References
Abbo, S., Lev-Yadun, S., and Galwey,
N. (2002). Vernalization response of wild chickpea. New
Phytologist , 154, 695-701.
Baluška, F., Mancuso, S., Volkmann,
D., and Barlow, P.W. (2010). Root apex transition zone: a
signalling–response nexus in the root. Trends in Plant Science ,
15, 402-408.
Benizri, E., Baudoin, E., and Guckert,
A. (2001). Root colonization by inoculated plant growth-promoting
rhizobacteria. Biocontrol Science and Technology , 11, 557-574.
Bolyen, E., Rideout, J.R., Dillon,
M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A. et al. (2019).
Reproducible, interactive, scalable and extensible microbiome data
science using QIIME 2. Nature Biotechnology , 37, 852-857.
Brown, S.P., Grillo, M.A., Podowski,
J.C., and Heath, K.D. (2020). Soil origin and plant genotype structure
distinct microbiome compartments in the model legume Medicago
truncatula . Microbiome , 8.
Bulgarelli, D., Rott, M., Schlaeppi,
K., van Themaat, E.V.L., Ahmadinejad, N., Assenza, F. et al. (2012).
Revealing structure and assembly cues for Arabidopsis root-inhabiting
bacterial microbiota. Nature , 488, 91-95.
Bulgarelli D., Schlaeppi K., Spaepen S., Van Themaat E.V.L. &
Schulze-Lefert P. (2013) Structure and functions of the bacterial
microbiota of plants. Annual review of plant biology , 64,
807-838.
Callahan, B.J., McMurdie, P.J., Rosen,
M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P. (2016). DADA2:
high-resolution sample inference from Illumina amplicon data.Nature Methods , 13, 581-583.
Canarini, A., Kaiser, C., Merchant,
A., Richter, A., and Wanek, W. (2019). Root exudation of primary
metabolites: mechanisms and their roles in plant responses to
environmental stimuli. Frontiers in Plant Science , 10, 157.
Conselvan, G.B., Fuentes, D.,
Merchant, A., Peggion, C., Francioso, O., and Carletti, P. (2018).
Effects of humic substances and indole-3-acetic acid on Arabidopsis
sugar and amino acid metabolic profile. Plant and Soil , 426,
1-16.
Cotton, T.E.A., Petriacq, P.,
Cameron, D.D., Al Meselmani, M., Schwarzenbacher, R., Rolfe, S.A., and
Ton, J. (2019). Metabolic regulation of the maize rhizobiome by
benzoxazinoids. Isme Journal , 13, 1647-1658.
Darwin, C. (1897). The power of
movement in plants . London: John Murray.
de Vries, F.T., Griffiths, R.I.,
Knight, C.G., Nicolitch, O., and Williams, A. (2020). Harnessing
rhizosphere microbiomes for drought-resilient crop production.Science , 368, 270-274.
DeAngelis, K.M., Brodie, E.L.,
DeSantis, T.Z., Andersen, G.L., Lindow, S.E., and Firestone, M.K.
(2009). Selective progressive response of soil microbial community to
wild oat roots. Isme Journal , 3, 168-178.
Dombrowski, N., Schlaeppi, K., Agler,
M.T., Hacquard, S., Kemen, E., Garrido-Oter, R. et al. (2017). Root
microbiota dynamics of perennial Arabis alpina are dependent on soil
residence time but independent of flowering time. Isme Journal ,
11, 43-55.
Durán, P., Thiergart, T.,
Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., and
Hacquard, S. (2018). Microbial interkingdom interactions in roots
promote Arabidopsis survival. Cell , 175, 973-983.
Edwards, J., Johnson, C.,
Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S. et al.
(2015). Structure, variation, and assembly of the root-associated
microbiomes of rice. Proceedings of the National Academy of
Sciences of the United States of America , 112, E911-E920.
Edwards, J.A., Santos-Medellín, C.M.,
Liechty, Z.S., Nguyen, B., Lurie, E., Eason, S. et al. (2018).
Compositional shifts in root-associated bacterial and archaeal
microbiota track the plant life cycle in field-grown rice. PLoS
Biology , 16, e2003862.
Flavel, R.J., Guppy, C.N., Rabbi,
S.M., and Young, I.M. (2017). An image processing and analysis tool for
identifying and analysing complex plant root systems in 3D soil using
non-destructive analysis: Root1. PloS One , 12, e0176433.
Greenlon, A., Chang, P.L., Damtew,
Z.M., Muleta, A., Carrasquilla-Garcia, N., Kim, D. et al. (2019).
Global-level population genomics reveals differential effects of
geography and phylogeny on horizontal gene transfer in soil bacteria.Proceedings of the National Academy of Sciences , 116,
15200-15209.
Han, Q., Ma, Q., Chen, Y., Tian, B.,
Xu, L.X., Bai, Y. et al. (2020). Variation in rhizosphere microbial
communities and its association with the symbiotic efficiency of
rhizobia in soybean. Isme Journal , 14, 1915-1928.
Hsieh, T., Ma, K., and Chao, A.
(2016). iNEXT: an R package for rarefaction and extrapolation of species
diversity (Hill numbers). Methods in Ecology and Evolution , 7,
1451-1456.
Hu, W., Strom, N.B., Haarith, D.,
Chen, S., and Bushley, K.E. (2019). Seasonal variation and crop
sequences shape the structure of bacterial communities in cysts of
soybean cyst nematode. Frontiers in Microbiology , 10, 2671.
Jousset A., Bienhold C., Chatzinotas A., Gallien L., Gobet A., Kurm V.,
Küsel K., Rillig M.C., Rivett D.W. & Salles J.F. (2017) Where less may
be more: how the rare biosphere pulls ecosystems strings. Isme
journal , 11, 853-862.
Kaloki, P., Luo, Q., Trethowan, R.,
and Tan, D.K. (2019). Can the development of drought tolerant ideotype
sustain Australian chickpea yield? International journal of
biometeorology , 63, 393-403.
Kawasaki, A., Donn, S., Ryan, P.R.,
Mathesius, U., Devilla, R., Jones, A., and Watt, M. (2016). Microbiome
and exudates of the root and rhizosphere of brachypodium distachyon, a
model for wheat. PloS One , 11, e0164533.
Kawasaki, A., Dennis, P.G., Forstner,
C., Raghavendra, A.K., Richardson, A.E., Watt, M. et al. (2021a). The
microbiomes on the roots of wheat (Triticum aestivum L.) and rice (Oryza
sativa L.) exhibit significant differences in structure between root
types and along root axes. Functional Plant Biology .
Kawasaki, A., Dennis, P.G., Forstner,
C., Raghavendra, A.K., Mathesius, U., Richardson, A.E. et al. (2021b).
Manipulating exudate composition from root apices shapes the microbiome
throughout the root system. Plant Physiology .
Kudjordjie, E.N., Sapkota, R.,
Steffensen, S.K., Fomsgaard, I.S., and Nicolaisen, M. (2019). Maize
synthesized benzoxazinoids affect the host associated microbiome.Microbiome , 7.
Kumar, M., Kour, D., Yadav, A.N.,
Saxena, R., Rai, P.K., Jyoti, A., and Tomar, R.S. (2019) Biodiversity of
methylotrophic microbial communities and their potential role in
mitigation of abiotic stresses in plants. Biologia , 74, 287-308.
Lebeis, S.L., Paredes, S.H.,
Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M. et al. (2015).
Salicylic acid modulates colonization of the root microbiome by specific
bacterial taxa. Science , 349, 860-864.
Li, Y., Ruperao, P., Batley, J.,
Edwards, D., Davidson, J., Hobson, K., and Sutton, T. (2017). Genome
analysis identified novel candidate genes for ascochyta blight
resistance in chickpea using whole genome re-sequencing data.Frontiers in Plant Science , 8, 359.
Lu, T., Ke, M.J., Lavoie, M., Jin,
Y.J., Fan, X.J., Zhang, Z.Y. et al. (2018). Rhizosphere microorganisms
can influence the timing of plant flowering. Microbiome , 6, 1.
Malele, I., Nyingilili, H., Lyaruu,
E., Tauzin, M., Ollivier, B.B., Cayol, J.-L. et al. (2018). Bacterial
diversity obtained by culturable approaches in the gut of Glossina
pallidipes population from a non sleeping sickness focus in Tanzania:
preliminary results. BMC Microbiology , 18, 107-116.
Martin, B.C., Alarcon, M.S., Gleeson,
D., Middleton, J.A., Fraser, M.W., Ryan, M.H. et al. (2020). Root
microbiomes as indicators of seagrass health. FEMS Microbiology
Ecology , 96.
Massalha H., Korenblum E., Malitsky S., Shapiro O.H. & Aharoni A.
(2017) Live imaging of root–bacteria interactions in a microfluidics
setup. Proceedings of the National Academy of Sciences , 114,
4549-4554.
Moroenyane, I., Tremblay, J., and
Yergeau, É. (2020). Temporal and spatial interactions modulate the
soybean microbiome. FEMS Microbiology Ecology , 97, 1.
Oksanen, J., Kindt, R., Legendre, P.,
O’Hara, B., Stevens, M.H.H., Oksanen, M.J., and Suggests, M. (2007). The
vegan package. Community Ecology Package , 10, 631-637.
Panke-Buisse K., Poole A.C., Goodrich J.K., Ley R.E. & Kao-Kniffin J.
(2015) Selection on soil microbiomes reveals reproducible impacts on
plant function. Isme journal , 9, 980-989.
Parks, D.H., Tyson, G.W., Hugenholtz,
P., and Beiko, R.G. (2014). STAMP: statistical analysis of taxonomic and
functional profiles. Bioinformatics , 30, 3123-3124.
Pelletier, D.A., Li, Z., Lu, T.-Y.S.,
Zhang, L., Hu, Z., Morris, G.P. et al. (2020). Genome sequences of 42
bacteria isolated from sorghum bicolor roots. Microbiology
Resource Announcements , 9.
Poole, P., Ramachandran, V., and
Terpolilli, J. (2018). Rhizobia: from saprophytes to endosymbionts.Nature Reviews Microbiology , 16, 291.
Quast, C., Pruesse, E., Yilmaz, P.,
Gerken, J., Schweer, T., Yarza, P. et al. (2012). The SILVA ribosomal
RNA gene database project: improved data processing and web-based tools.Nucleic acids research , 41, D590-D596.
Rabbi, S.M., Tighe, M.K., Flavel,
R.J., Kaiser, B.N., Guppy, C.N., Zhang, X., and Young, I.M. (2018).
Plant roots redesign the rhizosphere to alter the three‐dimensional
physical architecture and water dynamics. New Phytologist , 219,
542-550.
Rabbi, S.M., Tighe, M.K., Warren,
C.R., Zhou, Y., Denton, M.D., Barbour, M.M., and Young, I.M. (2021).
High water availability in drought tolerant crops is driven by root
engineering of the soil micro-habitat. Geoderma , 383, 114738.
Rayment, G.E., and Lyons, D.J. (2011)Soil chemical methods: Australasia : CSIRO publishing.
Reinhold-Hurek, B., and Hurek, T.
(1998). Life in grasses: diazotrophic endophytes. Trends in
Microbiology , 6, 139-144.
Ridge, S., Deokar, A., Lee, R., Daba,
K., Macknight, R.C., Weller, J.L., and Tar’an, B. (2017). The chickpea
Early Flowering 1 (Efl1) locus is an ortholog of Arabidopsis ELF3.Plant physiology , 175, 802-815.
Robinson, M.D., McCarthy, D.J., and
Smyth, G.K. (2010). edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data.Bioinformatics , 26, 139-140.
Ross-Elliott, T.J., Jensen, K.H.,
Haaning, K.S., Wager, B.M., Knoblauch, J., Howell, A.H. et al. (2017).
Phloem unloading in Arabidopsis roots is convective and regulated by the
phloem-pole pericycle. Elife , 6, e24125.
Rüger, L., Feng, K., Dumack, K.,
Freudenthal, J., Chen, Y., Sun, R. et al. (2021) Assembly patterns of
the rhizosphere microbiome along the longitudinal root axis of maize
(Zea mays L.). Frontiers in Microbiology , 12, 237.
Sachs, J.L., Quides, K.W., and
Wendlandt, C.E. (2018). Legumes versus rhizobia: a model for ongoing
conflict in symbiosis. New Phytologist , 219, 1199-1206.
Sadras, V.O., Lake, L., Li, Y.,
Farquharson, E.A., and Sutton, T. (2016). Phenotypic plasticity and its
genetic regulation for yield, nitrogen fixation and δ13C in chickpea
crops under varying water regimes. Journal of Experimental
Botany , 67, 4339-4351.
Sasse, J., Martinoia, E., and
Northen, T. (2017). Feed your friends: do plant exudates shape the root
microbiome? Trends in Plant Science , 25-41.
Schindelin, J., Arganda-Carreras, I.,
Frise, E., Kaynig, V., Longair, M., Pietzsch, T. et al. (2012). Fiji: an
open-source platform for biological-image analysis. Nature
Methods , 9, 676.
Teixeira, L.C., Peixoto, R.S., Cury,
J.C., Sul, W.J., Pellizari, V.H., Tiedje, J., and Rosado, A.S. (2010).
Bacterial diversity in rhizosphere soil from Antarctic vascular plants
of Admiralty Bay, maritime Antarctica. Isme Journal , 4, 989-1001.
Thiergart, T., Zgadzaj, R., Bozsoki,
Z., Garrido-Oter, R., Radutoiu, S., and Schulze-Lefert, P. (2019). Lotus
japonicus symbiosis genes impact microbial interactions between
symbionts and multikingdom commensal communities. Mbio , 10.
Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., Cannon
S., Baek J., Rosen B.D. & Tar’an B. (2013) Draft genome sequence of
chickpea (Cicer arietinum) provides a resource for trait improvement.Nature Biotechnology , 31, 240-246.
Veach, A.M., Morris, R., Yip, D.Z.,
Yang, Z.K., Engle, N.L., Cregger, M.A. et al. (2019). Rhizosphere
microbiomes diverge among Populus trichocarpa plant-host genotypes and
chemotypes, but it depends on soil origin. Microbiome , 7.
Von Wettberg, E.J., Chang, P.L.,
Başdemir, F., Carrasquila-Garcia, N., Korbu, L.B., Moenga, S.M. et al.
(2018). Ecology and genomics of an important crop wild relative as a
prelude to agricultural innovation. Nature Communications , 9,
1-13.
Wang, X., Tang, C., Severi, J.,
Butterly, C.R., and Baldock, J.A. (2016). Rhizosphere priming effect on
soil organic carbon decomposition under plant species differing in soil
acidification and root exudation. New Phytologist , 211, 864-873.
Weisskopf, L., Heller, S., and Eberl,
L. (2011). Burkholderia species are major inhabitants of white lupin
cluster roots. Applied and Environmental Microbiology , 77,
7715-7720.
Wouterlood, M., Cawthray, G.R.,
Scanlon, T.T., Lambers, H., and Veneklaas, E.J. (2004). Carboxylate
concentrations in the rhizosphere of lateral roots of chickpea (Cicer
arietinum) increase during plant development, but are not correlated
with phosphorus status of soil or plants. New Phytologist , 162,
745-753.
Xu, L., Naylor, D., Dong, Z.B.,
Simmons, T., Pierroz, G., Hixson, K.K. et al. (2018). Drought delays
development of the sorghum root microbiome and enriches for monoderm
bacteria. Proceedings of the National Academy of Sciences of the
United States of America , 115, E4284-E4293.
Young, I., and Bengough, A. (2018).
The search for the meaning of life in soil: an opinion. European
Journal of Soil Science , 69, 31-38.
Zhou, Y., Coventry, D.R., Gupta,
V.V., Fuentes, D., Merchant, A., Kaiser, B.N. et al. (2020). The
preceding root system drives the composition and function of the
rhizosphere microbiome. Genome Biology , 21, 1-19.