References
Abdolahpour, M., Hambleton, M., & Ghisalberti, M. (2017). The wave-driven current in coastal canopies. Journal of Geophysical Research-Oceans, 122, 3660–3674. https://doi.org/10.1002/2016JC012446
Barbier, E., Hacker, S., Kennedy, C., Koch, E., Stier, A., & Silliman, B. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169-193.https://doi.org/10.1890/10-1510.1
Bradley, K., & Houser, C. (2009). Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. Journal of Geophysical Research, 114, F01004.https://doi.org/10.1029/2007JF000951.
Cameron, S. M., Nikora, V. I., Albayrak, I., Miler, O., Stewart, M., & Siniscalchi, F. (2013). Interactions between aquatic plants and turbulent flow: a field study using stereoscopic PIV. Journal of Fluid Mechanics, 732, 345-372, doi:10.1017/jfm.2013.406.
Carr, J., Dodorico, P., Mcglathery, K., & Wiberg, P. (2010). Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation. Journal of Geophysical Research, 115, G03011. https://doi.org/10.1029/ 2009JG001103
Dean, R., & Dalrymple, R. (1991). Water wave mechanics for engineers and scientists, Advanced series on ocean engineering (Vol. 2). Tokyo, Japan: World Scientific.
Etminan, V., Ghisalberti, M., & Lowe, R. J. (2018). Predicting Bed Shear Stresses in Vegetated Channels. Water Resources Research, 54(11), 9187-9206, doi:10.1029/2018WR022811.
Feng, L., Hu, C., Chen, X., Cai, X., Tian, L., & Gan, W. (2012). Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sensing of Environment, 80-92. https://doi.org/10.1016/j.rse.2012.01.014.
Fourqurean, J., Duarte, C., Kennedy, H., Marba, N., Holmer, M., Mateo, M., …Serrano O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5(7), 505–509. https://doi.org/10.1038/NGEO1477.
Ghisalberti, M., & Nepf, H. (2002). Mixing layers and coherent structures in vegetated aquatic flow. Journal of Geophysical Research-Oceans, 107(C2), 3011, https://doi.org/10.1029/ 2001JC000871.
Ghisalberti M, & Nepf H. (2004). The limited growth of vegetated shear layers. Water Resources Research, 40, W07502. https://doi.org/10.1029/2003WR002776.
Ghisalberti, M., & Nepf, H. (2006). The structure of the shear layer over rigid and flexible canopies. Environmental Fluid Mechanics, 6: 277–301. doi:10.1007/s10652-006-0002-4.
Goring, D., & Nikora, V. (2002). Despiking acoustic Doppler velocimeter data. Journal of Hydraulic Engineering, 128(1), 117–126, doi:10.1061/(ASCE)0733-9429(2002)128:1(117).
Green, E., & Short, F. (2003). World Atlas of seagrasses. Berkeley, CA: University of California Press.
Green, M. O., & Coco, G. (2014). Review of wave-driven sediment resuspension and transport in estuaries, Reviews of Geophysics, 52, 77-117, doi:10.1002/2013RG000437.
Hansen, J. C. R., & Reidenbach, M. A. (2013). Seasonal Growth and Senescence of a Zostera marina Seagrass Meadow Alters Wave-Dominated Flow and Sediment Suspension Within a Coastal Bay. Estuaries and Coasts, 36, 1099–1114. https://doi.org/10.1007/s12237-013-9620-5
Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W., & Stive, M. (2015). Laboratory study on wave dissipation by vegetation in combined current–wave flow. Coastal Engineering. 88, 131–142. http://dx.doi.org/10.1016/j.coastaleng.2014.02.009.
Irlandi, E., & Peterson, C. (1991). Modification of animal habitat by large plants: Mechanisms by which seagrasses influence clam growth. Oecologia, 87(3), 307–318, doi:10.1007/BF00634584
Jarvela J. (2005). Effect of submerged flexible vegetation on flow structure and resistance. Journal of Hydrology, 307: 233–41. https://doi.org/10.1016/j.jhydrol.2004.10.013.
Lei, J., & Nepf, H. (2019). Blade dynamics in combined waves and current. Journal of Fluids and Structures, 87, 137-149. https://doi.org/10.1016/j.jfluidstructs.2019.03.020
Leonard, L. A., & Croft, A. L. (2006). The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuarine Coastal and Shelf Science, 69(3), 325–336. https://doi.org/10.1016/j.ecss.2006.05.004.
Leonard, L. A., & Luther, M. E. (1995). Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography, 40(8), 1474–1484. https://doi.org/10.4319/lo.1995.40.8.1474.
Li, C.W., & Yan, K. (2007). Numerical investigation of wave–current–vegetation interaction. Journal of Hydraulic Engineering, 133 (7), 794–803. http://dx.doi.org/10.1061/ (ASCE)0733-9429(2007)133:7(794).
Lightbody, A. F., & Nepf, H. M. (2006). Prediction of velocity profiles and longitudinal dispersion in emergent saltmarsh vegetation. Limnology and Oceanography, 51(1), 218–228. https://doi.org/10.4319/lo.2006.51.1.0218.
Liu, C., & Nepf, H. (2016). Sediment deposition within and around a finite patch of model vegetation over a range of channel velocity. Water Resources Research, 52, 600–612. https://doi.org/10.1002/2015WR018249.
Losada, I. J., Maza, M., & Lara, J. L. (2016). A new formulation for vegetation-induced damping under combined waves and currents. Coastal Engineering, 107, 1–13.http://dx.doi.org/10.1016/j.coastaleng.2015.09.011.
Lovstedt, C. B., & Larson, M. (2010). Wave damping in reed: field measurements and mathematical modeling. Journal of Hydraulic Engineering, 136(4), 222-233, doi:10.1061/(ASCE)HY.1943-7900.0000167.
Lowe, R., Koseff, J., & Monismith, S. (2005). Oscillatory flow through submerged canopies: 1. Velocity structure. Journal of Geophysical Research, 110, C10016. https://doi.org/10.1029/2004JC002788.
Luhar, M., Coutu, S., Infantes, E., Fox, S., & Nepf, H. (2010). Wave-induced velocities inside a model seagrass bed. Journal of Geophysical Research, 115, C12005. https://doi.org/10.1029/2010JC006345
Luhar, M., Infantes, E., & Nepf, H. (2017). Seagrass blade motion under waves and its impact on wave decay. Journal of Geophysical Research-Oceans, 122, 3736–3752. https://doi.org/10.1002/2017JC012731.
Luhar, M., E. Infantes, A. Orfila, J. Terrados, & Nepf M. H. (2013), Field observations of wave-induced streaming through a submerged seagrass (Posidonia oceanica) meadow, Journal of Geophysical Research-Oceans, 118, 1955–1968, doi:10.1002/jgrc.20162.
Mendez, F., & Losada, I. (2004). An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal Engineering, 51(2), 103–118.https://doi.org/10.1016/j.coastaleng.2003.11.003.
Mendez, F. J., I. J. Losada, & Losada, M. A. (1999). Hydrodynamics induced by wind waves in a vegetation, Journal of Geophysical Research, 104, 18383-18396, doi:10.1029/1999JC900119.
McGlathery, K., Sundback, K., & Anderson, I. (2007). Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Marine Ecology Progress Series, 348, 1-18.https://doi.org/10.3354/meps07132.
Mitsch W. J., & Gosselink J. G. (1986). Wetlands. New York: Van Nostrand Reinhold. 712 pp. 2nd edition.
Mullarney, J. C., & Henderson, S. M. (2010). Wave-forced motion of submerged single-stem vegetation, Journal of Geophysical Research, 115, C12061, doi:10.1029/2010JC006448.
Neary, V. S. (2003). Numerical Solution of Fully Developed Flow with Vegetative Resistance. Journal of Engineering Mechanics, 129(5), 558-563, doi:10.1061/(ASCE)0733-9399(2003)129:5(558).
Nepf, H. (1999). Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, 35(2), 479-489, doi: 10.1029/1998WR900069.
Nepf, H. (2012). Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics, 44(44), 123–142, doi:10.1146/annurev-fluid-120710-101048.
Nepf, H., Ghisalberti, M., White, B., & Murphy, E. (2007). Retention time and dispersion associated with submerged aquatic canopies. Water Resources Research, 43(4), 1–10, doi:10.1029/2006WR005362.
Nepf, H., & Vivoni, E. (2000). Flow structure in depth-limited, vegetated flow. Journal of Geophysical Research-Oceans, 105, 28547–28557, doi:10.1029/2000JC900145.
Neumeier U, & Amos C L. (2006). The influence of vegetation on turbulence and flow velocities in European salt-marshes. Sedimentology, 53(2): 259-277, doi:10.1111/j.1365-3091.2006.00772.x
Nicolle, A., & Eames, I. (2011). Numerical study of flow through and around a circular array of cylinders. Journal of Fluid Mechanics, 679, 1-31, doi:10.1017/jfm.2011.77.
Okamoto T., & Nezu I. (2009). Turbulence structure and monami phenomena in flexible vegetated open-channel flows. Journal of Hydraulic Research, 47: 798–810, doi:10.3826/jhr.2009.3536.
Paul, M., Bouma, T. J., & Amos, C. L. (2012). Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Marine Ecology Progress Series, 444, 31–41. http://dx.doi.org/10.3354/meps09489.
Pu, J. H., Shao, S., & Huang, Y. (2014). Numerical and experimental turbulence studies on shallow open channel flows. Journal of Hydro-environment Research, 8(1), 9-19, doi:10.1016/j.jher.2012.12.001.
Pujol, D., Casamitjana, X., Serra, T., & Colomer, J. (2010). Effect of submerged aquatic vegetation on turbulence induced by an oscillating grid. Continental Shelf Research, 30, 1019–1029.https://doi.org/10.1016/j.csr.2010.02.014
Pujol, D., Serra, T., Colomer, J., & Casamitjana, X. (2013). Flow structure in canopy models dominated by progressive waves. Journal of Hydrology, 281-292, doi:10.1016/j.jhydrol.2013.01.024
Ricardo, A. M., Grigoriadis, D. G., & Ferreira, R. M. (2018). Numerical simulations of turbulent flows within an infinite array of randomly placed cylinders. Journal of Fluids and Structures, 80, 245-261.https://doi.org/10.1016/j.jfluidstructs.2018.04.004.
Ros, A., Colomer, J., Serra, T., Pujol, D., Soler, M., & Casamitjana, X. (2014). Experimental observations on sediment resuspension within submerged model canopies under oscillatory flow. Continental Shelf Research, 91, 220–231. https://doi.org/10.1016/j.csr.2014.10.004
Scheffer, M., & Carpenter, S. (2003). Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends in Ecology & Evolution, 18(12), 648–656. https://doi.org/10.1016/j.tree.2003.09.002
Scheffer, M., Carpenter, S., Foley, J., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413(6856), 591–596. https:// doi.org/10.1038/35098000.
Sumer, B., Christiansen, N., & Fredsoe, J. (1997). The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. Journal of Fluid Mechanics, 332, 41–70. https://doi.org/10.1017/S0022112096003898
Tan, Z., Tao, H., Jiang, J., & Zhang, Q. (2015). Influences of Climate Extremes on NDVI (Normalized Difference Vegetation Index) in the Poyang Lake Basin, China. Wetlands, 35(6), 1033-1042, doi:10.1007/s13157-015-0692-9.
Tanino Y, & Nepf H. (2008)a. Laboratory investigation on mean drag in a random array of rigid, emergent cylinders. Journal of Hydraulic Engineering, 134: 34–41, doi:10.1061/(ASCE)0733-9429(2008)134:1(34).
Tanino Y, & Nepf H. (2008)b. Lateral dispersion in random cylinder arrays at high Reynolds number. Journal of Fluid Mechanics, 600: 339–71, doi:10.1017/S0022112008000505.
Toffoli, A., & Bitner-Gregersen, E. M. (2017). Types of ocean surface waves, wave classification. In J. Carlton, P. Jukes, Y. S. Choo (Eds.), Encyclopedia of Maritime and Offshore Engineering. Retrieved from https://doi.org/10.1002/9781118476406.emoe077.
Trowbridge, J. H. (1998). On a technique for measurement of turbulent shear stress in the presence of surface waves. Journal of Atmospheric and Oceanic Technology, 15, 290–298, doi:10.1175/1520-0426(1998)015<0290:OATFMO>2.0.CO;2.
van der Heide, T., van Nes, E., Geerling, G., Smolders, A., Bouma, T., & van Katwijk, M. (2007). Positive feedbacks in seagrass ecosystems: Implications for success in conservation and restoration. Ecosystems, 10(8), 1311–1322.https://doi.org/10.1007/s10021‐007‐9099‐7
Wang, C., Wang, C., & Wang, Z. (2010). Effects of submerged macrophytes on sediment suspension and NH4-N release under hydrodynamic conditions. Journal of Hydrodynamics, 22(6), 810-815, doi:10.1016/S1001-6058(09)60120-7.
Wang X., Han J., Xu L., Wan R., & Chen Y. (2014). Soil Characteristics in Relation to Vegetation Communities in the Wetlands of Poyang Lake, China. Wetlands, 34(4), 829-839, doi:10.1007/s13157-014-0546-x.
Waycott, M., Longstaff, B.J., & Mellors, J. (2005). Seagrass population dynamics and water quality in the Great Barrier Reef region: a review and future research directions. Marine Pollution Bulletin, 51 (1–4), 343–350, http://dx.doi.org/10.1016/j.marpolbul.2005.01.017.
Yang, J. Q., Kerger F., & Nepf M. H. (2015). Estimation of the bed shear stress in vegetated and bare channels with smooth beds, Water Resources Research, 51, 3647–3663, doi:10.1002/ 2014WR016042.
Zhang, Y., Lai, X., & Jiang, J. (2016). The impact of plant morphology on flow structure: comparative analysis of two types of submerged flexible macrophyte. Hydrological Sciences Journal, 61(12), 2226–2236, doi:10.1080/02626667.2015. 1099792.
Zhang, Y., Lai, X., Zhang, L., Song, K., Yao, X., Gu, L., & Pang, C. (2020). The Influence of Aquatic Vegetation on Flow Structure and Sediment Deposition: A Field Study in Dongting Lake, China, Journal of Hydrology, doi:10.1016/j.jhydrol.2020.124644.
Zhang, Y., Tang, C., & Nepf, H. (2018). Turbulent kinetic energy in submerged model canopies under oscillatory flow. Water Resources Research, 54.https://doi.org/10.1002/2017WR021732.