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Abstract

A semi-analytical study is presented for the thermophoretic migration of a spherical particle
located at an arbitrary position in a porous medium inside a spherical cavity. A uniform applied
temperature gradient parallel to the line connecting the particle and cavity centres. The porous
medium is modeled as a Brinkman fluid with a characteristic Darcy permeability K that can be
obtained directly from the experimental data. The porous medium is assumed to be homogenous,
isotropic and the solid matrix is in thermal equilibrium with the fluid through the voids of the
medium. The Knudsen number is supposed to be small so that the fluid flow through the porous
medium can be described by a continuum model with a temperature jump, a thermal creep, a
frictional slip and thermal stress slip at the surface of the aerosol particle. The Reynolds number
of the fluid is assumed to be small enough to justify the use of the Brinkman equation, which
is always satisfied because the aerosol particle is so small. The Péclet number for heat transfer
in thermophoresis is also assumed to be small. The dimensionless thermophoretic velocity and
the mobility coefficients are tabulated and represented graphically for various values of the
permeability parameter, relative thermal and surface properties of the particle and cavity. Results
are in good agreement with the analytical solution of the particular case of a particle located at
the centre of the cavity.

Key words: Brinkman flow; thermophoresis; frictional and thermal slip; collocation technique;
wall effect.

1. Introduction

The thermophoretic force is the force acting on particles embedded in a fluid due
to a temperature gradient. The direction of the force is opposite to the temperature
gradient. This anomaly was first observed by Tyndall [1]; he observed that a particle
free zone around a heated surface appeared in dusty air. The thermophoretic effect can
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be explained by using the kinetic theory of gases [2]. The anomaly where particles are
affected by the thermophoretic force is called thermophoresis. There are many applications
of thermophoresis and cases where this effect is of considerable importance, e.g. filters,
particle deposition on boilers and different measurement techniques for aerosols during
combustion and its sampling [3], cleaning of air [4], scale formation on surfaces of heat
exchangers [5], modified chemical vapor deposition [6], micro-electronic manufacture [7],
and nuclear reactor safety [8].

In many biological and engineering applications a fluid can be treated as a continuum,
that is only the overall motion of the particles is considered and not the individual motion
of every particle, then The Brinkman equation for the fluid flow through the voids of a
porous medium and Fourier law for the thermal flow can be used. However, in gases if the
size of the embedded particle in the gas is small compared to the mean free path of the
gas, ℓ, the gas cannot be treated as a continuum. Therefore, in such cases, the gas may
be considered as rarefied and we must use the Boltzmann equation. That has happened
when a microscopic particle embedded in a gas or when the gas has very high mean free
path. The ratio between the mean free path of the gas and the characteristic length, a of
the immersed particle, is defined as the Knudsen number, i.e.,

Kn =
ℓ

a
. (1.1)

The relevant flow and heat transfer models depend on the range of the Knudsen number.
A classification of the different flow regimes is given in [9,10]: for Kn ≤ 0.01 the fluid can
be treated as a continuum, while for Kn ≥ O(10) it is treated as a free-molecular flow. A
rarefied gas can be treated neither an absolutely continuous medium, nor a free-molecular
flow in the Knudsen number range between 0.01 and 10. In that region, a further division
is required: slip flow (0.01 < Kn < 0.1), and transition flow (0.1 < Kn < 10). This
categorization is based on empirical knowledge and thus the limits between the different
flow regimes may depend on the problem geometry.

Thermophoresis in a porous media is of specific importance in the branches of envi-
ronmental and biomedical engineering [11–14]. The porous medium through which ther-
mophoresis occur is modeled as an effective Brinkman medium. To model the fluid flow
through the voids of a porous medium, Brinkman [15] first add an extra term, which
represents the hydraulic drag force induced by the presence of the solid matrix within a
porous medium into the Navier-Stokes equation, the new equation is called the Brinkman
equation. The hydrodynamic permeability of this medium can be characterized by the
Darcy permeability K. In spite of the Brinkman equation is semiempirical, it is in a good
agreement with the experimental data in general [16] and is considered as a standard
means to describe the fluid flow through a porous medium. In the literature, it is reported
that the Brinkman model is generally applicable to describe the fluid flow in all kinds of
porous media, e.g. the polymer gel in DNA sequencing techniques [17].

Under the conditions of small Knudsen, small Péclet number, and small Reynolds
number, with the effects of temperature jump, thermal creep, frictional slip, and thermal
stress slip at the surface of a spherical particle embedded in a Brinkman medium with
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constant temperature gradient ∇T∞, the thermophoretic velocity is given by [18]

~U0 = − µ

ρAT0

[

18(α+ 1)
(

[kA + (C̃t − 1) kp]Ch C̃m + Cs (C̃t kp + kA)
)

(

2kA + (2C̃t + 1) kp
)(

(α3 + 3α2 + 18α + 18) C̃m + α2 + 9α + 9
)

]

∇T∞.

(1.2)

In the expression (1.2), ρA and kA are the overall density and overall thermal conductivity,
respectively, of the porous medium, µ is the density of the fluid through porous medium,
kp is the thermal conductivity of the particle, and T0 represents the temperature at the
centre of the particle or the mean temperature of the porous medium in the vicinity of the
particle. The dimensionless quantities C̃t and C̃m are defined respectively by C̃t = Ctℓ/a
and C̃m = Cmℓ/a, respectively, where a is the radius of the particle. The dimensionless
coefficients Ct, Cs, Cm and Ch are, respectively, the temperature jump, the thermal creep,
frictional slip and thermal stress slip; theses coefficients have to determined experimentally
for various fluid/solid system. The permeability parameter α is defined in terms of Darcy
permeability K as a/

√
K. In the view of kinetic theory of gases and experimental studies,

reliable values for thermal jump and slip coefficients are as follows [19–24]: Ct = 2.0 ∼
2.3, Cs = 1.0 ∼ 1.3, Cm = 1.0 ∼ 1.5 and Ch = 1.0 ∼ 3.0. As α = 0 (i.e., clear Stokes
flow), equation (1.2) becomes the well-known formula obtained by Chang and Keh [25].

In actual applications of thermophoresis in microfluidic equipment, the size of the
aerosol particles and confining boundaries are proportionate, and it is necessary to find
out if the closeness of the boundary wall essentially effects the particle mobility [26].
In literature, the interaction problems of thermophoretic effect in the presence of wall
boundaries were studied extensively [27–31]. Some of these investigations include the
second order temperature gradient in the slip flow regime at solid boundaries [32–35].
Recently, Tseng and Keh [36] studied the problem of thermophoresis of an aerosol sphere
located arbitrarily in a spherical cavity normal to the line of their centers in the slip-flow
regime. They found that the wall effect on the thermophoretic migration normal to the
line through the particle and cavity centers is slightly weaker than that along the line. The
problem of spherical particle moving in a spherical cavity can be considered as a model
for the capture of ash particles undergoing thermophoresis in porous filters composed of
connecting spherical pores.

The purpose of this article is to study and find a correction to (1.2) of the ther-
mophoretic velocity of an aerosol spherical particle located arbitrarily within a spherical
cavity subject to a prescribed temperature gradient parallel to the line connecting their
centers. We use the Brinkman equation with the effective viscosity equal to the bulk value
to analyze the flow inside the porous cavity. The temperature and fluid velocity fields
satisfying the Laplace and Brinkman equations, respectively, are determined utilizing the
technique of boundary collocation. This problem is an extension of the work by Cheng
and Keh [33] to the case of porous medium saturated by a viscous fluid. The novelty of
this problem is to study the effect of permeability of the porous medium and the wall
effect on thermophoretic velocity. Low and high permeabilities are also investigated.
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2. Equation of heat transfer through a porous medium

In the following analysis, we append the subscripts s and f , respectively, for the solid
and fluid phases. Therefore, the overall density ρA and overall thermal conductivity kA
are, respectively, defined as

ρA = (1− ϕ) ρs + ϕ ρf , (2.1)

kA= (1− ϕ) ks + ϕkf , (2.2)

where ϕ is the porosity. Nield and Bejan [37], developed an equation describing the steady
state of the temperature distribution T through an isotropic homogenous porous medium
by taking averages over an elemental volume of the medium in the absence of overall heat
production per unit volume of the medium:

∇ · kA∇T = 0, (2.3)

In equation (2.3), the following assumptions are made: at every point in the porous
medium, the solid matrix is in thermal equilibrium with the fluid through the voids of the
medium, Ts = Tf = T , the radiative effects, viscous dissipation, and the work done by
pressure changes are not included. The Péclet number of the fluid phase is assumed to be
small such the convection term can be neglected. In general, the overall thermal conduc-
tivity of a porous medium depends on the microstructure and geometry of the medium.
The definition (2.1) of the overall thermal conductivity based on the fact that, the heat
conduction in the solid and fluid phases occurs in parallel. However, if the structure and
orientation of the porous medium is such that the heat conduction takes place in series,
with all of the heat flux passing through both solid and fluid, then the overall conductivity
kH is the weighted harmonic mean of ks and kf :

1

kH
=
ϕ

ks
+

1− ϕ

kf
, (2.4)

In general, kA and kH will provide upper and lower bounds, respectively, on the actual
overall conductivity. Other discussions on overall thermal conductivity can be found in
the book of Neild and Bejan [37].

3. Description of the problem

Consider the axially symmetric thermophoretic motion of a spherical particle of radius
a suspended at an arbitrary position within a spherical cavity of radius b filled with
a porous medium, saturated by a gaseous flow at the quasisteady state. Let (r1, θ1, φ)
and (r2, θ2, φ) be two systems of spherical coordinates with origins located at the centres
of the particle and cavity, respectively, with corresponding unit vectors (~er1, ~eθ1 , ~eφ) and
(~er2 , ~eθ2, ~eφ). The center of the particle is situated away from the center of the cavity along
the z-axis at a distance d instantaneously. Let also (ρ, φ, z) be a system of cylindrical
coordinates with origin at the centre of the cavity and with corresponding unit vectors
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Fig. 1. Coordinate graph for the thermophoresis of an aerosol sphere in a spherical cavity.

(~eρ, ~eφ, ~ez) as illustrated in Fig. 1. The relation between the two systems of spherical
coordinates is given by

r21 = r22 + d2 − 2 r2 d cos θ2, (3.1)

or by

r22 = r21 + d2 + 2 r1 d cos θ1. (3.2)

A constant temperature gradient, −E∞ ~ez = ∇T∞ (E∞ > 0) is maintained far from the
particle and in the vicinity of the cavity. Clearly, T∞ is a linear relation with z : T∞ =
T0 − E∞ z. Let ~U = U ~ez (U > 0) be the velocity of the particle to be determined. We
assume that the solids that comprised the porous medium is uniformly distributed in the
system. The hydrodynamic permeability of the porous medium can be characterized by
the Darcy permeability K so that the friction coefficient γ can be expressed as µ/K. The
fluid through the voids of the porous medium is incompressible and Newtonian, is allowed
to slip, both thermally and frictionally at the surface of the particle and cavity, and the
temperature jump may occur at the particle surface. Gravitational effects are ignored.
Our aim here is to determine the correction to equation (1.2) for the particle velocity due
the presence of the cavity. We assume also that the thermal properties of the particle and
porous medium are constants and that the Knudsen number is in the range of the slip-
flow regime. In the following two subsections, we first consider the thermal distribution
analysis and then the hydrodynamical flow analysis through the porous medium.

3.1. Analysis for thermal distributions

According to the assumptions stated in previous sections, the energy equations gov-
erning the temperature distributions, Tp of the particle (r1 ≤ a), T of the porous region
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(r1 ≥ a, r2 ≤ b), and Tw of the region outside the cavity (r2 ≥ b) are given, respectively,
as

∇2Tp =0, (3.3)

∇2T =0, (3.4)

∇2Tw =0. (3.5)

The boundary conditions at the particle and cavity surfaces require that, the normal heat
fluxes to be continuous and a temperature jump, which is proportional to the normal
temperature gradient [2] to occur. Also, the fluid temperature must approach the linear
prescribed field far away from the particle and the temperature inside the particle is finite
everywhere. Thus, we obtain

kA
∂T

∂r1
= kp

∂Tp
∂r1

, at r1 = a, (3.6)

kA
∂T

∂r2
= kw

∂Tw
∂r2

, at r2 = b, (3.7)

T − Tp = Ctℓ
∂T

∂r1
, at r1 = a, (3.8)

T − Tw = −C̆tℓ
∂T

∂r2
, at r2 = b, (3.9)

Tp is finite in r1 < a, (3.10)

Tw → T∞ = T0 −E∞ z, as r2 → ∞, (3.11)

where kw denotes the constant thermal conductivity of the cavity surface, C̆t is the dimen-
sionless temperature jump coefficient, which depends on the nature of the fluid through the
porous medium and the material of cavity wall. The temperature jump coefficient, C̆t as
well as Ct can be calculated by applying the Boltzmann equation to a Knudsen layer [38];
their estimated values are of the order unity. The non-dimensional parameter E∞a/T0
is known as Epstein number and it is a small number in practice [39]. The solutions of
the field equations (3.3)–(3.5) with the boundary conditions (3.6)–(3.11) are similar to
those developed by Li and Keh [33] for the case of axially symmetric thermophoresis of a
spherical particle in a spherical cavity filled with a gaseous medium, and are given by

Tp= T0 + E∞

∞
∑

m=0

R1m r
m
1 Pm(ζ1), (3.12)

T = T0 + E∞

∞
∑

m=0

[

S1m r
−m−1

1 Pm(ζ1) +R2m r
m
2 Pm(ζ2)

]

, (3.13)

Tw = T0 −E∞ z + E∞

∞
∑

m=0

S2m r
−m−1

2 Pm(ζ2), (3.14)

where Pm is the Legendre polynomial of order m, and ζi is equal to cos θi with i = 1
and 2. Equations (3.12)–(3.14) immediately satisfy the boundary conditions (3.10) and
(3.11), and R1m, S1m, R2m, and S2m are unknown constants to be determined from the
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remaining boundary conditions. In the expression of the solution in equation (3.13), the
superposition of the general solution to the equation (3.4) in spherical coordinates as
written from two different origins can be employed due to the linearity of the governing
equations. Substituting (3.12)–(3.14) into the boundary conditions (3.6)–(3.9) lead to
relations determine the unknown coefficients, we obtain

0=
∞
∑

m=0

{

R1mR
1

m(a, θ1) + S1mS
1

m(a, θ1) +
[

R2mR
2

m(r2, θ2)
]

r1=a

}

, (3.15)

−k̃w ζ2=
∞
∑

m=0

{[

S1mS
2

m(r1, θ1)
]

r2=b
+R2mR

3

m(b, θ2) + S2mS
3

m(b, θ2)
}

, (3.16)

0=
∞
∑

m=0

{

R1mR
4

m(a, θ1) + S1mS
4

m(a, θ1) +
[

R2mR
5

m(r2, θ2)
]

r1=a

}

, (3.17)

−b ζ2=
∞
∑

m=0

{[

S1mS
5

m(r1, θ1)
]

r2=b
+R2mR

6

m(b, θ2) + S2mS
6

m(b, θ2)
}

, (3.18)

where k̃w = kw/kA and the definitions of the functions Rj
m and Sj

m with j = 1, 2 . . . 6 are
presented by equations (A1)–(A12) in appendix A.

The boundary collocation technique can be employed to enforce equations (3.15)–
(3.18) at M points along the semi-circular longitudinal arcs of the particle surface r1 = a
and cavity wall r2 = b (from θi = 0 to θi = π, where i = 1 and 2) and truncate the infinite
series in equations (3.12)–(3.14) after M terms, resulting in a system of 4M simultaneous
linear algebraic equations to be numerically solved to give the 4M unknown constants
Rim and Sim with i = 1 and 2 for the temperature distribution. This technique can be
improved to any degree by taking a sufficiently large value of M .

3.2. Hydrodynamical flow analysis through the porous medium

The field equations governing the slow steady isothermal flow of an incompressible
viscous fluid through a porous medium according to Darcy-Brinkman under the Stokesian
assumption are given by [40]

∇ · ~q = 0, (3.19)

∇p = µ∇2~q − µ

K
~q, (3.20)

where ~q is the volume-averaged velocity vector, p is the pore average pressure. The porous
medium is characterized by its permeability K which is a measure of the flow conductivity
in the porous medium.

The flow generated is axially symmetric and all the hydrodynamic functions are in-
dependent of φ. Therefore, it is convenient to use the stream function ψ(r, θ) which is
related to the velocity components qρ(r, θ), qz(r, θ) in cylindrical coordinates, in the form

qρ =
1

ρ

∂ψ

∂z
, qz = −1

ρ

∂ψ

∂ρ
. (3.21)
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Elimination of p from the equation (3.20), it is found that function ψ satisfy the following
differential equation

L−1(L−1 − α2)ψ = 0, (3.22)

where the axisymmetric Stokes operator L−1 is given by

L−1 =
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

∂2

∂z2
.

In this study, we consider the effect of thermal creep, frictional slip, and thermal stress slip
along the surface of the particle and the wall cavity [33]. Thus, the boundary conditions
for the fluid velocity in porous medium are

~q=U ~ez +
Cs µ

ρAT0
(I− ~er1~er1) · ∇T +

Cm ℓ

µ
(I− ~er1~er1) ·

[

~er1 :
(

t− Ch µ
2

ρAT0
∇∇T

)]

, (3.23)

~q=
Ĉs µ

ρAT0
(I− ~er2~er2) · ∇T − C̆m ℓ

µ
(I− ~er2~er2) ·

[

~er2 :
(

t− Ĉh µ
2

ρAT0
∇∇T

)]

, (3.24)

where U is the unknown thermophoretic migration velocity of the spherical particle, I is
the unit dyadic, ~eri is the unit normal vector at the solid surface pointing into the porous
medium, t = −p I+ µ [∇~q+ (∇~q)t] is the stress tensor, (∇~q)t is the transpose of ∇~q. The
temperature gradient, ∇T and ∇∇T can be calculated from the temperature distribution
in equation (3.13). C̆m, Ĉs and Ĉh are the frictional slip, thermal creep, and thermal stress
slip coefficients at the cavity surface, respectively.

One can easily checked that the solution of equation (3.22), subject to the boundary
conditions (3.23) and (3.24), is given by [16,41]

ψ =
∞
∑

n=2

[(

Anr
−n+1

1 +
√
r1BnKn− 1

2

(α r1)
)

In(ζ1) +
(

Cnr
n
2 +

√
r2DnIn− 1

2

(α r2)
)

In(ζ2)
]

,

(3.25)

where Im and Km are modified Bessel functions of order m of the first and the second
kind, respectively, and In is the Gegenbauer polynomial of the first kind of order n and
degree −1/2. The coefficients An, Bn, Cn and Dn are unknown constants which will be
determined using the boundary conditions at the particle surface and cavity wall.

Using the equation (3.25), the expression for the pressure in the porous medium region
is

p = −µα2

∞
∑

n=2

[

1

n
Anr

−n
1 Pn−1(ζ1)−

1

n− 1
Cnr

n−1

2 Pn−1(ζ2)
]

, (3.26)

In the construction of the solution in equation (3.25), the general solution to the equation
(3.20) in two different spherical coordinate systems are superimposed [41]. Thus, the
expressions for the radial and axial velocity components, and the normal and shear stresses
in the flow through the porous region are given by
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qρ =
∞
∑

n=2

[

AnA1n(r1, θ1) +BnB1n(r1, θ1) + CnC1n(r2, θ2) +DnD1n(r2, θ2)
]

, (3.27)

qz =
∞
∑

n=2

[

AnA2n(r1, θ1) +BnB2n(r1, θ1) + CnC2n(r2, θ2) +DnD2n(r2, θ2)
]

, (3.28)

trr =µ
∞
∑

n=2

[

AnA3n(r1, θ1) +BnB3n(r1, θ1) + CnC3n(r2, θ2) +DnD3n(r2, θ2)
]

, (3.29)

trθ =µ
∞
∑

n=2

[

AnA4n(r1, θ1) +BnB4n(r1, θ1) + CnC4n(r2, θ2) +DnD4n(r2, θ2)
]

, (3.30)

where the explicit expressions Asn, Bsn, Csn and Dsn with s = 1, 2, . . . 4 are listed in
appendix B.

To determine the unknown constants An, Bn, Cn and Dn, we apply the boundary
conditions (3.23) and (3.24) at the spherical surfaces, one obtains

∞
∑

n=2

{

Ana1n(a, θ1) +Bnb1n(a, θ1) +
[

Cnc1n(r2, θ2) +Dnd1n(r2, θ2)
]

r1=a

}

=
µE∞

ρA T0

∞
∑

m=0

{

S1mS
7

m(a, θ1) +
[

R2mR
7

m(r2, θ2)
]

r1=a

}

ζ1, (3.31)

∞
∑

n=2

{

Ana2n(a, θ1) +Bnb2n(a, θ1) +
[

Cnc2n(r2, θ2) +Dnd2n(r2, θ2)
]

r1=a

}

= −µE∞

ρA T0

∞
∑

m=0

{

S1mS
7

m(a, θ1) +
[

R2mR
7

m(r2, θ2)
]

r1=a

}

sin θ1 + U, (3.32)

∞
∑

n=2

{[

Ana3n(r1, θ1) +Bnb3n(r1, θ1)
]

r2=b
+ Cnc3n(b, θ2) +Dnd3n(b, θ2)

}

=
µE∞

ρA T0

∞
∑

m=0

{[

S1mS
8

m(r1, θ1)
]

r2=b
+R2mR

8

m(b, θ2)
}

ζ2, (3.33)

∞
∑

n=2

{[

Ana4n(r1, θ1) +Bnb4n(r1, θ1)
]

r2=b
+ Cnc4n(b, θ2) +Dnd4n(b, θ2)

}

= −µE∞

ρA T0

∞
∑

m=0

{[

S1mS
8

m(r1, θ1)
]

r2=b
+R2mR

8

m(b, θ2)
}

sin θ2. (3.34)

The definitions of the functions asn, bsn, csn and dsn (S7
m, R

7
m, S

8
m and R8

m) are also pre-
sented in the appendix B (appendix A), respectively.

To determine the fluid velocity components, the boundary conditions (3.31)–(3.34)
should be satisfied exactly along the entire surfaces of the sphere and cavity. This results
in a linear system of algebraic equations with infinite number of unknown coefficients,
which are impossible to solve. However, this difficulty can be avoided if we adopt the
boundary collocation method [41]. It first necessitates that the infinite series be truncated
after a certain number (N) of terms so that the number of the unknown coefficients become
finite. Then, sufficient points on each of the semi-circular longitudinal arcs of the particle
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surface and cavity wall are selected as collocation points, where the boundary conditions
are enforced to give the same number of linear equations (4N) as that of the coefficients.
Solving these equations (numerically) subsequently enables one to determine the flow
field. In general, more boundary collocation points are required to attain a given accuracy
when the particle-to-cavity radius ratio approaches asymptotically to unity and when the
relative distance between the centres of the spherical particle and cavity wall is also close
to unity. The system of linear algebraic equations (4N) to be solved for the constants
An, Bn, Cn and Dn is constructed from equations (3.31)–(3.34). In order to specify the
points along the semi-circular generating arcs of the spherical surfaces where the boundary
conditions are exactly satisfied, we have to choose the points θi = 0 and π (i = 1, 2) due
to the fact that these points control the extreme gaps between the spherical particle and
the cavity surfaces. Additionally, the points θi = π/2 should be considered. However,
an examination of the systems of linear algebraic equations for the unknown constants
An, Bn, Cn and Dn indicates that the coefficient matrix becomes singular if these points
are used. Therefore, to avoid this singular matrix and achieve good accuracy, we follow the
method recommended in the literature [33,41] to choose the collocation points as follows.
On the half circle 0 ≤ θi ≤ π in any meridional plane, θi = ε, π/2 − ε, π/2 + ε and
π − ε are taken as four basic multipoles, where ε is specified by a small value so that
the singularities at θi = 0, π/2, and π can be avoided. The other points are selected as
mirror-image pairs about θi = π/2 which are evenly distributed on the two quarter circles,
excluding points of singularity. A Gaussian elimination method is then used to solve the
truncated system of equations (3.31)–(3.34) to determine the desired coefficients.

The drag force Fz acting on the spherical particle boundary r = 1 by the fluid can be
determined from [16,40]:

Fz = π µ a
∫ π

0

[

r4 sin3 θ
∂

∂r

(

L−1ψ

r2 sin2 θ

)

− α2 r2 sin θ
∂ψ

∂r

]

r=1

dθ. (3.35)

Substitute for ψ from (3.25) and using the orthogonality properties of In(ζ), we obtain

Fz =
2

3
π a µα2

(

A2 − 2C2 − 2B2K 3

2

(α)− 2D2I 3

2

(α)
)

. (3.36)

It should be noted here that only the lower coefficients A2, B2, C2 and D2 contribute to
the hydrodynamic drag force of Brinkman medium upon spherical particle in cavity. In
fact, the coefficients are the most accurate and the fastest to converge [41].

Since the particle is freely suspended in the confined porous medium, this force must
vanish, that is

A2 − 2C2 − 2B2K 3

2

(α)− 2D2I 3

2

(α) = 0. (3.37)

The thermophoretic migration velocity U of the spherical particle can be obtained by
solving equation (3.37) and the 4N algebraic equations resulting from equations (3.31)–
(3.34) simultaneously.

Due to the linearity of the problem, the migration velocity can be written as the
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following decomposition form:

U =Mt U0 +M0s Ĉs
µE∞

ρA T0
. (3.38)

where U0 is the thermophoretic migration velocity of a particle embedded in an unbounded
porous medium given from (1.2) and the term M0sĈs

µE∞

ρAT0

represents the velocity of the
particle caused by the recirculation of the thermoosmotic flow due to the presence of the
cavity wall. The mobilitiesMt andMos are non-dimensional quantities and are, in general,
functions of thermal, frictional and geometrical parameters of the problem: the permeabil-
ity parameter of the porous medium α, slip/jump parameters C̃m, C̃t, Cs, Ch, Ĉm, Ĉt, Ĉs

and Ĉh, thermal conductivity ratios k̃p and k̃w, eccentricity of the particle position d/(b−a)
and particle-to-cavity radius ratio a/b. To obtain the numerical values of the mobilitiesMt

and Mos, it is necessary to explain their physical meaning: Mt represent thermophoretic
mobility of the particle within a cavity with Ĉs = Ĉh = 0, normalized with respect to
U0, and Mos represents the mobility of a particle with Cs = Ch = 0 that is with no ther-
mophoretic motion in a cavity including the effect of thermoosmotic flow recirculation
coming from the interaction of the thin Knudsen layer around the cavity wall in the pres-
ence of temperature gradient; note that Mos is normalized with respect to µĈsE∞/ρAT0.

For the particular case of an aerosol sphere located at the center of a spherical cav-
ity (i.e., d/(b − a) = 0) filled with porous medium, the exact solution of the mobility
coefficients Mt and Mos has been obtained analytically as [34]

Mt =
3k̃w ϑ1 P

(α + 1)∆

(

λ (2Ĉm − 1) (β6 λ
2 − β2)α− α2 β1 Ĉm − 3β1 (2Ĉm − 1) λ2

)

, (3.39)

Mos =
18k̃w
∆

(

ϑ5 λ
2 − αβ5 (2C̃m + 1)

) (

P + λ3Q− 3λ3QĈm (Ĉh/Ĉs)
)

, (3.40)

where λ = a/b, the expressions for ∆, P, Q, βj and ϑj are also given in appendix B.

4. Numerical results and discussion

The numerical values of the normalized thermophoretic migration velocity U/U0, and
the mobilities coefficients Mt and Mos of a spherical particle undergoing axisymmetric
thermophoresis within a nonconcentric spherical cavity, filled of porous medium, can be
achieved using the boundary collocation method explained in the previous section. The
system of linear algebraic equations to be solved for the unknowns R1m, R2m, S1m and
S2m is constructed from (3.15)–(3.18), and that for An, Bn, Cn and Dn is composed from
equations (3.31)–(3.34). Throughout our work in graphing and tabulation, we consider
without loss of generality, the typical case of C̃t/C̃m = 2, Ĉt = λ C̃t, Ĉm = λ C̃m and
k̃w = k̃p [33,36]. In this manuscript Kn (= ℓ/a) = 0 is used to retrieve the no-frictional
slip flow limit [9]. In the limiting case of Kn → 0, the thermophoretic velocity of the
particle given by equation (3.38) is proportional to the thermal creep coefficients, the
permeability parameter characterizing the porous medium, but do not depend on the
jump/slip coefficients.
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The collocation solutions for the mobility coefficients Mt andMos defined by equation
(3.38) are presented in Table 1 and Figs. 2–7 for various values of the particle-to-cavity
size ratio λ, relative center-to-center distance of the particle and cavity δ (= d/(b − a)),
permeability parameter of the porous medium α, thermal conductivity ratio k̃p, frictional
slip parameter C̃m, and relative thermal stress slip coefficient Ch/Cs. All the numerical
results converge to at least the significant digits as shown in Table 1 with the required
numbers of the collocation points M and N . For the difficult cases of λ = 0.99 and
δ = 0.96, the number of collocation points M(= N) is taken 48, which were sufficiently
large to attain this convergence. In general, the plots indicate that for the entire range
of the permeability parameter, the mobility coefficients Mt and Mos are positive, which
means that the contributions from the cavity-induced thermoosmotic flow to the particle
velocity and from the thermophoretic driving force are in the same direction.

The results in Table 1 and Fig. 2 show that the variation of thermophoretic mobility
coefficient, Mt versus particle-to-cavity radius ratio λ. These plots indicate that for the
entire range of thermal ratio k̃p and frictional slip C̃m, the mobility Mt is a monotonic
decreasing function with λ increases and vanishes in the touching limit λ→ 1. In general,
the mobility coefficient is maximum at the concentric position δ = 0, and increases as
the permeability parameter increases. Again, Mt increases with the increase of thermal
conductivity ratio k̃p and with decrease of frictional slip C̃m. Plots, also indicate that, in
general,Mt has maximum values for the case of no-frictional slip (C̃m = 0), and also when
k̃p → ∞ that is the particle with infinite thermal conductivity tends to be isothermal
and fails to produce additional temperature gradients at its surface. As expected, Mt

has minimum values for the case k̃p = 0 which means that the particle with vanishing
thermal conductivity fails to transfer heat energy, keeping the other parameters fixed.
Fig. 3 exhibits the plots of Mt against the permeability parameter characterizing the
porous medium α for various values of the particle-to-cavity radius ratio λ, Knudsen
number ℓ/a and the eccentricity of the particle position δ. For given values of the particle-
to-cavity radius ratio λ and Knudsen number ℓ/a, the mobility Mt has no significant
variation as the permeability parameter increases in the interval α < 1, sharp increase in
1 < α < 10 and then reduce to constant values as increases to Darcian limit α > 10. Also,
in general the plots show maximum values for Mt in the concentric position δ = 0, and
agree excellently with the analytical formula (3.39).

Figs. 4–7 and Table 1 indicate the plots of the mobility coefficient Mos of a spherical
particle in a spherical cavity filled by porous medium with the circulating thermoosmotic
flow induced by the imposed temperature gradient defined by equation (3.38). An exam-
ination of Fig. 4 illustrates that for the entire range of the permeability parameter and
frictional slip, the mobility coefficient Mos is a decreasing function of the relative centre-
to-centre distance of the particle and cavity. It is interested to note that, in Stokes limit
(α = 0), for all frictional slip values, the mobility coefficient Mos is positive; while for
(α ≥ 1), Mos is also positive for the entire range of δ with partial frictional slip C̃m > 0.1,
and has negative values at some values of δ near contact in the particular case of no-
frictional slip, C̃m(= C̃t/2) = 0 (see Table 2). Therefore, an increase in the eccentricity
of the particle position in the cavity is to reduce or even reverse the cavity-induced ther-
moosmotic sweeping force on the particle. Fig. 5 exhibits the variation of the mobility
coefficient Mos versus the permeability parameter α for various values of the particle-
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to-cavity size ratio λ, relative centre-to-centre distance of the particle and cavity δ. It
indicates that the maximum relative values of Mos occur in the Stokes limit (α = 0 result
of [33]). For low permeability in the range of Darcian limit, the mobility coefficient Mos

decreases rapidly to zero, regardless of λ and δ, even in the concentric case δ = 0, and
it’s in good agreement with the with the available analytical solution (3.40). It is noted
also that for α < 1 and for the entire range of α, Mos has no significant change. In Fig. 6,
we note that in the Stokes limit α = 0, for the entire range of thermal conductivity ratio
k̃w and δ, the mobility coefficient Mos is also a monotonic decreasing function of the size
ratio λ; it has maximum values as λ = 0 and vanishes in the touching limit. Interestingly,
For a nonzero α in the entire range of thermal conductivity ratio k̃w and δ, the mobility
coefficient Mos increase to maximum at some value of λ and then decreases to zero near
the touching limit of λ. Fig. 7 presents the plot of Mos against the Knudsen number ℓ/a
for various values of permeability parameter and eccentricity of the particle position. For
the entire range of ℓ/a, it can be noted that mobility coefficient Mos, in general, decreases
with increases in α and δ.

The plots of the dimensionless net thermophoretic velocity U/U0 of an aerosol particle
inside a non-concentric spherical cavity with Ĉh = Ch and Ĉs = Cs, calculated from
equation (3.38), are presented in Figs. 8 and 9. The plots of U/U0 versus the radius ratio
λ are shown in Fig. 8 for different values of α, ℓ/a, δ, Ch/Cs, k̃p and C̃m. In general for
the Stokes limit, U/U0 decrease monotonically as λ increases; it has its maximum values
at λ = 0 and vanishes in the touching limit λ → 1. For non-zero values of α and entire
range of δ, the normalized velocity U/U0 first increases with an increase in λ from a finite
value at λ = 0, attains a maximum at a relatively large value of λ, and then decreases
with a further increase in λ to zero as λ→ 1. In general, and for specified value of λ, U/U0

increases with an increase of Ch/Cs and a decrease of Knudsen number ℓ/a. A comparison
between the plots in Fig. 8 for α > 0, it appears that as α increases, the maximum values
of U/U0 are pushed towards of touching limit. Fig. 9 shows the plots that the dimensionless
velocity U/U0 versus the permeability parameter. For λ ≤ 0.3, the normalized velocity
U/U0 decreases with an increase in α from a constant at small value of the permeability
parameter α for the entire range of slip frictional coefficient C̃m; for α≫ 1, the position of
the particle inside cavity is irrelevant with respect to U/U0. For λ > 0.3, the normalized
velocity U/U0 has no significant variation in the interval α < 1, increases to maximum
and the decrease to constant values in the Darcian limit again irrespective of if its location
in the cavity. The plots show also that the values of U/U0 in the no-frictional slip case are
much greater that of the corresponding values for the cases of partial slip.

5. Conclusion

In this article, we used the boundary collocation technique in the quasi-steady limit
of small Reynolds and Péclet numbers to study the problem of thermophoretic motion
of an aerosol spherical particle located at an arbitrary position within a spherical cavity
filled with a porous medium saturated by a viscous fluid. The motion is caused by a
prescribed temperature gradient parallel to the line of the particle and cavity centres. At
the solid surfaces of the particle and cavity, we considered the effect of the temperature
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Fig. 2. Variation of the dimensionless thermophoretic mobility versus the ratio of particle-to–
cavity radius λ for different values of α, δ, k̃p and C̃m. Calculations of Mt in (a) with k̃p = 10
and Ch/Cs = 0, and (b) with α = 2, C̃m = 0.1 and Ch/Cs = 1.
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Fig. 3. Variation of the dimensionless thermophoretic mobility versus the porous parameter α for
different values of λ, the Knudsen number ℓ/a and δ with k̃p = 10 and Ch/Cs = 1. Calculations
of Mt in (a) with C̃m = 0.1, and (b) with λ = 0.5.
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Fig. 4. Variation of the mobility coefficient versus the separation parameter δ for different values
of α and C̃m with k̃p = 10, λ = 0.5 and Ĉh/Ĉs = 1.
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Fig. 5. Variation of the mobility coefficient versus the porous parameter α for different values of
λ and δ with k̃p = 10, C̃m = 0.05 and Ĉh/Ĉs = 1.
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Fig. 6. Variation of the mobility coefficient versus the ratio of particle-to-cavity radius λ for
different values of α, k̃w and δ with C̃m = 0.01 and Ĉh/Ĉs = 0.
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Fig. 7. Variation of the mobility coefficient versus the Knudsen number ℓ/a for different values
of α and δ with λ = 0.3, k̃p = 10 and Ĉh/Ĉs = 1.
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Fig. 8. Variation of the dimensionless thermophoretic migration velocity versus the ratio of
particle-to-cavity radius λ for different values of Ch/Cs, ℓ/a and δ. Calculations of U/U0 in (a)
with k̃p = 10, C̃m = 0.1, and (b) with k̃p = 5.
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Fig. 9. Variation of the dimensionless thermophoretic migration velocity versus the porous pa-
rameter α for different values of λ, δ and C̃m with k̃p = 5.
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Table 1
Numerical values of the dimensionless velocity of an eccentric spherical particle undergoing
thermophoresis in a spherical cavity at various values of δ and λ with α = 2, k̃p = 10 and
C̃m = 0.1.

δ λ Mt Mos M = N

Ch

Cs
= 0 Ch

Cs
= 1 Ĉh

Ĉs

= 0 Ĉh

Ĉs

= 1

0 0.2 1.36739 1.36739 0.36354 0.36362

0.4 1.23693 1.23693 0.62378 0.62594

0.6 0.96313 0.96313 0.50030 0.50970

0.9 0.28983 0.28983 0.10021 0.11288

0.99 0.03079 0.03079 0.00839 0.01023

10E-4 0.2 1.36659 1.36659 0.36549 0.36472 18

0.4 1.23647 1.23647 0.62259 0.62376 18

0.6 0.96159 0.96159 0.49864 0.50780 20

0.9 0.28784 0.28784 0.09975 0.11055 24

0.99 0.03047 0.03047 0.00830 0.01012 36

0.25 0.2 1.38837 1.38834 0.36816 0.36826 18

0.4 1.23867 1.23843 0.61502 0.61750 20

0.6 0.94619 0.94586 0.48349 0.49339 20

0.9 0.27745 0.27737 0.09530 0.10757 20

0.99 0.02972 0.02972 0.00809 0.00986 30

0.5 0.2 1.44030 1.43549 0.36889 0.36899 18

0.4 1.20808 1.20679 0.56802 0.57174 20

0.6 0.89943 0.89795 0.43517 0.44685 20

0.9 0.25656 0.25624 0.08625 0.09800 20

0.99 0.02727 0.02726 0.00740 0.00904 30

jump, frictional slip, thermal creep, and thermal stress slip in the slip flow regime for the
gas motion under the assumption of continuum flow. The Brinkman equation is used as a
mathematical model for the porous medium. The thermal and hydrodynamic interactions
of the cavity wall with the particle surface determine the velocity of the particle given
by equations (3.38), (1.2) and their collocation data are obtained for different values of
the relative distance between the particle and cavity centres, particle-to-cavity radius
ratio, thermal and mechanical properties of the porous-solid system. For the concentric
particle-in-cavity case, our results agree excellently with the analytical formula. The wall
and permeability of the porous effects on the thermophoretic migration of a particle can
be significant in appropriate situations. However, experimental data would be required to
confirm the validity of our theoretical work.
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Table 2
Numerical values of the mobility coefficient Mos for various values of C̃m, δ, α with k̃p = 10, λ =
0.5 and Ĉh/Ĉs = 1.

C̃m δ α = 0 α = 1 α = 5 α = 10

0 0.88 0.287221 0.140398 0.216635 0.177514

0.89 0.267957 0.081810 0.184146 0.164809

0.90 0.247914 0.017276 0.144177 0.148885

0.91 0.227029 -0.051325 0.095516 0.128889

0.92 0.205240 -0.120587 0.037638 0.103848

0.93 0.182494 -0.185489 -0.028322 0.072817

0.94 0.158774 -0.239750 -0.098238 0.035262

0.95 0.134168 -0.276612 -0.163791 -0.008102

0.96 0.109043 -0.289765 -0.212613 -0.053770

0.4 0.88 0.353408 0.350345 0.184200 0.076911

0.89 0.343761 0.341815 0.181872 0.076144

0.90 0.333628 0.332768 0.179336 0.075258

0.91 0.322937 0.323119 0.176561 0.074222

0.92 0.311589 0.312772 0.173517 0.072989

0.93 0.299453 0.301619 0.170182 0.071494

0.94 0.286351 0.289574 0.166567 0.069634

0.95 0.272024 0.276660 0.162803 0.067246

0.96 0.256090 0.263363 0.159437 0.064046
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Appendix A

The expressions appearing in equations (3.15)–(3.18) are defined as:
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R1
m(r, θ) =−k̃pmrm−1 Pm(ζ), (A1)

S1
m(r, θ) =−(m+ 1) r−m−2 Pm(ζ), (A2)

R2
m(r, θ) = rm−1 δ1

[(

mr − (2m+ 1) d ζ
)

Pm(ζ) + d (m+ 1)Pm+1(ζ)
]

, (A3)

S2
m(r, θ) =−δ2 (m+ 1) r−m−2

(

dPm+1(ζ) + r Pm(ζ)
)

, (A4)

R3
m(r, θ) =mrm−1 Pm(ζ), (A5)

S3
m(r, θ) = k̃w r−m−2 (m+ 1)Pm(ζ), (A6)

R4
m(r, θ) =−rm Pm(ζ), (A7)

S4
m(r, θ) = r−m−1

(

1 + (m+ 1) C̃ ′
t

)

Pm(ζ), (A8)

R5
m(r, θ) = rm

[(

1 + [(2m+ 1) d ζ −mr] δ1 C̃ ′
t

)

Pm(ζ)− (m+ 1) d δ1 C̃ ′
t Pm+1(ζ)

]

, (A9)

S5
m(r, θ) = r−m−1

[(

1− (m+ 1) r δ2 Ĉ ′
t

)

Pm(ζ)− (m+ 1) d δ2 Ĉ ′
t Pm+1(ζ)

]

, (A10)

R6
m(r, θ) = rm (1 +mĈ ′

t)Pm(ζ), (A11)

S6
m(r, θ) =−r−m−1 Pm(ζ), (A12)

where C̃ ′
t = Ct ℓ/r, Ĉ ′

t = C̆t ℓ/r, k̃p = kp/kA, and δi = (d2 + r2 + 2(−1)i d r ζ)−1/2.

We have used the relations

r1 =
(

ρ2 + (z − d)2
)1/2

, cos θ1 =
z − d

r1
, sin θ1 =

ρ

r1
, (A13)

r2 =
(

ρ2 + z2
)1/2

, cos θ2 =
z

r2
, sin θ2 =

ρ

r2
. (A14)

Also, the functions appearing in equations (3.31)–(3.34) are defined by

S7
m(r, θ) =−(m+ 1) r−m−2 [ChC

′

m (2 +m) + Cs]
(

ζ Pm(ζ)− Pm+1(ζ)
)

csc θ, (A15)

R7
m(r, θ) = rm−1

[(

[

(2m+ 1) d ζ2 − r (m+ 1) ζ − dm
]

δ1 Cs +
{

r
[

(4m2 − 1)
(

r ζ

+2d sin2 θ
)

− d (6m2 + 2m− 1)
]

sin2 θ − r (m+ 1) (r ζ − d)
]

δ21 +m (m+ 1) ζ

− (4m2 − 1) ζ sin2 θ
}

C ′

mCh

)

Pm(ζ) + (m+ 1)
(

(r − d ζ) δ1 Cs +
{

r
[

r − d ζ

+(2m− 1) (2d ζ − r) sin2 θ
]

δ21 + (2m− 1) sin2 θ −m
}

C ′

m Ch

)

Pm+1(ζ)
]

csc θ, (A16)

S8
m(r, θ) = (m+ 1) r−m−2

[(

{

r [2d (m+ 1) sin2 θ + r ζ + d] δ22 + (m+ 1) ζ
}

C̆ ′
m Ĉh

− (d+ rζ) δ2 Ĉs

)

Pm(ζ) +
(

(d ζ + r) δ2 Ĉs − r
(

(2m+ 3) (2d ζ + r) sin2 θ

+ d ζ + r
)

C̆ ′
m Ĉh

)

Pm+1(ζ)
]

csc θ, (A17)

R8
m(r, θ) = (m+ 1) rm−1

(

Ĉh C̆ ′
m (m− 1) + Ĉs

) (

Pm+1(ζ)− ζ Pm(ζ)
)

csc θ, (A18)

where C ′

m = Cm ℓ/r, C̆ ′
m = C̆m ℓ/r.

Appendix B

The functions appearing in equations (3.27)–(3.30) are defined as:
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A1n(r, θ) = −r−n−1(n + 1)In+1(ζ) csc θ, (B1)

B1n(r, θ) = −r−3/2
(

(n+ 1)Kn− 1

2

(rα)In+1(ζ) csc θ + rαKn− 3

2

(rα)In(ζ) cot θ
)

, (B2)

C1n(r, θ) = −rn−2
(

(n+ 1)In+1(ζ) csc θ − (2n − 1)In(ζ) cot θ
)

, (B3)

D1n(r, θ) = −r−3/2
(

(n+ 1) In− 1

2

(rα)In+1(ζ) csc θ − rα In− 3

2

(rα)In(ζ) cot θ
)

, (B4)

A2n(r, θ) = −r−n−1Pn(ζ), (B5)

B2n(r, θ) = r−3/2
(

rαKn− 3

2

(rα)In(ζ)−Kn− 1

2

(rα)Pn(ζ)
)

, (B6)

C2n(r, θ) = −rn−2
(

(2n − 1)In(ζ) + Pn(ζ)
)

, (B7)

D2n(r, θ) = −r−3/2
(

rα In− 3

2

(rα)In(ζ) + In− 1

2

(rα)Pn(ζ)
)

, (B8)

A3n(r, θ) = rn−2
(

2(n + 1) +
r2 α2

n

)

Pn−1(ζ), (B9)

B3n(r, θ) = 2r−5/2
(

r αKn− 3

2

(rα) + (n+ 1)Kn− 1

2

(rα)
)

Pn−1(ζ), (B10)

C3n(r, θ) = rn−3
(

4− 2n− r2 α2

n− 1

)

Pn−1(ζ), (B11)

D3n(r, θ) = − 2r−5/2
(

r α In− 1

2

(rα) + (n− 2) In− 1

2

(rα)
)

Pn−1(ζ), (B12)

A4n(r, θ) = 2(n2 − 1) r−n−2
In(ζ) csc θ, (B13)

B4n(r, θ) = r−5/2
(

2rαKn− 3

2

(rα) + [r2 α2 + 2(n2 − 1)]Kn− 1

2

(rα)
)

In(ζ) csc θ, (B14)

C4n(r, θ) = 2n (n− 2) rn−3
In(ζ) csc θ, (B15)

D4n(r, θ) = r−5/2
(

[r2 α2 + 2n (n− 2)] In− 1

2

(rα)− 2rα In+ 1

2

(rα)
)

In(ζ) csc θ. (B16)

Also, the functions appearing in equations (3.31)–(3.34) are defined by

a1n(r, θ) =A1n(r, θ)− C ′

mA4n(r, θ) ζ1, (B17)

b1n(r, θ) =B1n(r, θ)− C ′

mB4n(r, θ) ζ1, (B18)

c1n(r, θ) =C1n(r, θ)− C ′

m C4n(r, θ) ζ1, (B19)

d1n(r, θ) =D1n(r, θ)− C ′

mD4n(r, θ) ζ1, (B20)

a2n(r, θ) =A2n(r, θ) + C ′

mA4n(r, θ) sin θ1, (B21)

b2n(r, θ) =B2n(r, θ) + C ′

mB4n(r, θ) sin θ1, (B22)

c2n(r, θ) =C2n(r, θ) + C ′

m C4n(r, θ) sin θ1, (B23)

d2n(r, θ) =D2n(r, θ) + C ′

mD4n(r, θ) sin θ1, (B24)

a3n(r, θ) =A1n(r, θ) + C̆ ′
mA4n(r, θ) ζ2, (B25)

b3n(r, θ) =B1n(r, θ) + C̆ ′
mB4n(r, θ) ζ2, (B26)

c3n(r, θ) =C1n(r, θ) + C̆ ′
m C4n(r, θ) ζ2, (B27)

d3n(r, θ) =D1n(r, θ) + C̆ ′
mD4n(r, θ) ζ2, (B28)

a4n(r, θ) =A2n(r, θ)− C̆ ′
mA4n(r, θ) sin θ2, (B29)

b4n(r, θ) =B2n(r, θ)− C̆ ′
mB4n(r, θ) sin θ2, (B30)

c4n(r, θ) =C2n(r, θ)− C̆ ′
m C4n(r, θ) sin θ2, (B31)

d4n(r, θ) =D2n(r, θ)− C̆ ′
mD4n(r, θ) sin θ2. (B32)

The coefficients appearing in equations (3.39) and (3.40) are defined as
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∆=
(

(2Ĉt k̃w + 2k̃w + 1)P − 2(2 Ĉt k̃w − k̃w + 1)Qλ3
) [

Ĉm (2λ3 ϑ5 + ϑ3)α
2

+λ (2Ĉm − 1)
(

6(β6 + β5) (2C̃m + 1)λ2 − 2ϑ2 λ
3 − ϑ4

)

α+ 3ϑ3 (2Ĉm − 1)λ2
]

, (B33)

with

β1 = I 3

2

(α)K 3

2

(λ−1α)−K 3

2

(α) I 3

2

(λ−1α), β2 = I 1

2

(λ−1α)K 3

2

(α) + I 3

2

(α)K 1

2

(λ−1α),

β3 = I 3

2

(λ−1α)K 1

2

(α) + I 1

2

(α)K 3

2

(λ−1α), β4 = I 1

2

(λ−1α)K 1

2

(α)− I 1

2

(α)K 1

2

(λ−1α),

β5 = λ1/2
(

I 3

2

(α)K 1

2

(α) + I 1

2

(α)K 3

2

(α)
)

, β6 = λ−1/2
(

I 1

2

(λ−1α)K 3

2

(λ−1α) + I 3

2

(λ−1α)K 1

2

(λ−1α)
)

,

ϑ1 = (α2 + 9α+ 9) (2C̃m + 1) + α2 (α + 1) C̃m, ϑ2 = (αβ4 + 3β2) (2C̃m + 1) + α2 C̃m β2,

ϑ3 = (αβ3 − 9β1) (2C̃m + 1)− α2 C̃m β1, ϑ4 = (αβ4 + 9β2) (2C̃m + 1) + α2 C̃m β2,

ϑ5 = (αβ3 − 3β1) (2C̃m + 1)− α2 C̃m β1, P = 2C̃t k̃p + k̃p + 2, Q = C̃t k̃p − k̃p + 1.
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