazinoids. Isme Journal , 13, 1647-1658.
Darwin, C. (1897). The power of movement in plants . London: John Murray.
de Vries, F.T., Griffiths, R.I., Knight, C.G., Nicolitch, O., and Williams, A. (2020). Harnessing rhizosphere microbiomes for drought-resilient crop production.Science , 368, 270-274.
DeAngelis, K.M., Brodie, E.L., DeSantis, T.Z., Andersen, G.L., Lindow, S.E., and Firestone, M.K. (2009). Selective progressive response of soil microbial community to wild oat roots. Isme Journal , 3, 168-178.
Dombrowski, N., Schlaeppi, K., Agler, M.T., Hacquard, S., Kemen, E., Garrido-Oter, R. et al. (2017). Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. Isme Journal , 11, 43-55.
Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., and Hacquard, S. (2018). Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell , 175, 973-983.
Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S. et al. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America , 112, E911-E920.
Edwards, J.A., Santos-Medellín, C.M., Liechty, Z.S., Nguyen, B., Lurie, E., Eason, S. et al. (2018). Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology , 16, e2003862.
Flavel, R.J., Guppy, C.N., Rabbi, S.M., and Young, I.M. (2017). An image processing and analysis tool for identifying and analysing complex plant root systems in 3D soil using non-destructive analysis: Root1. PloS One , 12, e0176433.
Greenlon, A., Chang, P.L., Damtew, Z.M., Muleta, A., Carrasquilla-Garcia, N., Kim, D. et al. (2019). Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria.Proceedings of the National Academy of Sciences , 116, 15200-15209.
Han, Q., Ma, Q., Chen, Y., Tian, B., Xu, L.X., Bai, Y. et al. (2020). Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. Isme Journal , 14, 1915-1928.
Hsieh, T., Ma, K., and Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution , 7, 1451-1456.
Hu, W., Strom, N.B., Haarith, D., Chen, S., and Bushley, K.E. (2019). Seasonal variation and crop sequences shape the structure of bacterial communities in cysts of soybean cyst nematode. Frontiers in Microbiology , 10, 2671.
Jousset A., Bienhold C., Chatzinotas A., Gallien L., Gobet A., Kurm V., Küsel K., Rillig M.C., Rivett D.W. & Salles J.F. (2017) Where less may be more: how the rare biosphere pulls ecosystems strings. Isme journal , 11, 853-862.
Kaloki, P., Luo, Q., Trethowan, R., and Tan, D.K. (2019). Can the development of drought tolerant ideotype sustain Australian chickpea yield? International journal of biometeorology , 63, 393-403.
Kawasaki, A., Donn, S., Ryan, P.R., Mathesius, U., Devilla, R., Jones, A., and Watt, M. (2016). Microbiome and exudates of the root and rhizosphere of brachypodium distachyon, a model for wheat. PloS One , 11, e0164533.
Kawasaki, A., Dennis, P.G., Forstner, C., Raghavendra, A.K., Richardson, A.E., Watt, M. et al. (2021a). The microbiomes on the roots of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) exhibit significant differences in structure between root types and along root axes. Functional Plant Biology .
Kawasaki, A., Dennis, P.G., Forstner, C., Raghavendra, A.K., Mathesius, U., Richardson, A.E. et al. (2021b). Manipulating exudate composition from root apices shapes the microbiome throughout the root system. Plant Physiology .
Kudjordjie, E.N., Sapkota, R., Steffensen, S.K., Fomsgaard, I.S., and Nicolaisen, M. (2019). Maize synthesized benzoxazinoids affect the host associated microbiome.Microbiome , 7.
Kumar, M., Kour, D., Yadav, A.N., Saxena, R., Rai, P.K., Jyoti, A., and Tomar, R.S. (2019) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia , 74, 287-308.
Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M. et al. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science , 349, 860-864.
Li, Y., Ruperao, P., Batley, J., Edwards, D., Davidson, J., Hobson, K., and Sutton, T. (2017). Genome analysis identified novel candidate genes for ascochyta blight resistance in chickpea using whole genome re-sequencing data.Frontiers in Plant Science , 8, 359.
Lu, T., Ke, M.J., Lavoie, M., Jin, Y.J., Fan, X.J., Zhang, Z.Y. et al. (2018). Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome , 6, 1.
Malele, I., Nyingilili, H., Lyaruu, E., Tauzin, M., Ollivier, B.B., Cayol, J.-L. et al. (2018). Bacterial diversity obtained by culturable approaches in the gut of Glossina pallidipes population from a non sleeping sickness focus in Tanzania: preliminary results. BMC Microbiology , 18, 107-116.
Martin, B.C., Alarcon, M.S., Gleeson, D., Middleton, J.A., Fraser, M.W., Ryan, M.H. et al. (2020). Root microbiomes as indicators of seagrass health. FEMS Microbiology Ecology , 96.
Massalha H., Korenblum E., Malitsky S., Shapiro O.H. & Aharoni A. (2017) Live imaging of root–bacteria interactions in a microfluidics setup. Proceedings of the National Academy of Sciences , 114, 4549-4554.
Moroenyane, I., Tremblay, J., and Yergeau, É. (2020). Temporal and spatial interactions modulate the soybean microbiome. FEMS Microbiology Ecology , 97, 1.
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H.H., Oksanen, M.J., and Suggests, M. (2007). The vegan package. Community Ecology Package , 10, 631-637.
Panke-Buisse K., Poole A.C., Goodrich J.K., Ley R.E. & Kao-Kniffin J. (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. Isme journal , 9, 980-989.
Parks, D.H., Tyson, G.W., Hugenholtz, P., and Beiko, R.G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics , 30, 3123-3124.
Pelletier, D.A., Li, Z., Lu, T.-Y.S., Zhang, L., Hu, Z., Morris, G.P. et al. (2020). Genome sequences of 42 bacteria isolated from sorghum bicolor roots. Microbiology Resource Announcements , 9.
Poole, P., Ramachandran, V., and Terpolilli, J. (2018). Rhizobia: from saprophytes to endosymbionts.Nature Reviews Microbiology , 16, 291.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.Nucleic acids research , 41, D590-D596.
Rabbi, S.M., Tighe, M.K., Flavel, R.J., Kaiser, B.N., Guppy, C.N., Zhang, X., and Young, I.M. (2018). Plant roots redesign the rhizosphere to alter the three‐dimensional physical architecture and water dynamics. New Phytologist , 219, 542-550.
Rabbi, S.M., Tighe, M.K., Warren, C.R., Zhou, Y., Denton, M.D., Barbour, M.M., and Young, I.M. (2021). High water availability in drought tolerant crops is driven by root engineering of the soil micro-habitat. Geoderma , 383, 114738.
Rayment, G.E., and Lyons, D.J. (2011)Soil chemical methods: Australasia : CSIRO publishing.
Reinhold-Hurek, B., and Hurek, T. (1998). Life in grasses: diazotrophic endophytes. Trends in Microbiology , 6, 139-144.
Ridge, S., Deokar, A., Lee, R., Daba, K., Macknight, R.C., Weller, J.L., and Tar’an, B. (2017). The chickpea Early Flowering 1 (Efl1) locus is an ortholog of Arabidopsis ELF3.Plant physiology , 175, 802-815.
Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics , 26, 139-140.
Ross-Elliott, T.J., Jensen, K.H., Haaning, K.S., Wager, B.M., Knoblauch, J., Howell, A.H. et al. (2017). Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. Elife , 6, e24125.
Rüger, L., Feng, K., Dumack, K., Freudenthal, J., Chen, Y., Sun, R. et al. (2021) Assembly patterns of the rhizosphere microbiome along the longitudinal root axis of maize (Zea mays L.). Frontiers in Microbiology , 12, 237.
Sachs, J.L., Quides, K.W., and Wendlandt, C.E. (2018). Legumes versus rhizobia: a model for ongoing conflict in symbiosis. New Phytologist , 219, 1199-1206.
Sadras, V.O., Lake, L., Li, Y., Farquharson, E.A., and Sutton, T. (2016). Phenotypic plasticity and its genetic regulation for yield, nitrogen fixation and δ13C in chickpea crops under varying water regimes. Journal of Experimental Botany , 67, 4339-4351.
Sasse, J., Martinoia, E., and Northen, T. (2017). Feed your friends: do plant exudates shape the root microbiome? Trends in Plant Science , 25-41.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods , 9, 676.
Teixeira, L.C., Peixoto, R.S., Cury, J.C., Sul, W.J., Pellizari, V.H., Tiedje, J., and Rosado, A.S. (2010). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. Isme Journal , 4, 989-1001.
Thiergart, T., Zgadzaj, R., Bozsoki, Z., Garrido-Oter, R., Radutoiu, S., and Schulze-Lefert, P. (2019). Lotus japonicus symbiosis genes impact microbial interactions between symbionts and multikingdom commensal communities. Mbio , 10.
Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., Cannon S., Baek J., Rosen B.D. & Tar’an B. (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement.Nature Biotechnology , 31, 240-246.
Veach, A.M., Morris, R., Yip, D.Z., Yang, Z.K., Engle, N.L., Cregger, M.A. et al. (2019). Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome , 7.
Von Wettberg, E.J., Chang, P.L., Başdemir, F., Carrasquila-Garcia, N., Korbu, L.B., Moenga, S.M. et al. (2018). Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Communications , 9, 1-13.
Wang, X., Tang, C., Severi, J., Butterly, C.R., and Baldock, J.A. (2016). Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytologist , 211, 864-873.
Weisskopf, L., Heller, S., and Eberl, L. (2011). Burkholderia species are major inhabitants of white lupin cluster roots. Applied and Environmental Microbiology , 77, 7715-7720.
Wouterlood, M., Cawthray, G.R., Scanlon, T.T., Lambers, H., and Veneklaas, E.J. (2004). Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants. New Phytologist , 162, 745-753.
Xu, L., Naylor, D., Dong, Z.B., Simmons, T., Pierroz, G., Hixson, K.K. et al. (2018). Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences of the United States of America , 115, E4284-E4293.
Young, I., and Bengough, A. (2018). The search for the meaning of life in soil: an opinion. European Journal of Soil Science , 69, 31-38.
Zhou, Y., Coventry, D.R., Gupta, V.V., Fuentes, D., Merchant, A., Kaiser, B.N. et al. (2020). The preceding root system drives the composition and function of the rhizosphere microbiome. Genome Biology , 21, 1-19.