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Abstract

In the present work, we evaluate the Laplace transforms and inverse Laplace transforms of
functions involving the generalized and reverse generalized Bessel matrix polynomials, which
yield a number of potentially useful (known or new) integral transforms as special cases. Fur-
thermore, pertinent relations of the different results given here with those involving simpler
and earlier ones are also considered.
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1 Introduction

Special classes of orthogonal polynomials satisfying linear differential equations of second
order have been exhaustively studied in recent years because of their importance in application to
physics, engineering and other fields (see, for example, [1-3]). The study of Bessel functions of
half-integral order led to the discovery of another interesting class of orthogonal polynomials, the
Bessel polynomials. Krall and Frink [4] in 1949 started a study on these polynomials which satisfy
second order differential equation and occur in the solution of the wave equation in spherical polar
coordinates. These polynomials, which seem to have been considered first by Bochner [5], are also
mentioned in Romanovsky [6] and Krall [7].

The generalized Bessel polynomials (GBPs) arise naturally in a number of seemingly diverse
contexts; e.g., in connection with the solution of the classical wave equation in network synthesis
and design [8], in the representation of the energy spectral functions for a family of isotropic
turbulence fields [9], and applications of a determinant expressions [10] and so on (see, for details,
[11]). Moreover, a large number of papers has been written on these polynomials (see, e.g., [10,
12-16, 18] and the references cited therein).
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On the other hand, various extensions of the classical orthogonal polynomials to matrix setting
investigated recently in (cf. [19]). The matrix generalization of the Bessel polynomials was intro-
duced first by Kishka et al. [20]. Recently, various works of the generalized and reverse generalized
Bessel matrix polynomials have been presented and discussed (see [21-25]).

Nowadays, the integral transforms have become an extensively used tool in solving certain
boundary value problems or certain integral equations . They are also useful in evaluating infinite
integrals involving special functions or in solving differential equations of mathematical physics
(see, [26-29]). The Laplace integral transform is the most popular and widely used, in several
branches of engineering, astronomy, applied statistics, probability distributions and applied math-
ematics, among these transforms (see, for instance, [30-37]).

Later on, a number of results on the generalization of Laplace Transform have been contributed
by Ortigueira and Machado [38], Jarad and Abdeljawad [39], Kim [40], Jena et al. [41], Ganie and
Jain [42], Maitama and Zhao [43] and Saifa et al. [44].

Recently, many works established several Laplace type integrals of special functions includ-
ing Gauss’s and Kummer’s functions [45], generalized hypergeometric functions [46,47], Aleph-
Functions [48] and Bessel functions [49].

Motivated by some of these aforementioned investigations of the Laplace integral transform
with such special functions, we aim here at systematically investigating the Laplace type transform
of the generalized Bessel matrix polynomials B2*?(z), z € C, for parameters (square) matrices P
and (. In particular, we obtain a number of useful Laplace and inverse Laplace type integrals of
functions involving generalized and reverse generalized Bessel matrix polynomials with powers of
the matrix, matrix exponentials, product of one or more generalized Bessel matrix polynomials,
generalized hypergeometric matrix functions and Bessel functions. We also discuss some interest-
ing and special cases of our main results.

2 Preliminaries

In this section, we give some basic definitions and lemmas which are used further in this article.

Here and in the following sections, C and N denote the sets of complex numbers and positive
integers, respectively, and Ny = NU{0}. We denote by M,.(C) the space of r x r complex matrices
endowed with classical norm defined by

[Pl
1P| = sup{=—=} = sup{[| Pz, [|=[| = 1}.
wz0 |||

This norm satisfies the inequality ||PQ|| < || P||||@Q||, where P and @ are in M,.(C).

Definition 2.1. For any matrix P in M, (C), the spectrum o (P) is the set of all eigenvalues of P
for which we denote

a(P) = max{Re(n) :n € o(P)} and [(P)= min{Re(n):nec o(P)}, (2.1)

where «(P) refers to the spectral abscissa of P and for which 3(P) = —a(—P). A matrix
P € M,(C) is said to be positive stable if and only if 5(P) > 0.
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Definition 2.2. [19,50]. Let P be a positive stable matrices in M,.(C) with P + k[ is invertible for
all integers k € Ny, the gamma matrix function I'(P) and the digamma matrix function ¢)(P) are
defined as follows, respectively

r(P) - / el WP = exp((P - D). 2.2)
0

Y(P) =T H(P)T'(P), (2.3)
where I'"!(P) and I"(P) are reciprocal and derivative of the gamma matrix function.
Definition 2.3. [19]. For all P in M, (C), we assume
P+ kI is invertible for all k € Ny, 2.4

and the Pochhammer symbol (the shifted factorial) is defined by

(P%:{z%P+nmguwn—DU:r40ﬂNP+nn, neN, 03)

I, n =20,
where [ is the identity matrix in M,.(C).

Definition 2.4. [21]. If P € M,(C), and w is any complex number, then the matrix exponential
el is defined to be

n

P
ePw:I—l—Pw+...+—'w”+....
n!

Definition 2.5. [19,51]. Let m and n be finite positive integers, the generalized hypergeometric
matrix function is defined by the matrix power series

oo m n k
nFa(Pi Qi) = > TP TTH@' 55 2.6)
k=0 i=1 j=1 ’

where P;, 1 <7 <mand@;, 1<j <narecommutative matrices in M,.(C) with

Qj + kI are invertible for all integers kK € Nyand 1 <7 < m.

Note that for m = 1, n = 0, we have the Binomial type matrix function | Fy,(P; —; z) [51] as
follows

P(P+1)2? p), 2"
(P02 (Pl
21 n!

VFo(P;—2)=(1—2) P =T+Pz+ + ..., |z <L

Also, note that for m = 2, n = 1, we get the Gauss hypergeometric matrix function o/} (cf.
[19,51]).



Definition 2.6. [19,20]. Let P and () be commuting matrices in M,.(C) such that () is an invertible
matrix. For any natural number n > 0, the n-th generalized Bessel matrix polynomial BJ*?(z) is
defined as

B =" ( )(P - DD QY
X 2.7)
(—nl), (P + (n = D)D) (= Q.

r=0

By means of the notation of the hypergeometric matrix series, the generalized Bessel matrix poly-
nomials are given by

BPR(2) = yFy(—nl, P+ (n—1)I;——2 Q") (2.8)

Therefore, the n-th reverse generalized Bessel matrix polynomial @%P’Q)(z) is defined in [19, 21]
as

0P () = "BER(z7Y) = (—1)"T'"" (=P — (2n — 2)I)['(—P + (n — 2)I)

X 1Fi(—nl;—P — (2n —2)1;Qz). (2.9)

Definition 2.7. Let g(u) be a function of u specified for v > 0. Then the Laplace transform of
g(u) denoted by G()) = .c{ g(u) } is defined by

g\ = E{g(u)} = /000 e Mg(u)du, Re()\) >0, (2.10)

—Au

provided that the improper integral exists, e~ is the kernel of the transformation and the function

G(A) call the image of the function g(u).
IfG(\) = E{ g(u) }, then the inverse Laplace transform of function g(u) is defined as

glu) = c-l{g(A)} - /OOO AUG(A)dN. 2.11)

See Schiff [30] for further details on Laplace transform and its inverse.
Now, we will present lemmas which are important in the sequel

Lemma 2.1. Let P be a positive stable and invertible matrix in M, (C) and Re()\) > 0. Then, we
have

c{up} — / e uyPdy = A\~ (P 4 1), 2.12)
0

E{up (u+ 1)—1} —T(P+ 1) T(—P,N), (2.13)
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where I'(— P, \) is incomplete gamma matrix function see [52].

E{g(u)epu} — G(\ — P). (2.14)

ﬁ‘l{)\‘P} = uP=D PL(p), (2.15)

Lemma 2.2. [53]. Let P be a matrix in M, (C) such that ||P|| < 1 and ||I|| = 1. Then (I + P)~!
exists, and we have

I+P)y'=I-P+P*—P*+ P —P°+ ...

3 Laplace type integrals of functions involving B3¢ (z)

In this section, we investigate several new interesting Laplace-type integrals of functions in-
volving generalized and reverse generalized Bessel matrix polynomials asserted in the following
theorems:

Theorem 3.1. Let B2%(2) be given in (2.8). For the function
g(z) = 2" B9(2),

we have

—nl,P+(n—-1)IA
G(A) = Lg(z) = X4 T(A) 3F —(Q) 3.1)

where A is positive stable matrix in M,(C) and Re(\) > 0.

Proof. From the expansion series of the 15’5’@(2) in (2.8) and relation (2.13) in Lemma 2.1, we
have

() =2{41 (e} = 3 CHIEE o D G i)

k!
k=0
k=0 ’
4 ~ (=nDp(P + (n = )i (A)e (=(AQ)""*
=\ T(A) ;; o .
Thus, we get the required result (3.1). [



Corollary 3.1. e For A =1, from (3.1) we have

I “al,P+ (n—1I1
GA\) =X\ 3F

;(AQ)I} :
o If Ais replaced by A+ (n+ 1)1 in (3.1) one gets

G(\) =A"AFODD DA 4 (n 4 1)1)
—nl,P+(n—1I,A+ (n+1)I
X 3kg ;_()\Q>71 )

where f(A+nl) > 0.

Theorem 3.2. Let A be positive stable matrix in M,(C) such that I — A satisfy the spectral
condition (2.4). If

g(z) = 2471 BT,
or

g(z) = 2400, (P,Q; 2),

then, we have

—nl, P+ (n—1)I

G(\) =\ T(A) .7y QM Re(M) > 0. (3.2)

I-A

Proof. Starting from the Definition 2.6 and applying the relation (2.13), it follows that

G(\) :ﬁ{ZA—] Bg,Q(Z—1>} _ zn: (=nD)i(P + (n = DI) (=Q~)" ﬁ{ZA—(k+1)I}

k!
k=0
-3 P 00 Y g
k=0 ’
A — (=nD)p(P+ (n =)Dy [( = A)] " 0Q 1)
=\ T(A) ; o .
Thus, the result (3.3) is established. [



The following corollary can be obtained immediately

Corollary 3.2. o Setting A= (2n+ 1)l and QQ = A, in (3.3), we have

—nl, P+ (n—1)I

g()\) (271)')\ (2n+1) 2F1 _onl

; 1} =n! A" (P onT),,.

o Setting A= ((2—n)I — P), in (3.3), we have

—nl, P+ (n—1)I 1
Pim-11 A ]

e
AQT",

provide that 3(2I — P) > 0 with P — [ is an invertible matrix and || \Q 7| < 1.

G\ =A"(EWI=P) P((9 )] — P) o Fy

=\"(EI=P) (2 —n)I — P) 1F0[
(I -

:)\((an)IJrP) F(z]’ P) [(

o When A = (B+(n+1)I) € M, (C) such that B+nl is an invertible matrix and use Lemma
2.2, then (3.3) gives

—nl, P+ (n—1)I
G(\) )\~ (B+(n+1)I) LB+ (n+1)I)F QT
—(B +nl)
:/\_(B+(n+1)1) I“(B + (n + 1)]) (I — ()\Q_l))n
[ —nl,(1—-2n)[—P—B
- QT (-0 63
—(B+nl)

A" B DB+ (n+1)I) (A —-Q 7Y

[ —nl,(1-2n)[ —P—B

X oF P —MQ = M)
—(B+nl)

where (B + (n + 1)I) is positive stable matrix in M, (C) and |[NQ7|| < 1.

e Putting B= (1—2n)I — P € M,(C) in (3.4) and applying Lemma 2.2 give

G(N) =X (2P (2 — )T = P) (N 1T - Q)"

SAPHERAI DL P) (P - 1), Q7 - AT | E < 1.



Theorem 3.3. Let A be positive stable matrix in M,(C) such that I — A satisfy the spectral
condition (2.4) and Re(\ — ) > 0, the following result holds true:

oo
/ AT ez BPQ (e dy =
0

P+ (n—1)I (3.4)

(A=) T(A) o Fy A=,
I—A

or
/ AL ez 9 (P Q: 2)e ™ dz =
0
“nL,P+(n—1)I (3.5)
A= p) ™ T(A) A A= w)Q7!
I1—-A

Proof. For convenience, let the left-hand side of (3.5) be denoted by S. Applying the series ex-
pression of (2.8) to S, we obtain

oo
S = / AT et BRQ (e
0

—~ (—nl )y (P+ (n— 1)) (—Q )" /Oo SA=(k=D)I ,=(—p+N)z g,
i ;
k=0

" (—nl)y (P4 (n— )I)e (~Q-1)

N il (—p+ )" T(A = k1)
k=0 :
- _ ~1\k
=T 0107 oD (P 0= DD = AT A=)
therefore, (3.5) as desired. O

Remark 3.1. Using (3.3) and (2.14) yields to (3.5) directly.
Remark 3.2. From (2.10) and (2.13) we get to the result (3.6).

Theorem 3.4. If
g(z) = 2471 BEA(=Y) ByiQ( ),
Or

g(z) = 2O, (P AT 2) ©,,(v], Q; 2).



Then
G(\) =)\"4 LA - A2 — A— P) F_l((l +n)l — A)F_l((Q —n)[—A—P)
—mI,(v+n—1)I,2[—A—-P ] (3.6)
D\ Q—l

XSFQ )
(1+n)—A@2-n)I—-A—P

where A is positive stable matrix in M,.(C), such that satisfy the spectral condition (2.4) and
Re(X\) > 0 and Re(v) > 0.

Proof. To prove (3.7), we require the relation (2.13) and the Definition 2.6, thus we have

G(\) :[’{ZA—IBT}LD,)\I( —I)BVIQ } zn:i —nl)y P+(nk_1)[) g (—A )

y (=ml),(vI + (m - - DI, (-Q~ 1 " ﬁ{zA (k+r+1)1 }
- k(P + (n—1)1) (=X
> (_mI>T(V[ + ( — 1)[)71 (_Q_1>r F(A _ (l{ + T)[) )\—(A—(k+r)1)

rl
m

:Af(A)F( Z <_mI)T(V] + (m — 1)I)r (_Qil)r [([ . A)T]fl

rl

r=0

XZ POl 2= DD (1= py7 - ),

=\~ . F(A)F(I — AT -A-P)T "I -P+nl) T2 —A— P —nl)

0 ) L S R U L A R YRS
r=0
< [(L+n)I = A [(2=m)I = A= P),|"
Therefore, the proof of (3.7) is complete. [
Theorem 3.4 leads to the following corollary.

Corollary 3.3. o Taking () = A\, m =nand P = vI in (3.7), we have

G\ zﬁ{zA_I <B§”\[(z_1)> 2}

=\ T(AT(I - A2 — A—-P)

x TN (1 +n) - AT ((2~-n)]—-A—P)
—nl,P+(n—-1)I,2—A-P

X 3f5 [ '1]

(1+n)—A2-n)—A—P



o When A= (3—2n)l —2P, P=vI,m=nand @Q = A\, then (3.7) gives

Gg(\) :,C{Z(Q—Zn)l—2P (B,f’@](z_l)> 2}

—\~((B=2mI=2P) p((3 — 2n)T — 2P)T((2n — 2)I + 2P)T(P + (2n — 1)I)
x T7Y P+ (n—1)I) T ((3n — 2)I + 2P)
—nl,P+(2n - 1)+ P2 - A—P
X 2F1
(3n+2)I 4+ 2P
1
—\(@n=3)142P) P((3 — 2p)] — 2P)['((n — L+ P)T(P + (20— 1))

< 4T NP+ (n— 1)) TP + (2n — %)1).

Theorem 3.5. Let BYQ(2) be given in (2.8). If
g(z) = 2471 e B9(2),
then

—nl,P+(n—1)I,A
GA) = (A—p) " T(A) 3Fy —Q T A=) (3.7)

where A is positive stable matrix in M,(C) and Re(\ — p) > 0.

Proof. Using the result (3.1) in Theorem 3.1 and applying (2.14), we obtain the required relation-
ship. [

Theorem 3.6. Let BYQ(2) be given in (2.8). The following result holds true.

G(\) zﬁ{zA_] (z4+w)™! Bg’Q(z)}

=T T(A) (3.8)
> (Enl) (A4 5: “ DDAk pr 4 kg ) (—w @

where A is positive stable matrix in M,(C), Re(\) > 0 and T'(A, z) is the incomplete gamma
matrix function defined in (cf. [52]).

Proof. 1t is required to prove that
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G\ zﬁ{zA_I (z+w)™! BS’Q(Z)}

= /oo A (24 w) 7 BP9(2)e M dz
-y (=nD)i(P Z! (= DDk _ -1y

0
></ ATEDL (5 )7L ez,
0

According to (2.15) in Lemma 2.1, we get

G\ = Xn: Cnl)u® Z! 0= DDk pa 4 k)

xwATE=DE AP (1 — BV — A, w))(—Q 1)k

:F(A) wA—Iew)\ Z (_nI)k(P + (IZ — 1)[)k (A)k

xI((1 = k)T — A, w))(—wQ )",
This completes the proof of Equation (3.9) asserted in Theorem 3.6 U

Theorem 3.7. Let B2%(2) be given in (2.8). The following result holds true.

G(\) :5{2‘41 log z BS’Q(,Z)}

n

=AAT(A) Y (=nd)e (P+ (n =)Dk (A)y (3.9)
k=0
PO k) -t

where A is positive stable matrix in M,(C), Re(\) > 0 and 1(A) is the digamma matrix function
defined in (2.3).

Proof. The proof of this theorem is quite straight forward as
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E{zA I log 2 BPQ(2 )}

/ A1 log 2 BP9(2)e™d2
0

. (P 07 (3.10)
Z + n— ) ) (_Qfl)k

k=0

/ I'log 2 e dz,

From (2,2), we have
A+ kI = / AYEDL o=z g
0
hence -
I"(A+kI) = / ATE=DE =2 o0 2.
0

Thus, we find that
V(A+KI) =T"(A+ kDT A+ KI)

=T A+ k[)/ ZATEDL =2 o0 2d2.
0

In the above equation replace z by Az, we get

U(A+ kD) =X YA+ k) / AT o log(A\z)dz
0
MR DN A 4 kD) /OO ZATE=DL =22 (160()) + log(2)]dz
0
—\ATEL D=1 (A 4 k) /0 AT o log(\)dz (3.11)
H MR DN A 4 kD) /00 ZATEDE =22 60 (2)d2
0

—=log(\) + MR P71 (A 4 k;[)/ ZAHE=DL =32 160(2)d2.
0

Therefore, we have

/ ZA+(k—1)I e—/\z IOg(Z)dZ
0

(3.12)
=\ DA 4 KT [U(A 4 kT) — log .
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Inserting (3.13) into (3.12) and (3.12) into (3.11), we get the required result as

k!
k=0

X A T(A) [U(A + ki) — log ]

- — (=nD)p(P + (n = 1)1 (A)y
=\ T(A) g o
X (—(AQ) " HF[W(A + kI) — log .
O
Theorem 3.8. Let B2%(2) be given in (2.8). The following results holds true
G(\) zﬁ{zAI coshvz Bf’Q(z)}
1 —nl, P -1, A
=5 D) (A=) 4Ry { e +£” A (- (3.13)
, “nl,P+(n—1)I,A
+ 5 T(A) A+ w) ™ 3By —(A+0)Q)7H
{ I sinh vz BP9z )}
1 —nl, P -, A
=5 T(A) A=) 3K { " +£n A - (3.14)
1 —nl,P+(n—1)1,A
2 T(A) (A+v)™ 5F (A +)Q)H

where A is positive stable matrix in M,(C), Re(\) > |Re(v)| > 0.

Proof. By substituting for cosh vz = % ev® + e‘”z>, in the left hand side (3.14), we see that the

result (3.14) is a direct application of the Theorem 3.5, by taking ;» = v, —v and then adding.

In exactly the same manner, the result in (3.15) can be evaluated, so we omit the details in-

volved. 0
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Theorem 3.9. Let BYQ(2) be given in (2.8). The following results holds true

Gg(\) zﬁ{zA_I e = Bf’Q(z)}

n

—2(5)F D (-l (P+ (0= 1)) (3.15)
XW'KAH@I(Q\/E),

where A is positive stable matrix in M,(C), Re(\) > 0, Re(v) > 0 and K 4(.) is modified Hankel
matrix function or Macdonald matrix function (cf. [19]).

Proof.

g(\) zﬁ{zA_I e : Bf’Q(z)}

o
:/ AT e BPO(2)e M dz
0

_3n P DD

k=0
o 1
X/ ZA—i-(k—l)I 6—(1/2 +Az) dz
0
n

—25)F Y (=nD)x(P Z! (n—1)I);

k=0

x(—(X)_Tl QN Kapnr 2V N).

This completes the proof of theorem.

[
Corollary 34. If A= P — I and Q = v1, then
U B n
GN) =2(3)"7 Y (=nD)e (P+(n— 1))
k=0
X (/;{:)' . KP—(I—k)I(QV 14 )\)
V. pP-1I
= (X)T 'KP—(Pzn)I(QV v )\)-
Theorem 3.10. If
g(z) = 241 BY(1) BR9(2) Br@(—2), (3.16)
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where BP9 js defined by (2.8), then

2A—I

QMZEﬂQZXE(P+A D)y T(A) A (1 = A),] 7!
—ml, E+ (m—1)I, %( - ),%E,%(A—i—(l—n)[),
S(A—nl), 3 (P+A nl),s(P+ A+ (n—1)I) (3.17)
X s F3 160N Q)72
E-1,1(P+A),2(P+A-1)

where A, E are positive stable matrices in M,(C) such that E — I, 3(P + A) and 3(P + A — 1)
are an invertible matrices and Re(\) > 0.

Proof. Applying the following formula (cf. [51]), we find that

Bi’Q(Z) Bf{Q(_Z) = 4/

—mI,E+ (m—1)I,3(E—1I),5E
427 Q)
E—-1T

we have

G(\) =L

——

AT BRI (1) BE() Bﬁ@<—z>}

L

—N—

ZA_I Bﬁ’)\zj(l) 4F1

—ml,E+(m—1),XE-1),1E
.422 Q_2 }

E—1
" (=nd)p(P 4 (n — 1)),

_ > - (—A_l)k
o DB = D0 (Lo Ly, (- 1 a0
xﬁ{ZA—(k+1+2T)I}.
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Making use of (2.13), we observe that

gy =37 CHAP 0D
(3 D : (m = D), (508~ D) GE) [(B ~ DI

X (4Q2)r A=AWHE=2ID (A — (K — 2r)])

aar(ay S EmDAEE = DI L gy (L,

r=0 ! 2 2
< (B =1)]7" (A)2r (400@Q)72)
S CnDPE DD

— Kl
=\ 23; (AT - ATR2I-A-P)T "I -A+n)T' (2] — A— P —nl)
S DB = DD L g1y, (G, (34, (2 - D)

X (5(A+ D). (5(A+ 1= m)D), (5(4—nD),
X (5(A+ P nD), (5(A+ P+ (n D), [(5(A+ D)1
< [GAN [GA+ PRI G+ P = D) (160@)2)

Thus after a simplification, we get the required result (3.18). [
Theorem 3.11. If
g(z) = 22471 mFy (E; D; 22) B (%), (3.18)

with BP9 is given by (2.8) and,,, F,(E; D; z) is the generalized hypergeometric matrix function is
defined in (2.6) such that Re(\) > 0 if m < ¢ — 1 and Re(\) > |B(A)| if m = q — 1 and these

matrices are commutative and A is positive stable matrix in M,.(C), then

22A—I 1
G(A) = 7 P(A) DA+ ) A~
X % (=nD)p(P+ (n = 1)1 (A (A+ %)k(—él()\QQ)_l)k (3.19)

1
% o By (B, A+ KL A+ (k + 5)15 D340 ),
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Proof. From (2.6), (2.8) and (2.13) we have
G(\) zﬁ{z“[ mFy(E; D; 2°) Bf’Q(z2)}

=Z% (—nD)i(P + (n — DI)p(4(Q)~H)

D) | (3 | (AR

XE{ZQA—(1—2k—2r)I}

=Z% (—nD)i(P + (n — 1)1)e(4(Q) 1)

S TIE). T

r=0 i=1 7j=1
x NG9 A 4 (2K 4 2r)]).
Thus after a simplification, we obtain the result (3.20) in Theorem 3.11. ]

Theorem 3.12. If

9(2) = 2% J,(2(02)2) BI(1), (3.20)
then
v 1
G\) =02 (P+vl), (———) A"

(=0t (Ptol) (= 50)

l+v—m,P+ (n+uv)l o (3.21)
X 2l ]
14+v, P+uvl

where the Bessel function J,,(2) of order v has been given in the form (see [1, 3, 18])

1O =3 g 6 a2

s=0

and Re(\) > 0, Re(v) > —1 and Re(o) > 0.
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Proof. According to (2.8), (3.23) and (2.13), it follows that

G =£{zé 1,(2(72)%) vam)}
S~ 1) o)

—m!I'(1+v+m)
30 DR 000 (e onemy
k=0

(Y (=)™
=(0) n;) m!T'(1+v+m)

2": (—nd)i(P 4 (n — 1))y

o (AT +v4+m— k) vmthl

L e S (O AT T 0 )
=(0)% A Z m! T'(1+v+m)

Z n[ P+(n—1)])

i (v+m)), k!
T P+vl Jo = (L+v = n)w((V+n)] + P)u[(P+ o))t —0o
— A7V 1 “Tym
(0)2 mzo Ml (1+ 0)y, )
This completes the proof. ]
Theorem 3.13. If
g(2) = 27 Jau(2(02)2) BEA (1), (3.23)
Then
G = EV P+ W+ p = DD(AP) mese(p+ v)m
B ANt T (1 + 20)0(1 — p— v +n)
p+v—nP+n+v+pl - (3.24)
X2F2 7_4X )

1+20, P+ (v+p+m—1)I
where Re(\) > 0, Re(p) >0, Re(o) > 0and Re(v+ p) > —3.

Proof. The proof of Theorem 3.13 would run parallel to Theorem 3.12. We, therefore, choose to
skip the details involved. 0

Theorem 3.14. If
g(2) = 2771 Jo, (2(02)?) Jou(2(02)F)BEX (1), (3.25)
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then
(@) "M(P+ W+ p+p—1)D(A)" P TD((p+ p+v))
(—(p+p+v+1), Fv+1DT(2u+1)
ptv+u—nP+n+p+v+p—1)1I (3.26)

G(\) =

X oF3
14+ 2u, 1420, P+ (p+v+p—1)I

where Re(\) > 0, Re(p+ v+ p) > 0.

Proof. Applying the formula [1, 3] for the product of two Bessel functions to get

T (2(02)7) Jo,(2(02)7) = (a2) ZO sIT (20 + S(—;T)ZIZ(QV +s5+1)

From the above equation and (2.8), we have

G(N) zﬁ{zf’l T (2(02)2) T, (2 <az>%>85»w1>}

S (—o)’

— (g )V
(o) Sz:; siTu+s+D)I'2v+s+1)

y i (—nl)p(P ;; (n— 1)) (—A 1) E{zp—l-‘rm-‘ru—kl/—i-s—k}'

k=0

Applying (2.13), equation can be reduced to

(o 3 (o)

y z”: (—n)(P -k: (n — 1)I),

(_/\—l)k F(p—l—,u—l— v+s— ]{7) \~(prutvts—k)
k=0

(ot v ’7(p+p+y) = (P+M+V)s 0.5
= A~ (o) r(2u+1)r(2y+1)Zs!(2u+1)s(2v+1)s vt
(=nd)e(P + (n — 1)1)g
sz:%kl(l p—j—V— 38
0)" (P + (vt ptp = DD ()" T((p + p+ v))
(=(p+p+v+1), TQv+1)I'(2u+1)
(n

prvtp—nP+m+pt+v+p-1I __
X oF3 ;T
14+2pu,1+2v, P+ (p+v+p—1)I
This completes the proof. ]
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4 Inverse Laplace type integrals of functions involving B7:9(z)

In this section, we obtain the following inverse laplace type transforms of functions involving
generalized Bessel matrix polynomials.

Theorem 4.1. If

then

where 3(A) > 0 and Re(\) > 1|Re(0)|.

Proof. Tt is sufficient to find Laplace transform of g(z)

G(\) :c{zA—f exp(Sroz)(1 - Uz)"}

£{zAI exp(_?loz)lFo ( —_n ;Uz) }

" (=nd); o* —1
3Gkt ,;{me eXp(T,Z)}
k=0 ’

_ k
_y ! ”Q’“ T T(A+ R (A + la)—<A+’”>
k=0 '
I 4 &= (—nd) (A o k
=T'(A) AN+ z0)™* ( )"
2 kz:; k! (A + 30)
As required. 0

Theorem 4.2. If

g(>\) = (_1>n U%A+n1 A\~ (A+@2n+1)I) eXp(_Taz) BTI;AanI,a(A)’

then
g(z) = 22+ J,(2(02)?)

where 5(A+nl) > —1, Re(\) > 0and Re(o) > 0.
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Proof. Using (2.13) and (3.23), we have

G(\) :z{zé‘W Jv(z(az)%)}

o0 _ r A
:Z r 1<A+ (14+7r))(—0) o2 ﬁ{zA+(n+r)I}
— 7l
= (=) [(A+1),]
—g2 Fil(A—l—I) Z( ) [( '+ )T] F(A—i— (7,_'_n+1>1) )\*(A+(T+TL+1)I)
7l
r=0
4 (Asin —0, = (—nI), [(A+D),]' o,
=02 (A+I)n/\ (A+(n+1)I) eXp(T) Z( ) [(r' ] (X)
r=0
ALy _ " —0. =~ (=nI), [(A+1),]7" T\rn
—gztnd (A+ 1), A (A+(2n+1)1) exp(T) Z( ) Kr' )r] (X) '
r=0 ’
Putting n — r = k we get
GN) = (~1)" g7 ATAHEEID exp(—2)
~ (—nDk (=(A+nD) —Ay
8 % k! ( o )
—(—1)" g3 Atnl \—(A+@2nt1)I) exp(_TUz) BZL—A—ZnI,a(/\)'
This completes the proof. ]

The remaining results, which are given in the following theorems, can also be proven in a
similar lines. So we prefer to omit the details

Theorem 4.3. If

21— P—2nI, (&2

G(A) = (—Q)" A"FE DI T(2I — P) B, * (=n),
then
g(z) = 2 PHmUD BRO(),
where Re(\) > 0.
Theorem 4.4. If

then

where Re(\) > 0.
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Theorem 4.5. If

then

where Re(\) > Re(u) > 0.
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