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Abstract

In this paper, we study an eigenvalue problem for Schrödinger-Poisson system with indefinite non-

linearity and potential well as follows:{
−∆u+ µV (x)u+K(x)φu = λf(x)u+ g(x)|u|p−2u in R3,

−∆φ = K(x)u2 in R3,

where 4 ≤ p < 6, the parameters µ, λ > 0, V ∈ C(R3) is a potential well, and the functions f ∈ L 3
2 (R3)

and g ∈ L∞(R3) are allowed to be sign-changing. It is well known that such a system with the potential

being positive constant has two positive solutions when lim|x|→∞ g(x) = g∞ < 0, K = 0 in the set

{x ∈ R3 : g(x) = 0} and λ > λ1(f) with near λ1(f), where λ1(f) is the first eigenvalue of −∆ + id

in H1(R3) (see e.g. Huang et al., J. Differential Equations 255, 2463 (2013)). The main purpose is to

obtain the existence and multiplicity of positive solutions without the above assumptions for g and K.

The results are obtained via variational method and steep potential. Furthermore, we also consider the

concentration of solutions as µ→∞.
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1 Introduction

In the paper, we are concerned the following Schrödinger-Poisson system{
−∆u+ V (x)u+K(x)φu = h(x, u) in R3,
−∆φ = K(x)u2 in R3.

(1.1)

This system has been first derived from Benci and Fortunato [1] in order to study the stationary
solutions of Schrödinger equations coupled with Maxwell equations. It describes the interaction of
a charged particle with its own electrostatic field. The unknown functions u and φ represent the
wave functions associated to the particle and electric potential, respectively. The functions V and
K denote an external potential and nonnegative density charge, respectively. The presence of the
nonlinear term h(x, u) simulates the interaction effect among many particles. We refer the reader
to [1] and [2] for more details.

In recent years, system (1.1) has been widely studied under variant assumptions on V,K and
h. See, for example, [1–7] for the autonomous case and [4, 8–20] for the non-autonomous case. In
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particular, many papers have been devoted to the nonlinear term h(x, u) = g(x)|u|p−2u, 2 < p <
6. For which some assumptions on V,K and g are considered in order to overcome the lack of
compactness of the embedding of H1(R3) into Lr(R3), 2 ≤ r < 6, since system (1.1) is on the whole
space R3.

In the work [9], Cerami and Vaira studied the following Schrödinger-Poisson system{
−∆u+ u+ λK(x)φu = g(x)|u|p−2u in R3,
−∆φ = K(x)u2 in R3,

(1.2)

where λ ≡ 1, 4 < p < 6, g and K are nonnegative real functions,

lim
|x|→∞

g(x) = g∞ > 0, lim
|x|→∞

K(x) = K∞ = 0 and K ∈ L2(R3).

They obtained the existence of bound and ground state positive solutions by using the Nehari man-
ifold method and establishing a global compactness lemma to overcome the lack of compactness.
Later, Vaira [10] considered system (1.2) with λ ∈ R, g and K being nonnegative functions,

lim
|x|→∞

g(x) = g∞ > 0, lim
|x|→∞

K(x) = K∞ > 0 and K −K∞ ∈ L2(R3).

For which the positive ground state solutions were obtained in the cases where 2 < p < 6 if λ < 0
and 4 < p < 6 if λ > 0 by using the Nehari manifold method.

Recently, Huang et al. [11] studied Schrödinger-Poisson system with indefinite nonlinearity,
namely {

−∆u+ u+K(x)φu = λf(x)u+ g(x)|u|p−2u in R3,
−∆φ = K(x)u2 in R3,

(1.3)

where 4 < p < 6, K and f are nonnegative functions, K ∈ L2(R3), f ∈ L 3
2 (R3), g ∈ C(R3) which

changes sign in R3,

lim
|x|→∞

g(x) = g∞ < 0 and K = 0 a.e. in the set {x ∈ R3 : g(x) = 0}. (1.4)

In which they proved the existence of two positive solutions in λ > λ1(f) and near λ1(f), where λ1(f)
is the first eigenvalue of −∆u+u = λf(x)u in H1(R3), whose corresponding eigenfunction is denoted
by φ1. Besides the condition about g in (1.4) is different from [9, 10], it is worth noting that they
do not need the sign condition

∫
R3 g(x)φp1dx < 0, which has been shown to be a necessary condition

to the existence of positive solutions for semilinear elliptic equations with indefinite nonlinearity,
see [21–23]. Later, Chen [12] studied the case of K ∈ L∞(R3) (more precisely, K(x) ≡ 1) for system
(1.3). Since the condition about K in (1.4) is not established now, the author assume the additional
condition

|{x ∈ R3 : g(x) = 0}| = 0 (1.5)

to ensure that the existence of two positive solutions can be obtained in λ > λ1(f) and near λ1(f).
Very recently, Shen and Han [16] studied system (1.3) with p = 4, f and K being nonnegative

functions, K ∈ L2(R3) ∪ L∞(R3), f ∈ L 3
2 (R3), g ∈ C(R3) to be sign-changing and lim|x|→∞ g(x) =

g∞ < 0. The authors do not need the condition about K in (1.4) that K = 0 a.e. in {x ∈ R3 : g(x) =
0}, and assume the following condition:∫

R3

g(x)φ4
1(x)dx− 1

4π

∫
R3

∫
R3

K(x)K(y)φ2
1(x)φ2

1(y)

|x− y|
dydx < 0. (1.6)
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For which the existence of two positive solutions in λ > λ1(f) and near λ1(f) was proved via the
Nehari manifold method.

In recent year, many papers study Schrödinger-Poisson system with steep potential well, namely{
−∆u+ µV (x)u+K(x)φu = h(x, u) in R3,
−∆φ = K(x)u2 in R3,

(1.7)

where µ > 0 is a parameter and the potential V satisfies the following conditions:

(V1) V is a non-negative continuous function in R3.

(V2) There exists c0 > 0 such that the set {V < c0} := {x ∈ R3 : V (x) < c0} is nonempty and has
finite positive measure.

(V3) Ω = int{x ∈ R3 : V (x) = 0} is nonempty bounded domain and has a smooth boundary with
Ω = {x ∈ R3 : V (x) = 0}.

The conditions (V1)-(V3) were first introduced by Bartsch and Wang [24] in the study of nonlin-
ear Schrödinger equations. Here µV represents a potential well whose depth is controlled by the
parameter µ, and it is called a steep potential well if µ large. Later, steep potential well was first
applied into Schrödinger-Poisson system in [25], and then has been widely applied to the study of
Schrödinger-Poisson system. We refer the reader to [25–32] and the references therein.

In the paper [26], Zhao et al. studied system (1.7) with K ∈ L2(R3) ∪ L∞(R3), K ≥ 0 and
h(x, u) = |u|p−2u. In which the existence of nontrivial solution and concentration results are obtained
via variational methods when 3 < p < 6. In particular, the potential V is allowed to be sign-changing
for the case 4 < p < 6. Later, Du et al. [27] considered system (1.7) with K ∈ L2(R3)∪L∞(R3), K ≥ 0
and h(x, u) = g(x)F (u), where g is a positive bounded function and F is either asymptotically linear
or asymptotically 3-linear at infinity. The existence and asymptotic behavior of solutions are proved
via variational methods. As far as I know, system (1.7) with indefinite nonlinearity has not been
studied.

Motivated by the above works [11, 12, 16, 26, 27], we consider Schrödinger-Poisson system in the
following form: {

−∆u+ µV (x)u+K(x)φu = λf(x)u+ g(x)|u|p−2u in R3,
−∆φ = K(x)u2 in R3,

(SPµ,λ)

where 4 ≤ p < 6, the parameters µ, λ > 0, and the potential V satisfies conditions (V1)-(V3). The
aim of this paper is to answer the following questions:

(I) Does system (SPµ,λ) with 4 ≤ p < 6 still admit multiple positive solutions without the
conditions (1.4) and (1.5)?

(II) Can we consider system (SPµ,λ) with the weight functions f and g to be sign-changing?

(III) Can we deal with the case where K ∈ L2(R3) ∪ L∞(R3) as in [16,26,27]?

In order to give the definite answer to questions (I)-(III), we assume that the functions K, f and g
satisfy the following conditions:

(F) f ∈ L 3
2 (R3) ∩ L∞(R3) and |{x ∈ Ω : f(x) > 0}| > 0;

(G) g ∈ L∞(R3) which changes sign in Ω;

(K1) K ∈ L2(R3) ∪ L∞(R3), K ≥ 0 and K 6≡ 0 in Ω;

(K2) K > 0 a.e. in the set {x ∈ Ω : g(x) = 0}.
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Remark 1.1. If f is bounded in Ω and |{x ∈ Ω : f(x) > 0}| > 0, then there exists a sequence of
eigenvalues {λn(fΩ)} of the problem

−∆u = λfΩ(x)u, u ∈ H1
0 (Ω), (1.8)

with 0 < λ1(fΩ) < λ2(fΩ) ≤ · · · and each eigenvalue being of finite multiplicity, where fΩ is a
restriction of f on Ω. Denote by e1 the positive principal eigenfunction with

λ1(fΩ) =

∫
Ω

|∇e1|2dx = inf

{∫
Ω

|∇u|2dx : u ∈ H1
0 (Ω),

∫
Ω

fΩu
2dx = 1

}
.

Moreover, we have

λ2(fΩ) = inf

{∫
Ω

|∇u|2dx : u ∈ H1
0 (Ω),

∫
Ω

fΩu
2dx = 1,

∫
Ω

∇u∇e1dx = 0

}
.

In the present paper, we shall prove the existence and multiplicity of positive solutions for system
(SPµ,λ) via the mountain pass theory. In order to show the mountain pass geometry of the related
functional, we follow the argument in [23] to decompose each u ∈ X (defined later) as u = te1,µ +w,
where w ∈ {span{e1,µ}}⊥ and e1,µ is the positive principal eigenfunction corresponding to the positive
principal eigenvalue λ1,µ(f) of the problem

−∆u+ µV (x)u = λf(x)u.

Then by the approximation estimate

λ1,µ(f)→ λ−1 (fΩ) as µ→∞,
we can deduce the mountain pass geometry of the related functional in λ > λ1(fΩ) and near λ1(fΩ).
Moreover, we apply the concentration compactness principle [33] and a variant version of the steep
well method [24] to overcome the difficulty that the lack of compactness. Furthermore, we also
consider the concentration of solutions.

We state the main results.

Theorem 1.2. Suppose that 4 ≤ p < 6 and conditions (V1)-(V3), (F), (G), (K1) and (K2) hold.
In addition, for p = 4, we assume the following:

(K3) K = 0 a.e. in the set {x ∈ Ω : g(x) > 0};

(D1) ‖g‖L∞|{V < c0}|
1
3 ≤ S4

64πλ1(fΩ)2

∫
Ω

∫
Ω

K(x)K(y)e2
1(x)e2

1(y)

|x− y|
dydx.

Then we have the following results.
(i) For every 0 < λ ≤ λ1(fΩ), system (SPµ,λ) has a positive solution for µ > 0 large enough.
(ii) There exists δ0 > 0 such that for every λ1(fΩ) < λ < λ1(fΩ)+δ0, system (SPµ,λ) has two positive
solutions for µ > 0 large enough.

Theorem 1.3. Let (uµ, φuµ) be the solutions obtained in Theorem 1.2. Then we have uµ → u∞ in
X as µ→∞, where u∞ ∈ H1

0 (Ω) is a positive solution of equation: −∆u+K(x)

(∫
Ω

K(y)u2(y)

4π|x− y|
dy

)
u = λf(x)u+ g(x)|u|p−2u in Ω,

u = 0 on ∂Ω.
(S∞,λ)

The outline of the paper is as follows. In next section, we introduce the variational setting and
some basic estimates. In section 3, we consider the eigenvalue problem −∆u + µV (x)u = λf(x)u.
In section 4, we prove the corresponding energy functional having the mountain pass geometry and
satisfying the Palais-Smale condition. In section 5, we prove Theorem 1.2. In last section, we give
the proof of Theorem 1.3.
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2 Notations and variational setting

We denote the Lq(R3)-norm for 1 ≤ q ≤ ∞ by ‖ · ‖Lq . As we take a subsequence for a sequence
{un}, we shall still use {un} to denote it. We use o(1) to denote a quantity that depends on n ∈ N
and goes to zero as n → ∞. Let S be the best Sobolev constant for the embedding of D1,2(R3) in
L6(R3), where D1,2(R3) is the completion of C∞0 (R3) with respect to the norm ‖u‖2

D1,2 = ‖∇u‖2
L2 .

Next, we consider the variational setting for system (SPµ,λ). It is well known that for any
K ∈ L2(R3)∪L∞(R3) and u ∈ H1(R3), the Lax-Milgram theorem implies that there exists a unique
φu ∈ D1.2(R3) such that∫

R3

∇φu∇vdx =

∫
R3

K(x)u2vdx for all v ∈ D1,2(R3). (2.1)

That is, φu is the weak solution of −∆φ = K(x)u2. Moreover, φu can be represented by

φu(x) =
1

4π

∫
R3

K(y)u2(y)

|x− y|
dy. (2.2)

Therefore, we can transform system (SPµ,λ) into a nonlinear Schrödinger equation with a non-local
term as follows:

−∆u+ µV (x)u+K(x)φuu = λf(x)u+ g(x)|u|p−2u (Sµ,λ)

with φu as in (2.2). Next, we set the space

X =

{
u ∈ H1(R3) :

∫
R3

V u2dx <∞
}

with the following inner product and norm

〈u, v〉µ =

∫
R3

(∇u∇v + µV uv)dx, ‖u‖µ = 〈u, u〉1/2µ ,

for µ > 0. By condition (V 2), the Hölder and Sobolev inequalities, we deduce that∫
R3

u2dx =

∫
{V≥c0}

u2dx+

∫
{V <c0}

u2dx ≤ 1

µc0

∫
R3

µV u2dx+
|{V < c0}|

2
3

S2
‖u‖2

D1,2 ,

which implies that the embedding X ↪→ H1(R3) is continuous. Furthermore, for 2 ≤ r ≤ 6 and

µ ≥ µ0 := S2
(
c0|{V < c0}|

2
3

)−1

, we have

∫
R3

|u|rdx ≤
(∫

R3

u2dx

) 6−r
4
(∫

R3

u6dx

) r−2
4

≤

(
1

µc0

∫
R3

µV u2dx+
|{V < c0}|

2
3

S2
‖u‖2

D1,2

) 6−r
4 (‖u‖6

D1,2

S6

) r−2
4

≤ |{V < c0}|
6−r

6 S−r‖u‖rµ. (2.3)

Now, for Eq. (Sµ,λ), we set the energy functional Jµ,λ : X → R which is defined by

Jµ,λ(u) =
1

2
‖u‖2

µ +
1

4

∫
R3

Kφuu
2dx− λ

2

∫
R3

fu2dx− 1

p

∫
R3

g|u|pdx.
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The functional Jµ,λ is a C1 functional with the derivative given by

〈J ′µ,λ(u), ϕ〉 =

∫
R3

(∇u∇ϕ+ µV uϕ)dx+

∫
R3

Kφuuϕdx− λ
∫
R3

fuϕdx−
∫
R3

g|u|p−2uϕdx

for all ϕ ∈ X, where J ′µ,λ denotes the Fréchet derivative of Jµ,λ. One can see that the critical points
of Jµ,λ are corresponding to the solutions of Eq. (Sµ,λ). Therefore, we conclude that u is a critical
point of Jµ,λ if and only if (u, φu) solves system (SPµ,λ).

Let us define the operator Φ : H1(R3) → D1,2(R3) and the functional N : H1(R3) → R by
Φ(u) := φu and

N(u) :=

∫
R3

Kφuu
2dx =

1

4π

∫
R3

∫
R3

K(x)K(y)u2(x)u2(y)

|x− y|
dydx (2.4)

respectively. By (2.1) and (2.3), we have the following estimates for µ ≥ µ0:

‖φu‖2
D1,2 = N(u) ≤

{
S−2‖K‖2

L2‖u‖4
L6 ≤ S−6‖K‖2

L2‖u‖4
µ, if K ∈ L2(R3),

S−2‖K‖2
L∞‖u‖4

L
12
5
≤ S−6|{V < c0}|‖K‖2

L∞‖u‖4
µ, if K ∈ L∞(R3).

(2.5)

Next, we state some useful properties.

Proposition 2.1 ( [9], Lemma 2.1). (i) Φ is continuous and Φ(tu) = t2Φ(u) for all t ∈ R.
(ii) Φ maps bounded sets into bounded sets.

Proposition 2.2. Assume that the sequence {un} ⊂ H1(R3) is bounded. Then there exist a subse-
quence {un} (still denote by {un}) and u ∈ H1(R3) such that
(i) for K ∈ L2(R3), we have N(un) = N(u) + o(1) and N ′(un) = N ′(u) + o(1) in H−1(R3);
(ii) for K ∈ L∞(R3), we have N(un − u) = N(un) − N(u) + o(1) and N ′(un) = N ′(u) + o(1) in
H−1(R3).

Proposition 2.3 ( [34], Lemma 2.13). If f ∈ L
3
2 (R3), the functional u 7→

∫
R3 fu

2dx is weakly
continuous on H1(R3).

Remark 2.4. According to the fact that the embedding X ↪→ H1(R3) is continuous, the above all
properties are still valid as the space H1(R3) replaced by X.

We omit the proofs of Propositions 2.1-2.3 and the readers are referred to [9, 20,26,34].

3 Eigenvalue problems

In this section, we study the following eigenvalue problem

−∆u+ µV (x)u = λf(x)u in X. (3.1)

In order to find the positive principal eigenvalue of (3.1) we solve the following minimization problem:

min

{∫
R3

(|∇u|2 + µV u2)dx : u ∈ X,
∫
R3

fu2dx = 1

}
. (3.2)

Let

λ1,µ(f) := inf

{∫
R3

(|∇u|2 + µV u2)dx : u ∈ X,
∫
R3

fu2dx = 1

}
.
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By condition (F), we deduce that∫
R3(|∇u|2 + µV u2)dx∫

R3 fu2dx
≥

‖u‖2
D1,2

‖f‖
L

3
2
S−2‖u‖2

D1,2

=
S2

‖f‖
L

3
2

> 0,

which implies that λ1,µ(f) ≥ S2‖f‖−1

L
3
2
> 0 for all µ > 0. Moreover, by condition (V3),

inf
u∈X\{0}

∫
R3 |∇u|2 + µV u2dx∫

R3 fu2dx
≤ inf

u∈H1
0 (Ω)\{0}

∫
R3 |∇u|2 + µV u2dx∫

R3 fu2dx
= inf

u∈H1
0 (Ω)\{0}

∫
Ω
|∇u|2dx∫

Ω
fΩu

2dx
,

which indicates that λ1,µ(f) ≤ λ1(fΩ) for all µ > 0, where λ1(fΩ) is the positive principal eigenvalue
of (1.8). Next, we state the useful lemma to solve problem (3.2).

Lemma 3.1 ( [35], Lemma 2.4). Let µn →∞ as n→∞ and {vn} ⊂ X with ‖vn‖µn ≤ C0 for some
C0 > 0. Then there exists a subsequence {vn} and v0 ∈ H1

0 (Ω) such that vn ⇀ v0 in X and vn → v0

in Lr(R3) for all 2 ≤ r < 6. Furthermore, we have N(vn)→ N(v0) as n→∞.

Lemma 3.2. For each µ > 0, problem (3.2) has a positive solution e1,µ ∈ X such that

λ1,µ(f) =

∫
R3

|∇e1,µ|2 + µV e2
1,µdx.

Furthermore, we have
(i) λ1,µ(f) is simple and principal eigenvalue of Eq. (3.1) and e1,µ is a corresponding eigenfunction.
(ii) λ1,µ(f) < λ1(fΩ), λ1,µ(f) → λ−1 (fΩ) and e1,µ → e1 in X as µ → ∞, where e1 is the
positive principal eigenfunction corresponding to λ1(fΩ).

Proof. Some results has been proved in [35]. For the reader’s convenience, we give the proof in detail
here. Let {un} ⊂ X be a minimizing sequence of problem (3.2). Clearly, {un} is bounded and thus
there exist a subsequence {un} and e1,µ ∈ X such that

un ⇀ e1,µ in X; (3.3)

un → e1,µ in Lrloc(R3) for 2 ≤ r < 6. (3.4)

Then by Proposition 2.3 and (3.3), we have∫
R3

fe2
1,µdx = lim

n→∞

∫
R3

fu2
ndx = 1. (3.5)

We next show that un → e1,µ in X. If it is false, then we have∫
R3

|∇e1,µ|2 + µV e2
1,µdx < lim inf

n→∞
‖un‖2

µ = λ1,µ(f),

which is impossible accroding to the definition of λ1,µ(f) and (3.5). Hence un → e1,µ in X and
λ1,µ(f) = ‖e1,µ‖2

µ. Since |e1,µ| ∈ X and ‖|e1,µ|‖2
µ = ‖e1,µ‖2

µ = λ1,µ(f), we may assume that e1,µ ≥ 0.
Let

F (t) :=
‖e1,µ + tϕ‖2

µ∫
R3 f(e1,µ + tϕ)2dx

for any ϕ ∈ C∞0 (R3). Then we have F ′(0) = 0 since F has a minimizer at t = 0. By F ′(0) = 0, we
deduce that ∫

R3

(∇e1,µ∇ϕ+ µV e1,µϕ)dx = λ1,µ(f)

∫
R3

fe1,µϕdx,
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which indicates that e1,µ is an eigenfunction of (3.1) corresponding to the eigenvalue λ1,µ(f). Ac-
cording to the strong maximum principle, we may assume that e1,µ > 0.

Here we show that λ1,µ(f) is simple. By Sobolev embedding and conditions (V1) and (F), we
conclude that any corresponding eigenfunctions belong to W 2,q

loc (R3)∩Cloc(R3) for 2 ≤ q ≤ 6. Suppose
that λ1,µ(f) is not simple. Then there exist an eigenfunction v ∈ X and d > 0 such that u = v−de1,µ

both takes positive and negative values. Thus, there exists x0 ∈ R3 such that u(x0) = 0 since
v, e1,µ ∈ Cloc(R3). Moreover, we may obtain

−∆|u|+ µV |u| = λ1,µ(f)f |u|.

By the strong maximum principle, we have |u| > 0, which contradicts u(x0) = 0. Hence λ1,µ(f) is
simple.

Next, we show that λ1,µ(f) < λ1(fΩ). Arguing by contradiction, we assume that λ1,µ(f) = λ1(fΩ).
Then one can obtain e1 is also an eigenfunction of (3.1), which is a contradiction due to Harnack
inequality. Thus, we conclude that λ1,µ(f) < λ1(fΩ).

For any sequence µn →∞, let vn = e1,µn be the minimizer of λ1,µn(f), then we have∫
R3

fv2
ndx = 1 and λ1,µn(f) = ‖vn‖2

µn < λ1(fΩ).

By Lemma 3.1, there exist a subsequence {vn} and v0 ∈ H1
0 (Ω) such that vn ⇀ v0 in X and vn → v0

in Lr(R3) for 2 ≤ r < 6. Then by Proposition 2.3, we have∫
Ω

fv2
0dx = lim

n→∞

∫
R3

fv2
ndx = 1.

Moreover, ∫
Ω

|∇v0|2dx =

∫
R3

|∇v0|2 + V v2
0dx ≤ lim inf

n→∞
‖vn‖2

µn ≤ λ1(fΩ).

By Remark 1.1, we conclude that v0 = e1 and vn → e1 in X. It is easy to deduce that λ1,µ1(f) ≤
λ1,µ2(f) for µ1 < µ2, and thus we can conclude that e1,µ → e1 in X. This completes the proof.

In order to find the other positive eigenvalues of (3.1) we solve the following problem

min

{∫
R3

|∇u|2 + µV u2dx : u ∈ X,
∫
R3

fu2dx = 1, 〈u, ei,µ〉µ = 0 for all 1 ≤ i ≤ n− 1

}
. (3.6)

Lemma 3.3. For each µ > 0 and n ≥ 2, problem (3.6) has a solution en,µ ∈ X. Furthermore, en,µ
is an eigenfunction of (3.1) corresponding to the eigenvalue λn,µ(f) := ‖en,µ‖2

µ and

λ2,µ(f) >
λ1(fΩ) + λ2(fΩ)

2
for all µ large enough.

Proof. The existence of en,µ is proved as in Lemma 3.2. However, we cannot assume that en,µ ≥ 0
because of the condition 〈en,µ, ei,µ〉µ = 0. Let v ∈ X satisfying 〈v, ei,µ〉µ = 0 for all 1 ≤ i ≤ n− 1 and

F (t) =
‖en,µ + tv‖2

µ∫
R3 f(en,µ + tv)2dx

.

Then F ′(0) = 0 implies that∫
R3

(∇en,µ∇v + µV en,µv)dx = λn,µ(f)

∫
R3

fen,µvdx. (3.7)
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Let ϕ ∈ C∞0 (R3) and w = ϕ −
∑n−1

i=1 ciei,µ, where ci =
〈ϕ,ei,µ〉µ
〈ei,µ,ei,µ〉µ . Then 〈w, ei,µ〉µ = 0 for all

1 ≤ i ≤ n− 1, and thus by (3.7),∫
R3

∇en,µ∇ϕ+µV en,µϕdx =

∫
R3

∇en,µ∇w+µV en,µwdx = λn,µ(f)

∫
R3

fen,µwdx = λn,µ(f)

∫
R3

fen,µϕdx.

This indicates that en,µ is an eigenfunction of (3.1) corresponding to the eigenvalue λn,µ(f).
We now show that λ2,µ(f) > 1

2
(λ1(fΩ) + λ2(fΩ)) for all µ large enough. Suppose on the contrary.

Then there exists a sequence {µn} with µn →∞ such that

λ2,µn(f) ≤ λ1(fΩ) + λ2(fΩ)

2
.

Let vn = e2,µn be the minimizer of λ2,µn(f), then
∫
R3 fv

2
ndx = 1, 〈vn, e1,µn〉µn = 0 and

λ2,µn(f) = ‖vn‖2
µn ≤

λ1(fΩ) + λ2(fΩ)

2
. (3.8)

By Lemma 3.1, there exist a subsequence {vn} and v0 ∈ H1
0 (Ω) such that vn ⇀ v0 in X and vn → v0

in Lr(R3) for 2 ≤ r < 6. Then by Proposition 2.3, we have

lim
n→∞

∫
R3

fv2
ndx =

∫
Ω

fv2
0dx = 1. (3.9)

Moreover, ∫
Ω

|∇v0|2dx =

∫
R3

|∇v0|2 + V v2
0dx ≤ lim inf

n→∞
‖vn‖2

µn ≤
λ1(fΩ) + λ2(fΩ)

2
.

According to the fact in Lemma 3.2 that e1,µ → e1 in X as µ→∞, we deduce that

‖e1,µn − e1‖µn → 0 as n→∞. (3.10)

It follows from (3.8), (3.10) and vn ⇀ v0 in X that

lim
n→∞
〈vn, e1,µn〉µn =

∫
Ω

∇v0∇e1dx = 0. (3.11)

From (3.9), (3.11) and Remark 1.1, we conclude that
∫

Ω
|∇v0|2dx ≥ λ2(fΩ) which is a contradiction.

This completes the proof.

4 Palais-Smale sequence

In this section, we study the mountain pass geometry and the compactness condition for the
functional Jµ,λ. Let us recall the well known mountain pass theorem.

Theorem 4.1 ( [36], Mountain pass theorem). Let E be a Banach space, J ∈ C1(E,R), v ∈ E and
ρ > 0 be such that ‖v‖ > ρ and

b := inf
‖u‖=ρ

J(u) > J(0) ≥ J(v).

If J satisfies the Palais-Smale condition at level α with

α := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) and Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = v},

then α is a critical value of J and α ≥ b.
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Definition 4.2. (i) A sequence {un} ⊂ X is called a Palais-Smale sequence at level α ∈ R ((PS)α-
sequence for short) for the functional Jµ,λ if Jµ,λ(un)→ α and J ′µ,λ(un)→ 0.
(ii) We say that the functional Jµ,λ satisfies the Palais-Smale condition at level α ((PS)α-condition)
if every (PS)α-sequence has a convergent subsequence.

Next, we show that the functional Jµ,λ has the mountain pass geometry in λ > λ1(fΩ) and near
λ1(fΩ) for µ > 0 large enough. To prove the mountain pass geometry of the functional Jµ,λ, we
decompose each u ∈ X as u = te1,µ + w, where t ∈ R, w ∈ X and 〈w, e1,µ〉µ = 0. Then

‖u‖2
µ = ‖e1,µ‖2

µt
2 + ‖w‖2

µ = λ1,µ(f)t2 + ‖w‖2
µ. (4.1)

Moreover, by Lemmas 3.2 and 3.3, we have

λ1,µ(f)

∫
R3

fe1,µwdx =

∫
RN
∇e1,µ∇w + µV e1,µwdx = 0 (4.2)

and

λ2,µ(f)

∫
R3

fw2dx ≤ ‖w‖2
µ. (4.3)

Thus, by (4.1)− (4.3), we deduce that

1

2

(
‖u‖2

µ − λ
∫
R3

fu2dx

)
=

1

2

(
λ1,µ(f)t2 + ‖w‖2

µ − λ
∫
R3

(t2fe2
1,µ + 2tfe1,µw + fw2)dx

)
≥ 1

2

(
1− λ

λ1,µ(f)

)
λ1,µ(f)t2 +

1

2

(
1− λ

λ2,µ(f)

)
‖w‖2

µ

=
1

2

(
1− λ

λ1,µ(f)

)
‖u‖2

µ +
λ

2

(
1

λ1,µ(f)
− 1

λ2,µ(f)

)
‖w‖2

µ. (4.4)

Lemma 4.3. Suppose that 4 ≤ p < 6 and conditions (V1)-(V3), (F), (G) and (K1) hold. In addition,
for p = 4, assume (K3) and (D1). Then there exists δ0 > 0 such that for every 0 < λ < λ1(fΩ) + δ0,
there exist ρλ, ηλ > 0 and ϕ0 ∈ H1

0 (Ω) such that ‖ϕ0‖µ > ρλ and

inf
‖u‖µ=ρλ

Jµ,λ(u) ≥ ηλ > 0 > Jµ,λ(ϕ0)

for µ > 0 large enough.

Proof. We first show that there exists δ0 > 0 such that for every 0 < λ < λ1(fΩ) + δ0, there exist
ρλ, ηλ > 0 such that

inf
‖u‖µ=ρλ

Jµ,λ(u) ≥ ηλ > 0

as µ > 0 large enough. We separate this part into two cases.
Case (1): 0 < λ < λ1(fΩ). By Lemma 3.2(ii), we have

λ1,µ(f) ≥ λ+ λ1(fΩ)

2
for µ > 0 large enough. (4.5)
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By (2.3), (4.4), (4.5) and condition (G), we deduce that for µ > 0 large enough,

Jµ,λ(u) ≥ 1

2

(
1− λ

λ1,µ(f)

)
‖u‖2

µ +
1

4
N(u)− ‖g‖L

∞|{V < c0}|
6−p

6

pSp
‖u‖pµ

≥ ‖u‖2
µ

(
1

2

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
− ‖g‖L

∞|{V < c0}|
6−p

6

pSp
‖u‖p−2

µ

)
,

where N(u) is as in (2.4). Let

ρλ =

(
1

4

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
pSp

‖g‖L∞|{V < c0}|
6−p

6

) 1
p−2

.

Then for µ > 0 large enough and ‖u‖µ = ρλ, we have

Jµ,λ(u) ≥ 1

4

(
λ1(fΩ)− λ
λ1(fΩ) + λ

)
ρ2
λ =: ηλ > 0.

Case (2): λ ≥ λ1(fΩ). Using (2.3) and (4.4), for µ > 0 large enough, we have

Jµ,λ(u) ≥ Λ1,µ‖u‖2
µ + Λ2,µ‖w‖2

µ +
N(te1,µ)

4
+
N(u)−N(te1,µ)

4
− ‖g‖L

∞|{V < c0}|
6−p

6

pSp
‖u‖pµ, (4.6)

where u = te1,µ + w with t ∈ R and w ∈ {v ∈ X : 〈v, e1,µ〉µ = 0},

Λ1,µ =
1

2

(
1− λ

λ1,µ(f)

)
and Λ2,µ =

λ

2

(
1

λ1,µ(f)
− 1

λ2,µ(f)

)
.

By Lemma 3.3, we may deduce that for µ > 0 large enough and λ ≥ λ1(fΩ),

Λ2,µ ≥
1

2

(
1− λ1(fΩ)

λ2,µ(f)

)
≥ λ2(fΩ)− λ1(fΩ)

2(λ2(fΩ) + λ1(fΩ))
=: Λ0. (4.7)

By Proposition 2.1(i) and Lemma 3.2(ii), we deduce that N(e1,µ)→ N(e1) as µ→∞, which imples
that

N(e1,µ) ≥ 1

2
N(e1) for µ > 0 large enough. (4.8)

Moreover, by condition (K1), we have N(e1) > 0. By the mean value theorem, there exists θ with
0 < θ < 1 such that

1

4
|N(te1,µ + w)−N(te1,µ)| =

∣∣∣∣∫
R3

Kφte1,µ+θw(te1,µ + θw)wdx

∣∣∣∣ . (4.9)

When K ∈ L2(R3), by (2.5), Hölder, Sobolev and Young’s inequalities, we deduce that∣∣∣∣∫
R3

Kφte1,µ+θw(te1,µ + θw)wdx

∣∣∣∣
≤ S−1‖K‖L2‖φte1,µ+θw‖D1,2‖te1,µ + θw‖L6‖w‖L6

≤ S−6‖K‖2
L2‖te1,µ + θw‖3

µ‖w‖µ

= S−6‖K‖2
L2

(
t2‖e1,µ‖2

µ + θ2‖w‖2
µ

) 3
2 ‖w‖µ

≤
√

2S−6‖K‖2
L2|t|3‖e1,µ‖3

µ‖w‖µ +
√

2S−6‖K‖2
L2‖w‖4

µ

<
N(e1)

16
t4 +

123‖K‖8
L2λ1(fΩ)6

S24N(e1)3
‖w‖4

µ +
√

2S−6‖K‖2
L2‖w‖4

µ. (4.10)
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Analogously, for K ∈ L∞(R3), by (2.3), (2.5) and Young’s inequality, we have∣∣∣∣∫
R3

Kφte1,µ+θw(te1,µ + θw)wdx

∣∣∣∣
≤ ‖K‖L∞‖φte1,µ+θw‖L6‖te1,µ + θw‖

L
12
5
‖w‖

L
12
5

≤
√

2S−6 |{V < c0}| ‖K‖2
L∞|t|3‖e1,µ‖3

µ‖w‖µ +
√

2S−6 |{V < c0}| ‖K‖2
L∞‖w‖4

µ

<
N(e1)

16
t4 +

123 |{V < c0}|4 ‖K‖8
L∞λ1(fΩ)6

S24N(e1)3
‖w‖4

µ +
√

2S−6 |{V < c0}| ‖K‖2
L∞‖w‖4

µ. (4.11)

Subsequently, combining (4.6)− (4.11), for µ > 0 large enough, we have

Jµ,λ(u)

≥− |Λ1,µ|‖u‖2
µ + Λ0‖w‖2

µ +
N(e1)

8
t4 +

N(te1,µ + w)−N(te1,µ)

4
− ‖g‖L

∞|{V < c0}|
6−p

6

pSp
‖u‖pµ

≥− |Λ1,µ|‖u‖2
µ + Λ0‖w‖2

µ +
N(e1)

16
t4 − CK‖w‖4

µ −
‖g‖L∞|{V < c0}|

6−p
6

pSp
‖u‖pµ

=− |Λ1,µ|‖u‖2
µ + Λ0‖w‖2

µ +
N(e1)

16λ1,µ(f)2

(
‖u‖2

µ − ‖w‖2
µ

)2 − CK‖w‖4
µ −
‖g‖L∞|{V < c0}|

6−p
6

pSp
‖u‖pµ

≥− |Λ1,µ|‖u‖2
µ + Λ0‖w‖2

µ +
N(e1)

16λ1(fΩ)2

(‖u‖4
µ

2
− ‖w‖4

µ

)
− CK‖w‖4

µ −
‖g‖L∞ |{V < c0}|

6−p
6

pSp
‖u‖pµ

=− |Λ1,µ|‖u‖2
µ + ‖u‖4

µ

(
N(e1)

32λ1(fΩ)2
− ‖g‖L

∞|{V < c0}|
6−p

6

pSp
‖u‖p−4

µ

)

+ ‖w‖2
µ

(
Λ0 −

(
N(e1)

16λ1(fΩ)2
+ CK

)
‖w‖2

µ

)
, (4.12)

where

CK =


123‖K‖8

L2λ1(fΩ)6

S24N(e1)3
+

√
2‖K‖2

L2

S6
, for K ∈ L2(R3),

123 |{V < c0}|4 ‖K‖8
L∞λ1(fΩ)6

S24N(e1)3
+

√
2 |{V < c0}| ‖K‖2

L∞

S6
, for K ∈ L∞(R3).

Let

ρλ =


min

{(
N(e1)pSp

64λ1(fΩ)2‖g‖L∞ |{V <c0}|
6−p

6

) 1
p−4

,

(
Λ0

(
N(e1)

16λ1(fΩ)2 + CK

)−1
) 1

2

}
, for 4 < p < 6,(

Λ0

(
N(e1)

16λ1(fΩ)2 + CK

)−1
) 1

2

, for p = 4.

(4.13)
Then for ‖u‖µ = ρλ, we have

‖g‖L∞ |{V < c0}|
6−p

6

pSp
‖u‖p−4

µ ≤ N(e1)

64λ1(fΩ)2
and Λ0 −

(
N(e1)

16λ1(fΩ)2
+ CK

)
‖w‖2

µ ≥ 0. (4.14)

Note that under condition (D1), the first inequality in (4.14) holds for p = 4. Let

δ0 =
N(e1)

256λ1(fΩ)
ρ2
λ (4.15)
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and

δµ =
N(e1)λ1,µ(f)

64λ1(fΩ)2
ρ2
λ.

By Lemma 3.2(ii), we deduce that for µ > 0 large enough,

λ1(fΩ) + δ0 ≤ λ1,µ(f) + 2δ0 ≤ λ1,µ(f) + δµ.

This implies that for every λ1(fΩ) ≤ λ < λ1(fΩ) + δ0 and µ > 0 large enough,

|Λ1,µ| =
1

2

(
λ

λ1,µ(f)
− 1

)
≤ 1

2

(
λ1,µ(f) + δµ
λ1,µ(f)

− 1

)
=

N(e1)

128λ1(fΩ)2
ρ2
λ. (4.16)

It follows from (4.12), (4.14) and (4.16) that for every λ1(fΩ) ≤ λ < λ1(fΩ) + δ0, ‖u‖µ = ρλ and
µ > 0 large enough,

Jµ,λ(u) ≥ N(e1)

128λ1(fΩ)2
ρ4
λ =: ηλ > 0.

Consequently, for every 0 < λ < λ1(fΩ) + δ0, we have inf‖u‖µ=ρλ Jµ,λ(u) ≥ ηλ > 0 as µ > 0 large
enough.

Next, we show that there exists ϕ0 ∈ H1
0 (Ω) such that ‖ϕ0‖µ > ρλ and Jµ,λ(ϕ0) < 0. We divide

the part into two cases:
Case (I): 4 < p < 6. By condition (G), we may choose a function ϕ ∈ H1

0 (Ω) such that
∫
R3 g|ϕ|pdx >

0. Let s > 0, then

Jµ,λ(sϕ) =
‖ϕ‖2

µ − λ
∫
R3 fϕ

2dx

2
s2 +

N(ϕ)

4
s4 −

∫
R3 g|ϕ|pdx

p
sp.

This implies that there exists s0 > 0 such that ‖s0ϕ‖µ > ρλ and Jµ,λ(s0ϕ) < 0.
Case (II): p = 4. By conditions (G) and (K3), we can choose a function ϕ ∈ H1

0 (Ω) such that∫
R3 gϕ

4dx > 0 and N(ϕ) = 0. Let s > 0, then

Jµ,λ(sϕ) =
‖ϕ‖2

µ − λ
∫
R3 fϕ

2dx

2
s2 −

∫
R3 gϕ

4dx

4
s4,

Thus, there exists s0 > 0 such that ‖s0ϕ‖µ > ρλ and Jµ,λ(s0ϕ) < 0. We complete the proof.

Next, we study the (PS)βλ(µ)-condition for the functional Jµ,λ, where βλ(µ) is a real value function
defined in µ > 0 and βλ(µ) > 0 for all λ, µ > 0. Then we have the following results.

Lemma 4.4. Suppose that 4 ≤ p < 6 and conditions (V1)-(V3), (F), (G), (K1) and (K2) hold. In
addition, for p = 4, assume (K3). If there exists dλ > 0 such that

0 < βλ(µ) < dλ

for all µ > 0 large enough, then there exists D0 > 0 such that the (PS)βλ(µ)-sequence {un} for Jµ,λ
satisfies ‖un‖µ < D0 for all µ > 0 large enough.

Proof. Suppose on the contrary. Then there exist two sequences {µn}, {Dn} ⊂ R+ with µn →
∞, Dn → ∞ as n → ∞ such that for every n ∈ N, there exists a (PS)βλ(µn)-sequence {un,m}m∈N
with ‖un,m‖µn > Dn for all m ∈ N,

1

2
‖un,m‖2

µn −
λ

2

∫
R3

fu2
n,mdx−

1

p

∫
R3

g|un,m|pdx+
1

4
N(un,m)→ βλ(µn) (4.17)
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and∫
R3

(∇un,m∇ϕ+µnV un,mϕ−λfun,mϕ)dx−
∫
R3

g|un,m|p−2un,mϕdx+

∫
R3

Kφun,mun,mϕdx→ 0 (4.18)

as m→∞.
Let wn = un,n, then ‖wn‖µn → ∞ as n → ∞. Let vn = wn

‖wn‖µn
, then ‖vn‖µn = 1. By Lemma

3.1, there exist a subsequence {vn} and v0 ∈ H1
0 (Ω) such that vn ⇀ v0 in X, vn → v0 in Lr(R3) for

2 ≤ r < 6, and limn→∞N(vn) = N(v0). Then by conditions (F) and (G), we have

lim
n→∞

∫
R3

fv2
ndx =

∫
Ω

fv2
0dx and lim

n→∞

∫
R3

g|vn|pdx =

∫
Ω

g|v0|pdx.

Dividing (4.17) by ‖wn‖2
µn and the boundedness of βλ(µn), we obtain

1

2
− λ

2

∫
R3

fv2
ndx−

1

p
‖wn‖p−2

µn

∫
R3

g|vn|pdx+
1

4
‖wn‖2

µnN(vn)→ 0. (4.19)

Dividing (4.18) by ‖wn‖µn , we have∫
R3

(∇vn∇ϕ+ µnV vnϕ− λfvnϕ)dx− ‖wn‖p−2
µn

∫
R3

g|vn|p−2vnϕdx+ ‖wn‖2
µn

∫
R3

Kφvnvnϕdx→ 0.

(4.20)
If the assumption that v0 = 0 a.e. in Ω holds, then we have

lim
n→∞

∫
R3

fv2
ndx =

∫
Ω

fv2
0dx = 0. (4.21)

Choosing ϕ = vn in (4.20), we obtain

1− λ
∫
R3

fv2
ndx− ‖wn‖p−2

µn

∫
R3

g|vn|pdx+ ‖wn‖2
µnN(vn)→ 0. (4.22)

For 4 < p < 6, combining (4.19), (4.21) and (4.22), we deduce that

lim
n→∞

‖wn‖p−2
µn

∫
R3

g|vn|pdx =
p

4− p
< 0

However, by (4.21), (4.22) implies that limn→∞ ‖wn‖p−2
µn

∫
R3 g|vn|pdx > 0, which is a contradiction.

Similarly, we also have a contradiction for p = 4 by (4.19), (4.21) and (4.22).
Now, we prove the assumption that v0 = 0 a.e. in Ω. For 4 < p < 6, dividing (4.20) by ‖wn‖p−2

µn ,
we obtain

lim
n→∞

∫
R3

g|vn|p−2vnϕdx =

∫
Ω

g|v0|p−2v0ϕdx = 0. (4.23)

Clearly, v0χ{x∈Ω:g(x)>0} ∈ Lr(Ω) for 2 ≤ r ≤ 6. Then there exists a sequence {ϕn} ⊂ C∞0 (Ω) such
that ϕn → v0χ{x∈Ω:g(x)>0} in Lr(Ω) for 2 ≤ r ≤ 6. Therefore, choosing ϕ = ϕn in (4.23) and taking
n→∞, we have

0 = lim
n→∞

∫
Ω

g|v0|p−2v0ϕndx =

∫
{x∈Ω:g(x)>0}

g|v0|pdx,

which implies that v0 = 0 a.e. in {x ∈ Ω : g(x) > 0}. In a same way, we obtain that v0 = 0 a.e. in
{x ∈ Ω : g(x) < 0}. For the remaining part, by combining (4.19) and (4.22), we have

0 = lim
n→∞

∫
R3

Kφvnv
2
ndx =

∫
{x∈Ω:g(x)=0}

Kφv0v
2
0dx.
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By condition (K2), we obtain that v0 = 0 a.e. in {x ∈ Ω : g(x) = 0}.
For p = 4, dividing (4.20) by ‖wn‖2

µn , we obtain

lim
n→∞

(∫
R3

gv3
nϕdx−

∫
R3

Kφvnvnϕdx

)
=

∫
Ω

gv3
0ϕdx−

∫
Ω

Kφv0v0ϕdx = 0. (4.24)

In a same way as the argument of the case 4 < p < 6 and by condition (K3), we have

0 =

∫
{x∈Ω:g(x)>0}

gv4
0dx−

∫
{x∈Ω:g(x)>0}

Kφv0v
2
0dx =

∫
{x∈Ω:g(x)>0}

gv4
0dx,

which implies that v0 = 0 a.e. in {x ∈ Ω : g(x) > 0}. Similarly, we have∫
{x∈Ω:g(x)<0}

gv4
0dx =

∫
{x∈Ω:g(x)<0}

Kφv0v
2
0dx

and ∫
{x∈Ω:g(x)=0}

Kφv0v
2
0dx = 0.

By condition (K2), we obtain that v0 = 0 a.e. in {x ∈ Ω : g(x) ≤ 0}. This completes the proof.

Lemma 4.5. Suppose that 2 < p < 6 and conditions (V1)-(V2), (F), (G) and (K1) hold. Let {un}
be a (PS)β-sequence for Jµ,λ. If there exists D0 > 0 such that

‖un‖µ < D0 (4.25)

for all µ > 0 large enough, then the sequence {un} has a convergent subsequence.

Proof. By (4.25), there exist a subsequence {un} and u0 ∈ X such that un ⇀ u0 in X and un → u0

in Lrloc(R3) for 2 ≤ r < 6. It follows from Proposition 2.3 and X ↪→ H1(R3) that

lim
n→∞

∫
R3

fu2
ndx =

∫
R3

fu2
0dx. (4.26)

Next, we show that un → u0 in X. Let vn = un − u0. By (4.25), we deduce that for µ > 0 large
enough,

‖vn‖2
µ ≤ ‖un‖µ + ‖u0‖µ < D1. (4.27)

From Brézis-Lieb lemma [37] and Proposition 2.2, we have

‖vn‖2
µ = ‖un‖2

µ − ‖u0‖2
µ + o(1),

N(vn) = N(un)−N(u0) + o(1)

and ∫
R3

g|vn|pdx =

∫
R3

g|un|pdx−
∫
R3

g|u0|pdx+ o(1).

Moreover, we have∫
R3

v2
ndx ≤

1

µc0

∫
{V≥c0}

µV v2
ndx+

∫
{V <c0}

v2
ndx ≤

1

µc0

∫
R3

µV v2
ndx+ o(1). (4.28)
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By (2.3), (4.27) and (4.28), we deduce∫
R3

g|vn|pdx ≤ ‖g‖L∞
(∫

R3

|vn|pdx
) p−2

p
(∫

R3

|vn|pdx
) 2

p

≤ ‖g‖L∞
(
|{V < c0}|

6−p
6 S−p‖vn‖pµ

) p−2
p
(
‖vn‖

6−p
2

L2 ‖vn‖
3p−6

2

L6

) 2
p

≤ ‖g‖L∞
(
|{V < c0}|

6−p
6 S−pD

p
2
1

) p−2
p

((
1

µc0

∫
R3

µV v2
ndx+ o(1)

) 6−p
4

(S−1‖vn‖D1,2)
3p−6

2

) 2
p

≤ ‖g‖L∞
(
|{V < c0}|

6−p
6 S−pD

p
2
1

) p−2
p
(

(µc0)
p−6

4 ‖vn‖
6−p

2
µ S

6−3p
2 ‖vn‖

3p−6
2

µ

) 2
p

+ o(1)

≤ D2µ
p−6
2p ‖vn‖2

µ + o(1), (4.29)

where D2 = ‖g‖L∞|{V < c0}|
(6−p)(p−2)

6p S−1−p+ 6
pD

p−2
2

1 c
p−6
2p

0 .
Since J ′µ,λ(un)→ 0, we have

o(1) =

∫
R3

∇un∇ϕ+ µV unϕdx− λ
∫
R3

funϕdx−
∫
R3

g|un|p−2unϕdx+

∫
R3

Kφununϕdx, (4.30)

which implies that

0 =

∫
R3

∇u0∇ϕ+ µV u0ϕdx− λ
∫
R3

fu0ϕdx−
∫
R3

g|u0|p−2u0ϕdx+

∫
R3

Kφu0u0ϕdx. (4.31)

Choosing ϕ = un in (4.30) and ϕ = u0 in (4.31), we obtain

o(1) = ‖un‖2
µ − λ

∫
R3

fu2
ndx−

∫
R3

g|un|pdx+N(un) (4.32)

and

0 = ‖u0‖2
µ − λ

∫
R3

fu2
0dx−

∫
R3

g|u0|pdx+N(u0). (4.33)

By (4.26), (4.32) and (4.33), we have

o(1) = ‖vn‖2
µ −

∫
R3

g|vn|pdx+N(vn). (4.34)

It follows from (4.29), (4.34) and N(vn) ≥ 0 that

o(1) ≥ ‖vn‖2
µ −D2µ

p−6
2p ‖vn‖2

µ.

Therefore, we have o(1) ≥ 1
2
‖vn‖2

µ for µ large enough, which implies that vn → 0 in X. Hence we
have un → u0 in X,

lim
n→∞

∫
R3

g|un|pdx =

∫
R3

g|u0|pdx and lim
n→∞

N(un) = N(u0),

which implies that Jµ,λ(u0) = βλ(µ). This completes the proof.
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5 The proof of Theorems 1.2

In this section, we prove Theorem 1.2. The results will hold by the following two theorems.

Theorem 5.1. Under the assumptions of Theorems 1.2. There exists δ0 > 0 such that for every
0 < λ < λ1(fΩ) + δ0, Eq. (Sµ,λ) has a positive solution u+ with Jµ,λ(u

+) > 0 for µ > 0 large enough.

Proof. By Lemma 4.3, there exists δ0 > 0 such that for every 0 < λ < λ1(fΩ) + δ0, there exist
ρλ, ηλ > 0 and ϕ0 ∈ H1

0 (Ω) such that ‖ϕ0‖µ > ρλ and

inf
‖u‖µ=ρλ

Jµ,λ(u) ≥ ηλ > 0 > Jµ,λ(ϕ0)

for all µ > 0 large enough. Let

αλ(µ) := inf
γ∈Γ

max
t∈[0,1]

Jµ,λ(γ(t)) with Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = ϕ0}.

Since ϕ0 ∈ H1
0 (Ω), there exists a constant dλ > 0, independent of µ, such that

0 < ηλ ≤ αλ(µ) ≤ max
0≤t≤1

Jµ,λ(tϕ0) ≤ dλ for all µ > 0 large enough. (5.1)

In order to prove the positively of solutions, we follow from the argument in [21]. Since Jµ,λ(u) =
Jµ,λ(|u|), we may assume that for every n ∈ N, there exists γn ∈ Γ with γn(t) ≥ 0 for all t ∈ [0, 1]
such that

αλ(µ) ≤ max
t∈[0,1]

Jµ,λ(γn(t)) < αλ(µ) +
1

n
.

Denote Jµ,λ(vn) = max
t∈[0,1]

Jµ,λ(γn(t)). By Ekeland’s variational principle [38], we have a (PS)αλ(µ)-

sequence {un} for Jµ,λ satisfying

αλ(µ) ≤ Jµ,λ(un) ≤ Jµ,λ(vn) < αλ(µ) +
1

n
, ‖J ′µ,λ(un)‖µ <

1√
n

and

‖vn − un‖µ <
1√
n
. (5.2)

By (5.1) and Lemmas 4.4 and 4.5, there exist a subsequence {un} and u+ ∈ X such that un → u+

in X as n→∞,
Jµ,λ(u

+) = αλ(µ) and J ′µ,λ(u
+) = 0.

By (5.2) and the fact that γn(t) ≥ 0 for all t ∈ [0, 1], we conclude that u+ ≥ 0 a.e. in R3. It follows
from Jµ,λ(u

+) > 0 and the strong maximum principle that u+ > 0 in R3. This proof is complete.

Theorem 5.2. Under the assumptions of Theorems 1.2. There exists δ0 > 0 such that for every
λ1(fΩ) < λ < λ1(fΩ)+ δ0, Eq. (Sµ,λ) has a positive solution u− with Jµ,λ(u

−) < 0 for µ large enough.

Proof. Let Bρλ := {u ∈ X : ‖u‖µ ≤ ρλ} with ρλ as in Lemma 4.3. We consider the infimum of Jµ,λ
on Bρλ and set

αλ(µ) := inf
‖u‖µ≤ρλ

Jµ,λ(u).
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By conditions (F) and (G), we deduce

Jµ,λ(u) ≥ −
‖f‖

L
3
2

2S2
‖u‖2

µ −
‖g‖L∞|{V < c0}|

6−p
6

pSp
‖u‖pµ ≥ −

‖f‖
L

3
2

2S2
ρ2
λ −
‖g‖L∞|{V < c0}|

6−p
6

pSp
ρpλ.

Moreover, for t > 0, we have

Jµ,λ(te1) = −λ− λ1(fΩ)

2
t2 +

N(e1)

4
t4 +

∫
R3 ge

p
1dx

p
tp.

This implies there exists t0 > 0 such that ‖t0e1‖µ ≤ ρλ and Jµ,λ(t0e1) < 0. Hence we conclude that
there exist two positive constants ηλ, dλ > 0 such that

− dλ ≤ αλ(µ) ≤ −ηλ for all µ > 0 large enough. (5.3)

Since Jµ,λ(u) = Jµ,λ(|u|), we may assume that there exists vn ≥ 0 with ‖vn‖µ ≤ ρλ such that

αλ(µ) ≤ Jµ,λ(vn) < αλ(µ) +
1

n
.

Then by Ekeland’s variational principle [38], we have a (PS)αλ(µ)-sequence {un} ⊂ Bρλ satisfying

αλ(µ) ≤ Jµ,λ(un) ≤ Jµ,λ(vn) < αλ(µ) +
1

n
, ‖J ′µ,λ(un)‖µ <

1√
n

and

‖un − vn‖µ <
1√
n
. (5.4)

Note that ρλ is independent of µ. Thus, by Lemma 4.5, there exist a subsequence {un} and u− ∈ X
such that un → u− in X as n → ∞, Jµ,λ(u

−) = αλ(µ) < 0 and J ′µ,λ(u
−) = 0. By (5.4) and the

fact that vn ≥ 0, we conclude that u− ≥ 0 a.e. in R3. It follows from Jµ,λ(u
−) < 0 and the strong

maximum principle that u− > 0 in R3. This proof is complete.

6 Concentration for Solutions

In this section, we follow the argument in [39] to study the asymptotic behavior of positive
solutions of system (SPµ,λ). The results of Theorem 1.3 will hold by the following two theorems.

Theorem 6.1. Let uµ be the solutions obtained in Theorem 5.1. Then there exists u∞ ∈ H1
0 (Ω) such

that uµ → u+
∞ in X as µ→∞ and it is a positive solution of Eq. (S∞,λ) with J∞,λ(u

+
∞) > 0, where

J∞,λ(u) :=
1

2

∫
Ω

|∇u|2dx− λ

2

∫
Ω

fu2dx− 1

p

∫
Ω

g|u|pdx+
1

4

∫
Ω

Kφuu
2dx.

Proof. For any sequence µn → ∞, let un := uµn be the positive solutions of Eq. (Sµ,λ) obtained
in Theorem 5.1 for λ. From the proof of Theorem 5.1, there exists a constant D0 > 0 such that
‖un‖µn < D0 for all n. Then by Lemma 3.1, there exist a subsequence {un} and u+

∞ ∈ H1
0 (Ω)

such that un ⇀ u+
∞ in X and un → u+

∞ in Lr(R3) for 2 ≤ r < 6. Since 〈J ′µn,λ(un), ϕ〉 = 0 for any
ϕ ∈ C∞0 (Ω), we have∫

Ω

∇un∇ϕdx− λ
∫

Ω

funϕdx−
∫

Ω

g|un|p−2unϕdx+

∫
Ω

Kφununϕdx = 0 (6.1)
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which implies that∫
Ω

∇u+
∞∇ϕdx− λ

∫
Ω

fu+
∞ϕdx−

∫
Ω

g|u+
∞|p−2u+

∞ϕdx+

∫
Ω

Kφu+
∞
u+
∞ϕdx = 0. (6.2)

That is, u+
∞ is a weak solution of Eq. (S∞,λ).

Next, we show that un → u+
∞ in X. Since 〈J ′µn,λ(un), un〉 = 〈J ′µn,λ(un), u+

∞〉 = 0, we have

‖un‖2
µn − λ

∫
R3

fu2
ndx−

∫
R3

g|un|pdx+

∫
R3

Kφunu
2
ndx = 0 (6.3)

and ∫
Ω

∇un∇u+
∞dx− λ

∫
Ω

funu
+
∞dx−

∫
Ω

g|un|p−2unu
+
∞dx+

∫
Ω

Kφununu
+
∞dx = 0. (6.4)

By the fact that un → u+
∞ in Lr(R3) for 2 ≤ r < 6, we have

lim
n→∞

(∫
R3

fu2
ndx−

∫
Ω

funu
+
∞dx

)
= 0, lim

n→∞

(∫
R3

g|un|pdx−
∫

Ω

g|un|p−2unu
+
∞dx

)
= 0

and

lim
n→∞

(∫
R3

Kφunu
2
ndx−

∫
Ω

Kφununu
+
∞dx

)
= 0.

Thus,

lim
n→∞

‖un‖2
µn = lim

n→∞

∫
Ω

∇un∇u+
∞dx =

∫
Ω

|∇u+
∞|2dx ≥ lim

n→∞
‖un‖2

which implies un → u+
∞ in X, and thus we have Jµn,λ(un) → J∞,λ(u

+
∞). Moreover, by (5.1), we

can deduce that ηλ ≤ Jµn,λ(un) ≤ dλ for all n, which implies that ηλ ≤ J∞,λ(u
+
∞) ≤ dλ. Hence we

conclude that u+
∞ > 0. This proof is complete.

Theorem 6.2. Let uµ be the solutions obtained in Theorem 5.2. Then there exists u−∞ ∈ H1
0 (Ω) such

that uµ → u−∞ in X as µ→∞ and it is a positive solution of Eq. (S∞,λ) with J∞,λ(u
−
∞) < 0.

Proof. This proof is essential same as that of Theorem 6.1. Hence we omit it here.
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