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Abstract

In this paper, we study an eigenvalue problem for Schrédinger-Poisson system with indefinite non-
linearity and potential well as follows:

—Au+ pV(z)u + K(x)du = \f(z)u + g(x)|ulP~2u  in R3,
—Ad = K(x)u in R3,

where 4 < p < 6, the parameters p, A > 0, V € C(R?) is a potential well, and the functions f € L%(RS)
and g € L>°(R3) are allowed to be sign-changing. It is well known that such a system with the potential
being positive constant has two positive solutions when lim|;|_ g(z) = goo < 0, K = 0 in the set
{z € R® : g(z) = 0} and X > A\i(f) with near A\;(f), where \;(f) is the first eigenvalue of —A + id
in H*(R3) (see e.g. Huang et al., J. Differential Equations 255, 2463 (2013)). The main purpose is to
obtain the existence and multiplicity of positive solutions without the above assumptions for g and K.
The results are obtained via variational method and steep potential. Furthermore, we also consider the
concentration of solutions as p — oco.
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1 Introduction

In the paper, we are concerned the following Schrodinger-Poisson system

—Au+V(z)u+ K(x)pu = h(z,u) in R3,
{ —A¢p = K(w))u2 ( o) in R3. (1.1)

This system has been first derived from Benci and Fortunato [1] in order to study the stationary
solutions of Schrodinger equations coupled with Maxwell equations. It describes the interaction of
a charged particle with its own electrostatic field. The unknown functions u and ¢ represent the
wave functions associated to the particle and electric potential, respectively. The functions V' and
K denote an external potential and nonnegative density charge, respectively. The presence of the
nonlinear term h(z,u) simulates the interaction effect among many particles. We refer the reader
to [1] and [2] for more details.

In recent years, system (1.1) has been widely studied under variant assumptions on V, K and
h. See, for example, [1-7] for the autonomous case and [4,8-20] for the non-autonomous case. In

*E-mail address: khwang0511@gmail.com



particular, many papers have been devoted to the nonlinear term h(x,u) = g(z)u|P~?u,2 < p <
6. For which some assumptions on V, K and g are considered in order to overcome the lack of
compactness of the embedding of H'(R?) into L"(R?), 2 < r < 6, since system (1.1) is on the whole
space R3.

In the work [9], Cerami and Vaira studied the following Schrédinger-Poisson system

—Au+u+ MK (2)pu = g(x)|ulP2u  in R3,
—A¢ = K(x)u? in R3,

where A = 1,4 < p < 6, g and K are nonnegative real functions,

lim g(z) = goo > 0, hm K(z) =K, =0 and K € L*(R%).

|z| =00 |z| =00

They obtained the existence of bound and ground state positive solutions by using the Nehari man-
ifold method and establishing a global compactness lemma to overcome the lack of compactness.
Later, Vaira [10] considered system (1.2) with A € R, g and K being nonnegative functions,

lim g(z) = goo >0, lim K(z) =K, >0 and K — K., € L*(R?).

For which the positive ground state solutions were obtained in the cases where 2 < p < 6if A <0
and 4 < p < 6 if A > 0 by using the Nehari manifold method.
Recently, Huang et al. [11] studied Schrodinger-Poisson system with indefinite nonlinearity,
namely
—Au+u+ K(x)pu = \f(z)u+ g(x)|uP?u  in R3, L3
—A¢ = K(z)u? in R3, (1.3)

where 4 < p < 6, K and [ are nonnegative functions, K € L2(R3), f € L2(R®), g € C(R?) which
changes sign in R3,

lim g(7) = goo <0 and K =0 a.e. in the set {x € R*: g(x) = 0}. (1.4)

|z|—00

In which they proved the existence of two positive solutions in A > A\;(f) and near A;(f), where A;(f)
is the first eigenvalue of —Au+wu = \f(x)u in H'(R?), whose corresponding eigenfunction is denoted
by ¢;. Besides the condition about ¢ in (1.4) is different from [9,10], it is worth noting that they
do not need the sign condition ng g(x)@idr < 0, which has been shown to be a necessary condition
to the existence of positive solutions for semilinear elliptic equations with indefinite nonlinearity,
see [21-23]. Later, Chen [12] studied the case of K € L*(R?) (more precisely, K(x) = 1) for system
(1.3). Since the condition about K in (1.4) is not established now, the author assume the additional
condition
H{r € R®: g(x) =0} =0 (1.5)
to ensure that the existence of two positive solutions can be obtained in A > A\;(f) and near A\;(f).
Very recently, Shen and Han [16] studied system (1.3) with p = 4, f and K being nonnegative
functions, K € L2(R?) U L®(R3), f € L2(R?), g € C(R?) to be sign-changing and limy, o, g(z) =
goo < 0. The authors do not need the condition about K in (1.4) that K = 0 a.e. in {z € R?: g(z) =
0}, and assume the following condition:

/ o(2) (z)dx — — K@ KW @)W) 40 o (1.6)
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For which the existence of two positive solutions in A > A;(f) and near A\(f) was proved via the
Nehari manifold method.
In recent year, many papers study Schrodinger-Poisson system with steep potential well, namely

{ ~Aut V(o) + K(@)ou=hir,u) i B (1.7)

—A¢ = K(z)u? in R3,
where p > 0 is a parameter and the potential V' satisfies the following conditions:

(V1) V is a non-negative continuous function in R3.

(V2) There exists ¢y > 0 such that the set {V < ¢o} := {x € R* : V() < ¢} is nonempty and has
finite positive measure.

(V3) Q =int{x € R : V() = 0} is nonempty bounded domain and has a smooth boundary with
Q={zeR®:V(z) =0}

The conditions (V1)-(V3) were first introduced by Bartsch and Wang [24] in the study of nonlin-
ear Schrodinger equations. Here uV represents a potential well whose depth is controlled by the
parameter u, and it is called a steep potential well if y large. Later, steep potential well was first
applied into Schrodinger-Poisson system in [25], and then has been widely applied to the study of
Schrodinger-Poisson system. We refer the reader to [25-32] and the references therein.

In the paper [26], Zhao et al. studied system (1.7) with K € L*(R?®) U L>*(R3), K > 0 and
h(z,u) = |u|P~?u. In which the existence of nontrivial solution and concentration results are obtained
via variational methods when 3 < p < 6. In particular, the potential V' is allowed to be sign-changing
for the case 4 < p < 6. Later, Du et al. [27] considered system (1.7) with K € L*(R*)UL>®(R3),K >0
and h(x,u) = g(z)F(u), where g is a positive bounded function and F' is either asymptotically linear
or asymptotically 3-linear at infinity. The existence and asymptotic behavior of solutions are proved
via variational methods. As far as I know, system (1.7) with indefinite nonlinearity has not been
studied.

Motivated by the above works [11,12, 16,26, 27], we consider Schrodinger-Poisson system in the
following form:

{ —Au+ pV(z)u+ K(x)pu = Af(x)u + g(z)|ulP?u  in R3, (SP)

—A¢ = K(x)u? in R3,

where 4 < p < 6, the parameters pu, A > 0, and the potential V' satisfies conditions (V1)-(V3). The
aim of this paper is to answer the following questions:

(I) Does system (SP,) with 4 < p < 6 still admit multiple positive solutions without the
conditions (1.4) and (1.5)7

(II) Can we consider system (SP, ) with the weight functions f and g to be sign-changing?
(ITT) Can we deal with the case where K € L*(R?) U L>°(R?) as in [16,26,27]?

In order to give the definite answer to questions (I)-(III), we assume that the functions K, f and g
satisfy the following conditions:
(F) fe L:(R¥) N L(R3) and |[{z € Q: f(x) > 0}] > 0;
(G) g € L*°(R?) which changes sign in Q;
(K1) K € L*(R?*) U L®(R?), K > 0 and K % 0 in ;
(K2) K > 0 a.e. in the set {x € Q: g(x) = 0}.



Remark 1.1. If f is bounded in Q and |{x € Q : f(x) > 0} > 0, then there erists a sequence of
eigenvalues {\,(fq)} of the problem
— Au= Ag(z)u, ue Hy(S), (1.8)

with 0 < A (fg) <_)\2(f§) < .- and each eigenvalue being of finite multiplicity, where fq is a
restriction of f on ). Denote by ey the positive principal eigenfunction with

M(fq) = /Q |Vei|*dr = inf {/Q |Vul?dr :u € Hg(Q),/QfQuzdx = 1} )

Moreover, we have

Xo(fq) = inf {/ |Vul?dz : u € H&(Q),/ fouldr = 1,/ VuVeydr = 0} .
Q Q Q

In the present paper, we shall prove the existence and multiplicity of positive solutions for system
(SP, ) via the mountain pass theory. In order to show the mountain pass geometry of the related
functional, we follow the argument in [23] to decompose each u € X (defined later) as u = te; , + w,
where w € {span{e; ,}}* and e; , is the positive principal eigenfunction corresponding to the positive
principal eigenvalue A; ,(f) of the problem

—Au+ pV(x)u = Mf(x)u.
Then by the approximation estimate

Mpu(f) = AL (fa) as p — oo,

we can deduce the mountain pass geometry of the related functional in A > A\;(fq) and near A\ (fg).
Moreover, we apply the concentration compactness principle [33] and a variant version of the steep
well method [24] to overcome the difficulty that the lack of compactness. Furthermore, we also
consider the concentration of solutions.

We state the main results.

Theorem 1.2. Suppose that 4 < p < 6 and conditions (V1)-(V3), (F), (G), (K1) and (K2) hold.
In addition, for p =4, we assume the following:

(K3) K =0 a.e. in the set {x € Q: g(x) > 0};
01) NV <alt < 52 [ f

Then we have the following results.

(i) For every 0 < XA < A\ (fg), system (SP,\) has a positive solution for p > 0 large enough.

(11) There exists 6o > 0 such that for every M\ (fg) < A < Mi(fg)+6o, system (SP, ) has two positive
solutions for > 0 large enough.

K(y)ei(x)ei

) dydzx.
|z —y]

Theorem 1.3. Let (u,, ¢,,) be the solutions obtained in Theorem 1.2. Then we have u, — U i
X as p — 0o, where uy, € Hi () is a positive solution of equation:

—Au+ K(x) ( g %dy) u=\(x)u+ g@)|ufu in Q,

u=20 on Of).

The outline of the paper is as follows. In next section, we introduce the variational setting and
some basic estimates. In section 3, we consider the eigenvalue problem —Au + pV(z)u = Af(x)u.
In section 4, we prove the corresponding energy functional having the mountain pass geometry and
satisfying the Palais-Smale condition. In section 5, we prove Theorem 1.2. In last section, we give
the proof of Theorem 1.3.

(Soo,A)



2 Notations and variational setting

We denote the L¢(R3)-norm for 1 < g < oo by || - ||ze. As we take a subsequence for a sequence
{u,}, we shall still use {u,} to denote it. We use o(1) to denote a quantity that depends on n € N
and goes to zero as n — oco. Let S be the best Sobolev constant for the embedding of D'?(R3) in
L%(R?), where D**(R?) is the completion of C§°(R?) with respect to the norm ||ul|%,, = ||[Vul/2..

Next, we consider the variational setting for system (SP, ). It is well known that for any
K € L*(R?) U L*(R3) and u € H'(R?), the Lax-Milgram theorem implies that there exists a unique
¢u € DY(R3) such that

V¢, Vudr = | K(x)u*vdr for all v € DVY(R?). (2.1)

R3 R3

That is, ¢, is the weak solution of —A¢ = K (z)u?. Moreover, ¢, can be represented by

oue) = 4 [ Wy 22)

Therefore, we can transform system (SP, ) into a nonlinear Schrédinger equation with a non-local

term as follows:
—Au+ pV(r)u + K(x)pu = Mf(z)u + g(x)|ulPu (Sun)

with ¢, as in (2.2). Next, we set the space

X = {u € H'Y(R?) / Vuldr < oo}
R3
with the following inner product and norm

()= [ (VaVot wVao)ds, [ul, = (u,0)}?
RS

©o
for > 0. By condition (V'2), the Hélder and Sobolev inequalities, we deduce that

1 V< 5
/ uldr = / u?dx —I—/ widr < — pVuldr + MHUHQDLQ,
R3 {(V>co) (V<eo} HCo JRrs3 S

which implies that the embedding X — H'(R?) is continuous. Furthermore, for 2 < r < 6 and
-1
> po =52 <co|{V < co}|§> , we have

6-r r—2
lul"dz < (/ qux) (/ u6d1’)
R3 R3 R3
6—r r—2

1 1V < o}l T (el
< vV 2d 21 DL
< (MCO [ nvids + 2 N

<HV <o}l & S fullj. (2:3)

Now, for Eq. (S,,1), we set the energy functional J, » : X — R which is defined by
1, ., 1 . A , 1
Juatw) = gl + 5 [ Ko =3 [ pde— [ gluras

5



The functional J, , is a C' functional with the derivative given by

Uinu)e) = |

R3

VuVe + pVup)dr + Ko updr — A fupdr — ulP2updx
(VuVe + uVuyp) P @ g @
R3 R3 R3

for all € X, where J/ , denotes the Fréchet derivative of J, x. One can see that the critical points
of J,  are corresponding to the solutions of Eq. (S,,x). Therefore, we conclude that u is a critical
point of J, » if and only if (u, ¢,) solves system (SP, ).

Let us define the operator ® : H'(R3) — D'?(R?®) and the functional N : H'(R3) — R by
®(u) := ¢, and

(2) K (y)u®(2)u’(y)
|z —y|

1 K
N(u) = [ Kou*de = —/ dydx (2.4)
R3 4 R3 JR3

respectively. By (2.1) and (2.3), we have the following estimates for p > pio:

STIK | Lellullzs < SO KIIZallully, if K € L*(R?),

2 —
oullona = Nw) < { SPKIEllullt < STV < b1 e, it K € 25(RS). (2D)

Next, we state some useful properties.

Proposition 2.1 ( [9], Lemma 2.1). (i) ® is continuous and ®(tu) = t>*®(u) for allt € R.
(1i) ® maps bounded sets into bounded sets.

Proposition 2.2. Assume that the sequence {u,} C H'(R3) is bounded. Then there exist a subse-
quence {u,} (still denote by {u,}) and u € H*(R®) such that

(i) for K € L*(R?), we have N(u,) = N(u) + o(1) and N'(u,) = N'(u) + o(1) in H(R?);

(ii) for K € L>*(R?), we have N(u, —u) = N(u,) — N(u) + o(1) and N'(u,) = N'(u) + o(1) in
HY(R3).

Proposition 2.3 ( [34], Lemma 2.13). If f € L2(R3), the functional u — Jas fuPdx is weakly
continuous on H'(R?).

Remark 2.4. According to the fact that the embedding X — H'(R3) is continuous, the above all
properties are still valid as the space H'(R?) replaced by X .

We omit the proofs of Propositions 2.1-2.3 and the readers are referred to [9, 20,26, 34].

3 Eigenvalue problems
In this section, we study the following eigenvalue problem
— Au+ pV(z)u = Af(x)u in X. (3.1)

In order to find the positive principal eigenvalue of (3.1) we solve the following minimization problem:
min {/ (|Vul* + pVu)dr -u € X, | fuldr = 1} : (3.2)
R3 R3
Let
A1u(f) :=inf {/ (|Vul> + pVu?)de - u € X, | fuldr = 1} :
R3

R3
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By condition (F), we deduce that

Jos (IVul® + pVu?)da

[ullDs» 5

fR3 fuldx

which implies that Ay ,(f) > S2HfH;§

= >0
TS s STl D s T
L L

> 0 for all g > 0. Moreover, by condition (V3),

Jgs IVul? + pVulde

Jes IVul® + pVulde -
ng fuldx ng fuldx

which indicates that A; ,(f) < A (fqg) for all 1 > 0, where \;(fg) is the positive principal eigenvalue
of (1.8). Next, we state the useful lemma to solve problem (3.2).

e fQ \Vu|*dx

inf — )
weHEQ\0} [ fauidz

ueX\{0}

< inf
u€Hg ()\{0}

Lemma 3.1 ( [35], Lemma 2.4). Let p1,, — 00 as n — oo and {v,} C X with ||v,]],, < Co for some
Co > 0. Then there exists a subsequence {v,} and vo € H} () such that v, — vg in X and v, — vy
in L"(R3) for all 2 < r < 6. Furthermore, we have N(v,) — N(vg) as n — oo.

Lemma 3.2. For each jt > 0, problem (3.2) has a positive solution e, € X such that

Ma(f) = /R (Ver P Vel

Furthermore, we have

(1) A1u(f) is simple and principal eigenvalue of Eq. (3.1) and ey, is a corresponding eigenfunction.
(i1) Mpu(f) < M(fa), Mu(f) = AN (fq) and e, — e in X as p — oo, where ey is the
positive principal eigenfunction corresponding to \(fg).

Proof. Some results has been proved in [35]. For the reader’s convenience, we give the proof in detail
here. Let {u,} C X be a minimizing sequence of problem (3.2). Clearly, {u,} is bounded and thus
there exist a subsequence {u,} and e, , € X such that

u, = ey, in X; (3.3)
u, — ey, in Lj (R*) for 2<r <6. (3.4)
Then by Proposition 2.3 and (3.3), we have
/ fe? ,dr = lim fuidr = 1. (3.5)
R3 ’ n—oo R3

We next show that u, — e;, in X. If it is false, then we have

2 2 : : 2 _
Vel Vet e <t a2 = A1),

which is impossible accroding to the definition of A; ,(f) and (3.5). Hence w, — e, in X and
Au(f) = llewull?. Since |ey,| € X and |[[er |2 = [lex ]2 = Miu(f), we may assume that ey, > 0.
Let

F(t) - Helyﬂ—i_tngi
S flery +tp)?da

for any ¢ € C5°(R?). Then we have F’'(0) = 0 since F' has a minimizer at ¢ = 0. By F'(0) = 0, we
deduce that

[ (Ve Vot weripde = nu) [ ferypds,
R R
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which indicates that ey, is an eigenfunction of (3.1) corresponding to the eigenvalue Ay ,(f). Ac-
cording to the strong maximum principle, we may assume that e; , > 0.

Here we show that A ,(f) is simple. By Sobolev embedding and conditions (V1) and (F), we
conclude that any corresponding eigenfunctions belong to W/IQO’C‘J(R?’) NCoe(R3) for 2 < g < 6. Suppose
that Ay ,(f) is not simple. Then there exist an eigenfunction v € X and d > 0 such that v = v—de; ,
both takes positive and negative values. Thus, there exists zo € R? such that u(zy) = 0 since

v, €1, € Croe(R?). Moreover, we may obtain
—Alul + pViul = A1, (f) flul.

By the strong maximum principle, we have |u| > 0, which contradicts u(x¢) = 0. Hence Ay ,(f) is
simple.

Next, we show that A1 ,(f) < Ai(fq). Arguing by contradiction, we assume that A ,(f) = A\ (fg)-
Then one can obtain e; is also an eigenfunction of (3.1), which is a contradiction due to Harnack
inequality. Thus, we conclude that A; ,(f) < A (fq)-

For any sequence 1, — 00, let v,, = e, be the minimizer of A; ,, (f), then we have

[ pldr=1 and A ()= o, < M)

By Lemma 3.1, there exist a subsequence {v,} and vy € H}(Q) such that v, — vy in X and v, — vy
in L"(R?) for 2 < r < 6. Then by Proposition 2.3, we have

/ fvidr = lim fvidr = 1.
Q

n—oo R3

Moreover,
/ |Vvo|?dr = / |Vuol? + Vugdr < lim inf anHin < M (fq)
Q R3 n—oo

By Remark 1.1, we conclude that vy = e; and v, — ey in X. It is easy to deduce that Ay ,, (f) <
A1, (f) for pg < po, and thus we can conclude that ey, — e; in X. This completes the proof. O

In order to find the other positive eigenvalues of (3.1) we solve the following problem
min {/ Vul> + pVulde :u e X, | fu*de =1,(u,e; ), =0 forall 1<i<n-— 1} . (3.6)
R3 R3

Lemma 3.3. For each p > 0 and n > 2, problem (3.6) has a solution e, , € X. Furthermore, e,
is an eigenfunction of (3.1) corresponding to the eigenvalue X, ,(f) = |lenu|l” and

M(fq) + Aa(fa)
2

Proof. The existence of e, , is proved as in Lemma 3.2. However, we cannot assume that e, , > 0
because of the condition (e, ,,€;,), = 0. Let v € X satisfying (v,e;,), =0forall1 <i<mn—1and

Ao (f) > for all y large enough.

P = et
Jas f(eny + tv)?da
Then F’(0) = 0 implies that
/RS(VB,WVU + pVenv)dr = A, (f) /R3 fen vdr. (3.7)

8



Let ¢ € C°(R?) and w = ¢ — nfll ci€iyu, Where ¢; = % Then (w,e;,), = 0 for all
i€ )
1 <i<n—1, and thus by (3.7),

/R3 Ve, Vo+uVe, pdr = /

Ve, Nw+puVe, wdr = )\n,,u,(f)/ fenywdr = )\,W(f)/ fen upde.
R3 R3 R3

This indicates that e, , is an eigenfunction of (3.1) corresponding to the eigenvalue A, ,(f).
We now show that A, (f) > 3 (M (fg) + A2(fq)) for all p large enough. Suppose on the contrary.
Then there exists a sequence {u,} with p, — oo such that

M(fa) + Xa(fa)
5 .

Let v, = ey, be the minimizer of Xy, (f), then [o, fvide =1, (v, e1p,)u, =0 and

Aoy (f) = HU”HZn < A (fa) ;‘ /\2(f§>'

By Lemma 3.1, there exist a subsequence {v,} and vy € H}(Q) such that v, — vy in X and v, — vy
in L"(R3) for 2 < r < 6. Then by Proposition 2.3, we have

>‘2,un (f) <

(3.8)

nh_)n;@ foide = / fuadr = 1. (3.9)
Moreover,
/ |Vuvol2dz = / [Vo|* + Vugdz < hm 1nf [onl]?, < M(fa) ;— /\2(]05).

According to the fact in Lemma 3.2 that e; , — e; in X as p — oo, we deduce that
le1 . —etlly, =+ 0 as n— oo. (3.10)

It follows from (3.8), (3.10) and v,, — vy in X that

lim (v, €1, )y = / VueVedx = 0. (3.11)
0

n—00

From (3.9), (3.11) and Remark 1.1, we conclude that [, [Vvo|*dz > As(fg) which is a contradiction.
This completes the proof. O

4 Palais-Smale sequence
In this section, we study the mountain pass geometry and the compactness condition for the
functional J,, ». Let us recall the well known mountain pass theorem.

Theorem 4.1 ( [36], Mountain pass theorem). Let E be a Banach space, J € C'(E,R),v € E and
p >0 be such that ||v|| > p and

b= inf J(u) > J(0) > J(v).

llull=p

If J satisfies the Palais-Smale condition at level o with
a = inf max J(y(t)) and T :={ye€ C([0,1],E):~v(0) =0,7(1) = v},

y€er te0,1]

then « is a critical value of J and o > b.



Definition 4.2. (i) A sequence {u,} C X is called a Palais-Smale sequence at level « € R ((PS)q-
sequence for short) for the functional J, x if Jua(un) = o and J;, y(u,) — 0.

(i) We say that the functional J, 5 satisfies the Palais-Smale condition at level o ((PS),-condition)
if every (PS),-sequence has a convergent subsequence.

Next, we show that the functional J, y has the mountain pass geometry in A > A\ (fg) and near
A (fq) for g > 0 large enough. To prove the mountain pass geometry of the functional J, 5, we
decompose each u € X as u = tey , + w, where t € R, w € X and (w, ey,), = 0. Then

lully = lev,ullat® + llwlly = A ()2 + llwlly. (4.1)

Moreover, by Lemmas 3.2 and 3.3, we have

/\Lu(f)/ fer wdr = / Ve, ,Vw + Ve ywdr =0 (4.2)
R3 RN

and

vl ) [ Futde < (4.3
R3
Thus, by (4.1) — (4.3), we deduce that

1
- <HuHi — )\/ fu%i:c)
2 s

= % (Al,u(f)tz + H’w“i - )\/]R3 (theiu +2tfeq w + fw2)dx>
1 A 1 \
2 5 (1= 3 e+ (1 5 el

=5 (=3 1+ 5 G~ ) 1t 4

Lemma 4.3. Suppose that 4 < p < 6 and conditions (V1)-(V3), (F), (G) and (K1) hold. In addition,
for p =4, assume (K3) and (D1). Then there exists g > 0 such that for every 0 < X\ < Ai(fg) + do,
there exist px,nx > 0 and o € HY () such that ||¢ol|, > px and

inf J,x(u) > na > 0> Jua(eo)

llulln=pax
for u > 0 large enough.

Proof. We first show that there exists dyp > 0 such that for every 0 < A < A\ (fg) + do, there exist
Px,Mx > 0 such that
inf Ju,,\(u) > > 0

llull p=px

as p > 0 large enough. We separate this part into two cases.
Case (1): 0 < A < A\i(fg). By Lemma 3.2(éi), we have

A+ M(fq)

5 for u > 0 large enough. (4.5)

/\1,;L(f) Z
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By (2.3), (4.4), (4.5) and condition (G), we deduce that for u > 0 large enough,

L lolli= IV < e}l
> — 2 P
a2 5 (1= 5207 ) Ml + ) = M=l ol 2y

(1 (M) =X ol < el
Zﬂﬂb(g(Adﬂﬁ ) - Aol >,

where N(u) is as in (2.4). Let

Pr = 1 (Al(fﬂ)_A) pS” ﬁ
AN A gl {V <} )

Then for ¢ > 0 large enough and ||ul|, = px, we have

1 A(fg) — A
JM,A(“)ZZ<%)P§:W>O-

Case (2): A > A\ (fg). Using (2.3) and (4.4), for © > 0 large enough, we have
Nfter) | N(w) = Nlter,) _ gllz={V < o}l

2 2
Tua) = Al + Asylpul + 5 . e AL
where u = te; , +w with t € R and w € {v € X : (v,e1,), =0},
1 A A 1 1
AN,y==1(1- and Ay, = — — .
b 2 < Al,u(f)) a 2 (Al,u(f) AQ,u(f))
By Lemma 3.3, we may deduce that for ;1 > 0 large enough and A > A\ (fq),
1 )\l(fQ)) Ao(fa) — Mi(fq)

Aoy >—(1-— > =: Ao. 4.7
w23 (= 500) 2 Th ey~ 0

By Proposition 2.1(¢) and Lemma 3.2(i7), we deduce that N(e; ) — N(e;1) as u — oo, which imples
that

1
N(e1,) > §N(el) for ;1 > 0 large enough. (4.8)

Moreover, by condition (K1), we have N(e;) > 0. By the mean value theorem, there exists 6 with
0 < 6 < 1 such that

1
7 IN(ter, +w) = N(ter)| = | | Kuervou(tery + Owjwdz| . (4.9)

R3
When K € L*(R3), by (2.5), Holder, Sobolev and Young’s inequalities, we deduce that

Kgbtelyu—&-ﬁw (tel,u + Qw)wdx

R3
< STUE 2l bres jrowll prlIter + Owll o Jw]l o
< STONKLellter  + Owllylwll,,

3
= SR (Bllexully + 0llwlly)* lwll,
< V25K P lerullpllw ]l + V25 K22 lw]l,

N(e) o 12 K|72M (fa)°

16 SN (er)? lwlly + V28 K172 oo (4.10)

11



Analogously, for K € L>(R?), by (2.3), (2.5) and Young’s inequality, we have

K¢ye, ,+ou(ter, + 0w)wdx
RZ)’

< Kz | Pter vowllzollter n + Owll sz 1wl 2
< V25V < o}l 1K Tl tP llensllfllwll, + V2SS {V < co} 1K 17 ol
N(er) a , 12°[{V < eo}* | K [[F M (f)°

4 256 K2 lJwl|*. 4.11
T TN () [wl[ + V2SSV < o} | K2l (4.12)
Subsequently, combining (4.6) — (4.11), for u > 0 large enough, we have
Ju,/\(u)
N(e1) 4 , Nlter, +w)— Nter,) |gll=[{V < co}|’s"
>~ [Avulllull; + Aollwll} + =t + " L G Jull?
N(e)) lgllz={V < co}|F"
L B e B e e L
N(er) 2 lgllz={V < co}| 5"
_ 2 2 2 2 4
- = |A1,u|||u||u+A0||w||u+ 16/\17M(f)2 (HUH;L_ ||wl|p) _CKHwH,LL_ pSp ||U||Z
N(er) [ lull® lgllzo=[{V < co}] 5"
2 2 12 4 4
Z‘““AWW+ANWW+1MAEV( 5 llwll ) = Crcllwlly — " ull?
Ne)  gll=l{V < co}|T, o
— A 2 4 i p—4
| Lumunu+—numL(32Aﬂfhy " ull?
N(el) 2
+lwl? (Ag— [ —————= +C , 4.12
o (80~ (i + O ) (1.12)
where
12| K 3.0 (fq)® V2| K2
for K € L?(R?
- 4
122 {V < o}l [ K [lf M (f2)° |, VIV < co}l 1K for K € L(R%)
S24N (e1)3 S6 ) )
Let
% 1 1
: N (e1)pSP . A ( N(e1) C >_ ? for 4 6
, min { (64/\1(]09)2“ng{‘/<00}|67)£) ) ( 0\ 161 (f5)2 + Ck , Ior 4 <p<o,
)\ pr—

1
-1\ 2
<A0 (% + CK> ) , for p = 4.

Then for ||ul|,, = p», we have

(4.13)

lgllz={V < e}l 5" s o Nlew) N(er) )
< - d Ny—|——F—+C > 0. 4.14
pSP lulli™ = N N S TON S E G ) el = (4.14)
Note that under condition (D1), the first inequality in (4.14) holds for p = 4. Let
N(el)
5 — 4.15
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and
5 = N(€1)>\1,u(f) 2
: 64)\1(f§)2 P

By Lemma 3.2(i7), we deduce that for ;1 > 0 large enough,

M(fa) + 00 < Au(f) + 280 < A pu(f) + 0p

This implies that for every Ai(fg) < A < Ai(fg) + do and p > 0 large enough,

1 A L Auu(f) + 6, __ N(en) 2
=3 (mm ) s (50 Y m ot 0

It follows from (4.12), (4.14) and (4.16) that for every Ai(fg) < A < M(fq) + do, ||ull, = px and
w > 0 large enough,
N(e1) 4

J, > —————py = > 0.
Consequently, for every 0 < A < Ai(fg) + do, we have inf),,—,, Jua(u) > 7y > 0 as p > 0 large
enough.

Next, we show that there exists po € Hj () such that ||¢oll, > px and J,x(¢o) < 0. We divide
the part into two cases:
Case (I): 4 < p < 6. By condition (G), we may choose a function ¢ € H}(9) such that [y, gle|Pdz >
0. Let s > 0, then

_ H@Hi — A Js f‘PzdeQ n N(p) o Jio 9‘90|pdx$p'

JM,A(SSO) 5 A D

This implies that there exists so > 0 such that ||sop||, > px and J, \(s0p) < 0.
Case (II): p = 4. By conditions (G) and (K3), we can choose a function ¢ € HJ(f2) such that
Jgs 9¢*dz > 0 and N(p) = 0. Let s > 0, then

_olli = A Jos Pz, Jp gotde

JM,A(SSO) 5 1

Thus, there exists so > 0 such that ||sop||, > px and J, A(s0p) < 0. We complete the proof. O

Next, we study the (PS)g, (,)-condition for the functional J, x, where 8, () is a real value function
defined in > 0 and Sy(p) > 0 for all A, x> 0. Then we have the following results.

Lemma 4.4. Suppose that 4 < p < 6 and conditions (V1)-(V3), (F), (G), (K1) and (K2) hold. In
addition, for p =4, assume (K3). If there exists dy > 0 such that

0< 5)\(/L) < d,

for all 1 > 0 large enough, then there exists Dy > 0 such that the (PS)ga,(u)-sequence {un} for Jyx
satisfies ||un ||, < Do for all > 0 large enough.

Proof. Suppose on the contrary. Then there exist two sequences {u,},{D,} C R* with u, —
00, D, — 00 as n — oo such that for every n € N, there exists a (PS)g, (u.)-sequence {ty m fmen
with ||tupml|p, > Dy for all m € N,

1 , A , 1 1
Npml? = 2 dx — - wonlPdz + = N (tnm) — B (in 4.17
2||U7 ||Hn 2 /]]&3 fu'mm L p/RSg|u7 | l’+4 (U7 ) BA(N’ ) ( )
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and

/3(Vumngo%—,unVun,mgo—/\fun,mgp)dzzc—/3 9t P U mipd + i Koy, ,unmpdr — 0 (4.18)
R R R

as m — Q.

Let w, = Uy, then ||wy,||,, — oo as n — oco. Let v, = , then ||v,||,, = 1. By Lemma

Hw Tl
3.1, there exist a subsequence {v,} and vy € HJ(f2) such that v, — vy in X, v, — vy in L"(R3) for
2 <r <6, and lim,, o N(v,) = N(vg). Then by conditions (F) and (G), we have

lim fvidm:/fvgdx and lim g|vn]pd:v:/g]vo|pdx.
R3 Q R3 Q

n—o0 n—oo

Dividing (4.17) by [Jw,||?  and the boundedness of fx(n), We obtain

1 )\ 2 1 —2 1 2
5-514;1wndx——5numnzn ]gggwnvdx%-zuu%n N () = 0. (4.19)

Dividing (4.18) by ||wy]|,,, we have

/3(Vuan0 + 11V — Afupp)da — [Jw, || /3 glonP2oneda + ||wa12, /3 Ko, vppdx — 0.
R R R

If the assumption that vy = 0 a.e. in 2 holds, then we have (4.20)
tim [ oz = [ pigaz o @)

Choosing ¢ = v, in (4.20), we obtain
1_A4Jﬁm—W%M?AQM#M+W%MW@0%O (4.22)

For 4 < p < 6, combining (4.19), (4.21) and (4.22), we deduce that

. - p
lim wnp2/ Uy [Pde = —— < 0
tim ;[ glonds = 2
However, by (4.21), (4.22) implies that lim, o [|wa 5% [ps glvn|Pdz > 0, which is a contradiction.
Similarly, we also have a contradiction for p =4 by (4.19), (4.21) and (4.22).
Now, we prove the assumption that vy = 0 a.e. in Q. For 4 < p < 6, dividing (4.20) by [wy[/%?,
we obtain

lim glvn P2 pda = / glvoP2vepdx = 0. (4.23)
R3 0

n—o0

Clearly, voX ze:g(z)>0p € L"(2) for 2 < < 6. Then there exists a sequence {p,} C C5°(£2) such
that ¢, — VoX{zenig(x)>0) in L7(£2) for 2 < r < 6. Therefore, choosing ¢ = ¢, in (4.23) and taking
n — 00, we have
0= tim | glol unpnds = [ gluo|Pde,
n=oo Jq {zeQ:g(z)>0}

which implies that vg = 0 a.e. in {z € Q: g(x) > 0}. In a same way, we obtain that vy = 0 a.e. in
{z € Q: g(x) < 0}. For the remaining part, by combining (4.19) and (4.22), we have

0= lim Ko, vide —/ K¢y, vadz
R3 {z€Q:g(2)=0}

n—o0
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By condition (K2), we obtain that vg = 0 a.e. in {z € Q: g(z) = 0}.
For p = 4, dividing (4.20) by [Jw,||?, , we obtain

lim (/ gl odr — Kgbvnvngodx) :/gvggod:z: - / K¢, vopdx = 0. (4.24)
R3 RS Q Q

n—oo

In a same way as the argument of the case 4 < p < 6 and by condition (K3), we have

0= / gugdx — / Koy, vide = / gugd,
{zeg(2)>0} {z€Q:g(2)>0} {z€Q:g(2)>0}

which implies that vy = 0 a.e. in {z € Q: g(x) > 0}. Similarly, we have

/ guadr = / K¢y, vadx
{zeQ:g(z)<0} {z€Q:9(z)<0}

and

/ K¢y vidr = 0.
{zeQ:g(z)=0}

By condition (K2), we obtain that vg = 0 a.e. in {z € Q: g(x) < 0}. This completes the proof. [J

Lemma 4.5. Suppose that 2 < p < 6 and conditions (V1)-(V2), (F), (G) and (K1) hold. Let {u,}
be a (PS)s-sequence for J, . If there exists Dy > 0 such that

[[tnlu < Do (4.25)
for all p > 0 large enough, then the sequence {u,} has a convergent subsequence.

Proof. By (4.25), there exist a subsequence {u,} and uy € X such that u, — ug in X and u,, — ug
in L7 (R3) for 2 < r < 6. It follows from Proposition 2.3 and X — H'(R?) that

n—oo

lim fuide = [ fuide. (4.26)
R3 R3

Next, we show that u, — uy in X. Let v, = u, — uy. By (4.25), we deduce that for p > 0 large
enough,
lvnllf < Ml + ol < Di. (4.27)

From Brézis-Lieb lemma [37] and Proposition 2.2, we have
lonllye = Nl = lluoll; + o(1),

N(vn) = N(un) = N(uo) + o(1)

/g|vn|pd:c:/ g]un]pda:—/ gluolPdz + o(1).
R3 R3 R3

and

Moreover, we have

1 1
/ vidr < — puVolde +/ vidr < — [ pVuidr +o(1). (4.28)
R3 HCo J{v>co} {V<eo} HCo JRr3
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By (2.3), (4.27) and (4.28), we deduce

[ sttt <ot [ prar) ™ ([ \vn|pdx)
R3

— -6 >
< Nglle= (KV < a5 57oul) ™ (Il ol

Y 2
< 82 g-p s 0 1 2 = —1 o\
<ol (0 < e 87DF) 7 { (- [ pvedde+o(1) ) (57 unllona)

Hco

61 2 e p=6 6-p L6-3
< ligle (V< eodl5"$7DF) " (o) T loall* 5°

p—6
< DQMWHURH,LQL_’—O(l)v (429)
(6—=p)(p—2) p)(p 2) 1—p+8 p—2 2;6
where Dy = ||g|z<|{V < co}| STTPTE DL )
Since J}, 5 (un) — 0, we have
o(1) = Vu,Vo+ pVu,pde — X funpdr — / glun P 2unpdr + / Koy, unpdz,  (4.30)
R3 R3 R3 R3

which implies that

VugV + pVugpdr — A /fuogod:v—/ gluo|”™ 2u090d:v+/ K¢y uppde. (4.31)

R3

Choosing ¢ = u,, in (4.30) and ¢ = ug in (4.31), we obtain

o(1) = [l — A / fulds — / glunlPdz + N () (4.32)
R R

and

0= ||u0||i - )\/ fuddw — / gluo|Pdx + N (uyp). (4.33)
R3 R3
By (4.26), (4.32) and (4.33), we have
o(1) = ||vn||i —/ glvn|Pdx + N(vy,). (4.34)
R3
It follows from (4.29), (4.34) and N(v,) > 0 that
2 2=6 2
o(1) = [lvally — Dape 2 |[onl[},

Therefore, we have o(1) >
have u,, = up in X,

Sllvnll% for 4 large enough, which implies that v, — 0 in X. Hence we

lim g|un|pdx—/ gluo|Pdx and lim N(u,) = N(ug),
R3 R3

n—oo n—oo

which implies that J, x(uo) = Sx(t). This completes the proof. O
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5 The proof of Theorems 1.2

In this section, we prove Theorem 1.2. The results will hold by the following two theorems.

Theorem 5.1. Under the assumptions of Theorems 1.2. There exists o > 0 such that for every
0 < X< A\(fq)+00, Eq. (Sun) has a positive solution u™ with J, x(u™) > 0 for u > 0 large enough.

Proof. By Lemma 4.3, there exists dy > 0 such that for every 0 < A < A (fg) + do, there exist
px, x> 0 and g € Hy(Q) such that ||¢oll, > pa and

inf Jya(u) >0 > 0> Jua(eo)

llull p=px

for all ;> 0 large enough. Let

ax(p) := inf max J, (y(t)) with T':={y e C([0,1],X) : v(0) = 0,~7(1) = ¢}

vel' te[0,1]
Since ¢y € H}(Q), there exists a constant dy > 0, independent of p, such that

0<m <axp) < max Jua(teo) < d, for all p1 > 0 large enough. (5.1)

In order to prove the positively of solutions, we follow from the argument in [21]. Since J, \(u) =

Jua(|u]), we may assume that for every n € N, there exists v, € I" with 7,(t) > 0 for all ¢t € [0, 1]
such that

1
< T ((t -
(i) < max ua(M(t)) < ax(p) + -

Denote J,, \(v,) = trél[gnl(] Jux(1m(t)). By Ekeland’s variational principle [38], we have a (PS)a, (-

sequence {u,} for J, \ satisfying

1
NG

1
ar(p) < Jua(un) < Jualvn) < ax(p) + = 1T ()l <

and
1

7
By (5.1) and Lemmas 4.4 and 4.5, there exist a subsequence {u,} and u™ € X such that u, — u™
in X as n — oo,

(5.2)

an - un”u <

Jua(ut) =ay(u) and J;L’)\(UJ“) =0.
By (5.2) and the fact that 7, (t) > 0 for all ¢ € [0, 1], we conclude that u* > 0 a.e. in R3. Tt follows

from J, (u*) > 0 and the strong maximum principle that ™ > 0 in R*. This proof is complete. [

Theorem 5.2. Under the assumptions of Theorems 1.2. There exists dg > 0 such that for every
M(fa) <A< Mi(fg)+00, Eq. (Sux) has a positive solution u™ with J, x(u™) < 0 for u large enough.

Proof. Let B,, :=={u € X : ||ul|, < p»} with p) as in Lemma 4.3. We consider the infimum of J,,
on B,, and set
ax(p) == inf J,a(u).

llull p<px
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By conditions (F) and (G), we deduce

111, lgllz={V < o} 17118 o Nglle={V < o}
() 2 — =l = S Oy > -t - MU SO
Moreover, for t > 0, we have
A= M(fg N el dx
Jua(ter) = — 21(f9>t2 + iel>t4 + Jos 9% .

This implies there exists ¢ > 0 such that ltoer]l,, < pa and J, A(toe1) < 0. Hence we conclude that
there exist two positive constants 7,,dy > 0 such that

—dy <ay(p) < —m, forall 4 > 0 large enough. (5.3)

Since Jy, x(u) = J,A(|u]), we may assume that there exists v,, > 0 with [|v,||,, < px such that

1

ax(p) < Jua(va) <a(p) + .

Then by Ekeland’s variational principle [38], we have a (P.S)g,(u-sequence {u,} C B,, satisfying

1
NG

1
ax(p) < Ju,/\(un) < JuA(”ﬂ) < ax(p) + ' HJZL,)\(un)“u <
and

l|n — Un”u < (5.4)

1
NG
Note that p, is independent of p. Thus, by Lemma 4.5, there exist a subsequence {u, } and v~ € X
such that u, — v~ in X as n — oo, Jua(u™) = ax(p) < 0 and J, ,(u™) = 0. By (5.4) and the
fact that v, > 0, we conclude that v~ > 0 a.e. in R?. It follows from Jua(u™) < 0 and the strong
maximum principle that u~ > 0 in R3. This proof is complete. O

6 Concentration for Solutions

In this section, we follow the argument in [39] to study the asymptotic behavior of positive
solutions of system (SP, ). The results of Theorem 1.3 will hold by the following two theorems.

Theorem 6.1. Let u, be the solutions obtained in Theorem 5.1. Then there exists us € Hg(§2) such
that u, — ul in X as p — oo and it is a positive solution of Eq. (Ssx) with Joo\(ul) > 0, where

1 A 1 1
Joor (1) = 5/ |Vul*dr — 5 / fudr — - / glulPdz + 1 / Ko ud.
Q Q b Ja Q

Proof. For any sequence p, — 0o, let u, := w,, be the positive solutions of Eq. (S5,) obtained
in Theorem 5.1 for A\. From the proof of Theorem 5.1, there exists a constant Dy > 0 such that
llunlly, < Do for all n. Then by Lemma 3.1, there exist a subsequence {u,} and ul, € Hg(Q)
such that u, — uf, in X and u, — uf, in L"(R?) for 2 < r < 6. Since (J), ,(un), ) = 0 for any
v € C§°(R2), we have

/VunV<pdx—)\/fungpdx—/g|un|p_2un<pda:+/Kgbununcpdxz() (6.1)
Q Q Q Q
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which implies that

/Vu:ngodac - )\/ ful pdr — / glut [P 2ul pdx +/ K¢+ ulpdr = 0. (6.2)
Q Q Q Q

That is, uZ is a weak solution of Eq. (Se ).
Next, we show that u, — ul, in X. Since (J, \(un),un) = (J), y(un),ul) =0, we have

||un||in — A/ fuldr — / glun|Pdx + Koy, uidr =0 (6.3)
R3 R3 R3

and

/VunVu:odx—)\/funu;:dx—/g|un|p_2unu;dx+/Kgbununu;da::0. (6.4)
Q Q Q Q

By the fact that u, — ul in L"(R?) for 2 < r < 6, we have
lim (/ fuidx—/funu:odx) =0, lim (/ g|un|pdx—/g|un|p_2unu;dx> =0
n—0o0 R3 Q n—0o0 R3 Q

lim ( Koy, uldr — / Kqﬁununu;dx) =0.
R3 Q

and

n—oo

Thus,
. 2 — T + _ + 12 > I 2
Jim ol = Jim | VuoVuike = [ [V > i

which implies w, — wl in X, and thus we have J,, x(u,) = Joon(ud)). Moreover, by (5.1), we
can deduce that ny, < J,, x(u,) < d, for all n, which implies that ny, < J\(uk) < d\. Hence we
conclude that u}, > 0. This proof is complete. ]

Theorem 6.2. Let u,, be the solutions obtained in Theorem 5.2. Then there exists uy, € Hy(2) such
that u, — vy, in X as pp — oo and it is a positive solution of Eq. (Ssox) with Je(us,) < 0.

Proof. This proof is essential same as that of Theorem 6.1. Hence we omit it here. O]
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