References
Abdolahpour, M., Hambleton, M., & Ghisalberti, M. (2017). The
wave-driven current in coastal canopies. Journal of Geophysical
Research-Oceans, 122, 3660–3674. https://doi.org/10.1002/2016JC012446
Barbier, E., Hacker, S., Kennedy, C., Koch, E., Stier, A., & Silliman,
B. (2011). The value of estuarine and coastal ecosystem services.
Ecological Monographs, 81(2),
169-193.https://doi.org/10.1890/10-1510.1
Bradley, K., & Houser, C. (2009). Relative velocity of seagrass blades:
Implications for wave attenuation in low-energy environments. Journal of
Geophysical Research, 114, F01004.https://doi.org/10.1029/2007JF000951.
Cameron, S. M., Nikora, V. I., Albayrak, I., Miler, O., Stewart, M., &
Siniscalchi, F. (2013). Interactions between aquatic plants and
turbulent flow: a field study using stereoscopic PIV.
Journal
of Fluid Mechanics, 732, 345-372, doi:10.1017/jfm.2013.406.
Carr, J., Dodorico, P., Mcglathery, K., & Wiberg, P. (2010). Stability
and bistability of seagrass ecosystems in shallow coastal lagoons: Role
of feedbacks with sediment resuspension and light attenuation. Journal
of Geophysical Research, 115, G03011. https://doi.org/10.1029/
2009JG001103
Dean, R., & Dalrymple, R. (1991). Water wave mechanics for engineers
and scientists, Advanced series on ocean engineering (Vol. 2). Tokyo,
Japan:
World
Scientific.
Etminan, V., Ghisalberti, M., & Lowe, R. J. (2018). Predicting Bed
Shear Stresses in Vegetated Channels. Water Resources Research, 54(11),
9187-9206, doi:10.1029/2018WR022811.
Feng, L., Hu, C., Chen, X., Cai, X., Tian, L., & Gan, W. (2012).
Assessment of inundation changes of Poyang Lake using MODIS observations
between 2000 and 2010.
Remote
Sensing of Environment, 80-92.
https://doi.org/10.1016/j.rse.2012.01.014.
Fourqurean, J., Duarte, C., Kennedy, H., Marba, N., Holmer, M., Mateo,
M., …Serrano O. (2012).
Seagrass
ecosystems as a globally significant carbon stock. Nature Geoscience,
5(7), 505–509. https://doi.org/10.1038/NGEO1477.
Ghisalberti, M., & Nepf, H. (2002). Mixing layers and coherent
structures in vegetated aquatic flow. Journal of Geophysical
Research-Oceans, 107(C2), 3011, https://doi.org/10.1029/ 2001JC000871.
Ghisalberti M, & Nepf H. (2004). The limited growth of vegetated shear
layers. Water Resources Research, 40, W07502.
https://doi.org/10.1029/2003WR002776.
Ghisalberti, M., & Nepf, H. (2006). The structure of the shear layer
over rigid and flexible canopies.
Environmental
Fluid Mechanics, 6: 277–301. doi:10.1007/s10652-006-0002-4.
Goring, D., & Nikora, V. (2002). Despiking acoustic Doppler velocimeter
data. Journal of Hydraulic
Engineering, 128(1), 117–126,
doi:10.1061/(ASCE)0733-9429(2002)128:1(117).
Green, E., & Short, F. (2003). World Atlas of seagrasses. Berkeley, CA:
University of California Press.
Green, M. O., & Coco, G. (2014). Review of wave-driven sediment
resuspension and transport in estuaries,
Reviews
of Geophysics, 52, 77-117, doi:10.1002/2013RG000437.
Hansen, J. C. R., & Reidenbach, M. A. (2013). Seasonal Growth and
Senescence of a Zostera marina Seagrass Meadow Alters Wave-Dominated
Flow and Sediment Suspension Within a Coastal Bay.
Estuaries
and Coasts, 36, 1099–1114. https://doi.org/10.1007/s12237-013-9620-5
Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W., & Stive, M. (2015).
Laboratory study on wave dissipation by vegetation in combined
current–wave flow. Coastal Engineering. 88, 131–142.
http://dx.doi.org/10.1016/j.coastaleng.2014.02.009.
Irlandi, E., & Peterson, C. (1991). Modification of animal habitat by
large plants: Mechanisms by which seagrasses influence clam growth.
Oecologia, 87(3), 307–318, doi:10.1007/BF00634584
Jarvela J. (2005). Effect of submerged flexible vegetation on flow
structure and resistance. Journal of Hydrology, 307: 233–41.
https://doi.org/10.1016/j.jhydrol.2004.10.013.
Lei, J., & Nepf, H. (2019). Blade dynamics in combined waves and
current.
Journal
of Fluids and Structures, 87, 137-149.
https://doi.org/10.1016/j.jfluidstructs.2019.03.020
Leonard, L. A., & Croft, A. L. (2006). The effect of standing biomass
on flow velocity and turbulence in Spartina alterniflora canopies.
Estuarine
Coastal and Shelf Science, 69(3), 325–336.
https://doi.org/10.1016/j.ecss.2006.05.004.
Leonard, L. A., & Luther, M. E. (1995). Flow hydrodynamics in tidal
marsh canopies.
Limnology
and Oceanography, 40(8), 1474–1484.
https://doi.org/10.4319/lo.1995.40.8.1474.
Li, C.W., & Yan, K. (2007). Numerical investigation of
wave–current–vegetation interaction. Journal of Hydraulic Engineering,
133 (7), 794–803. http://dx.doi.org/10.1061/
(ASCE)0733-9429(2007)133:7(794).
Lightbody, A. F., & Nepf, H. M. (2006). Prediction of velocity profiles
and longitudinal dispersion in emergent saltmarsh vegetation. Limnology
and Oceanography, 51(1), 218–228.
https://doi.org/10.4319/lo.2006.51.1.0218.
Liu, C., & Nepf, H. (2016). Sediment deposition within and around a
finite patch of model vegetation over a range of channel velocity. Water
Resources Research, 52, 600–612. https://doi.org/10.1002/2015WR018249.
Losada, I. J., Maza, M., & Lara, J. L. (2016). A new formulation for
vegetation-induced damping under combined waves and currents. Coastal
Engineering, 107, 1–13.http://dx.doi.org/10.1016/j.coastaleng.2015.09.011.
Lovstedt, C. B., & Larson, M.
(2010). Wave damping in reed: field measurements and mathematical
modeling. Journal of Hydraulic Engineering, 136(4), 222-233,
doi:10.1061/(ASCE)HY.1943-7900.0000167.
Lowe, R., Koseff, J., & Monismith, S. (2005). Oscillatory flow through
submerged canopies: 1. Velocity structure. Journal of Geophysical
Research, 110, C10016. https://doi.org/10.1029/2004JC002788.
Luhar, M., Coutu, S., Infantes, E., Fox, S., & Nepf, H. (2010).
Wave-induced velocities inside a model seagrass bed. Journal of
Geophysical Research, 115, C12005. https://doi.org/10.1029/2010JC006345
Luhar, M., Infantes, E., & Nepf, H. (2017). Seagrass blade motion under
waves and its impact on wave decay. Journal of Geophysical
Research-Oceans, 122, 3736–3752. https://doi.org/10.1002/2017JC012731.
Luhar, M., E. Infantes, A. Orfila, J. Terrados, & Nepf M. H. (2013),
Field observations of wave-induced streaming through a submerged
seagrass (Posidonia oceanica) meadow, Journal of Geophysical
Research-Oceans, 118, 1955–1968, doi:10.1002/jgrc.20162.
Mendez, F., & Losada, I. (2004). An empirical model to estimate the
propagation of random breaking and nonbreaking waves over vegetation
fields. Coastal Engineering, 51(2), 103–118.https://doi.org/10.1016/j.coastaleng.2003.11.003.
Mendez, F. J., I. J. Losada, & Losada, M. A. (1999). Hydrodynamics
induced by wind waves in a vegetation, Journal of Geophysical Research,
104, 18383-18396, doi:10.1029/1999JC900119.
McGlathery, K., Sundback, K., & Anderson, I. (2007). Eutrophication in
shallow coastal bays and lagoons: The role of plants in the coastal
filter. Marine Ecology Progress
Series, 348, 1-18.https://doi.org/10.3354/meps07132.
Mitsch
W. J., & Gosselink J. G. (1986). Wetlands. New York: Van Nostrand
Reinhold. 712 pp. 2nd edition.
Mullarney, J. C., & Henderson, S. M. (2010). Wave-forced motion of
submerged single-stem vegetation, Journal of Geophysical Research, 115,
C12061, doi:10.1029/2010JC006448.
Neary, V. S. (2003). Numerical Solution of Fully Developed Flow with
Vegetative Resistance.
Journal
of Engineering Mechanics, 129(5), 558-563,
doi:10.1061/(ASCE)0733-9399(2003)129:5(558).
Nepf, H. (1999). Drag, turbulence, and diffusion in flow through
emergent vegetation. Water Resources Research, 35(2), 479-489, doi:
10.1029/1998WR900069.
Nepf, H. (2012). Flow and transport in regions with aquatic vegetation.
Annual Review of Fluid Mechanics,
44(44), 123–142, doi:10.1146/annurev-fluid-120710-101048.
Nepf, H., Ghisalberti, M., White, B., & Murphy, E. (2007). Retention
time and dispersion associated with submerged aquatic canopies. Water
Resources Research, 43(4), 1–10, doi:10.1029/2006WR005362.
Nepf, H., & Vivoni, E. (2000). Flow structure in depth-limited,
vegetated flow. Journal of Geophysical Research-Oceans, 105,
28547–28557, doi:10.1029/2000JC900145.
Neumeier U, & Amos C L. (2006). The influence of vegetation on
turbulence and flow velocities in European salt-marshes. Sedimentology,
53(2): 259-277, doi:10.1111/j.1365-3091.2006.00772.x
Nicolle, A., & Eames, I. (2011). Numerical study of flow through and
around a circular array of cylinders. Journal of Fluid Mechanics, 679,
1-31, doi:10.1017/jfm.2011.77.
Okamoto T., & Nezu I. (2009). Turbulence structure and monami phenomena
in flexible vegetated open-channel flows. Journal of Hydraulic Research,
47: 798–810, doi:10.3826/jhr.2009.3536.
Paul, M., Bouma, T. J., & Amos, C. L. (2012). Wave attenuation by
submerged vegetation: combining the effect of organism traits and tidal
current. Marine Ecology Progress Series, 444, 31–41.
http://dx.doi.org/10.3354/meps09489.
Pu, J. H., Shao, S., & Huang, Y. (2014). Numerical and experimental
turbulence studies on shallow open channel flows. Journal of
Hydro-environment Research, 8(1), 9-19, doi:10.1016/j.jher.2012.12.001.
Pujol, D., Casamitjana, X., Serra, T., & Colomer, J. (2010). Effect of
submerged aquatic vegetation on turbulence induced by an oscillating
grid. Continental Shelf Research, 30, 1019–1029.https://doi.org/10.1016/j.csr.2010.02.014
Pujol, D., Serra, T., Colomer, J., & Casamitjana, X. (2013). Flow
structure in canopy models dominated by progressive waves.
Journal
of Hydrology, 281-292, doi:10.1016/j.jhydrol.2013.01.024
Ricardo, A. M., Grigoriadis, D. G., & Ferreira, R. M. (2018). Numerical
simulations of turbulent flows within an infinite array of randomly
placed cylinders. Journal of Fluids and Structures, 80, 245-261.https://doi.org/10.1016/j.jfluidstructs.2018.04.004.
Ros, A., Colomer, J., Serra, T., Pujol, D., Soler, M., & Casamitjana,
X. (2014). Experimental observations on sediment resuspension within
submerged model canopies under oscillatory flow. Continental Shelf
Research, 91, 220–231. https://doi.org/10.1016/j.csr.2014.10.004
Scheffer, M., & Carpenter, S. (2003). Catastrophic regime shifts in
ecosystems: Linking theory to observation. Trends in Ecology &
Evolution, 18(12), 648–656. https://doi.org/10.1016/j.tree.2003.09.002
Scheffer, M., Carpenter, S., Foley, J., Folke, C., & Walker, B. (2001).
Catastrophic shifts in ecosystems. Nature, 413(6856), 591–596. https://
doi.org/10.1038/35098000.
Sumer, B., Christiansen, N., & Fredsoe, J. (1997). The horseshoe vortex
and vortex shedding around a vertical wall-mounted cylinder exposed to
waves. Journal of Fluid Mechanics, 332, 41–70.
https://doi.org/10.1017/S0022112096003898
Tan, Z., Tao, H., Jiang, J., & Zhang, Q. (2015). Influences of Climate
Extremes on NDVI (Normalized Difference Vegetation Index) in the Poyang
Lake Basin, China. Wetlands, 35(6), 1033-1042,
doi:10.1007/s13157-015-0692-9.
Tanino Y, & Nepf H. (2008)a. Laboratory investigation on mean drag in a
random array of rigid, emergent cylinders. Journal of Hydraulic
Engineering, 134: 34–41, doi:10.1061/(ASCE)0733-9429(2008)134:1(34).
Tanino Y, & Nepf H. (2008)b. Lateral dispersion in random cylinder
arrays at high Reynolds number. Journal of Fluid Mechanics, 600:
339–71, doi:10.1017/S0022112008000505.
Toffoli, A., & Bitner-Gregersen, E. M. (2017). Types of ocean surface
waves, wave classification. In J. Carlton, P. Jukes, Y. S. Choo (Eds.),
Encyclopedia of Maritime and Offshore Engineering. Retrieved from
https://doi.org/10.1002/9781118476406.emoe077.
Trowbridge, J. H. (1998).
On
a technique for measurement of turbulent shear stress in the presence of
surface waves. Journal of Atmospheric and Oceanic Technology, 15,
290–298,
doi:10.1175/1520-0426(1998)015<0290:OATFMO>2.0.CO;2.
van der Heide, T., van Nes, E., Geerling, G., Smolders, A., Bouma, T.,
& van Katwijk, M. (2007). Positive feedbacks in seagrass ecosystems:
Implications for success in conservation and restoration. Ecosystems,
10(8), 1311–1322.https://doi.org/10.1007/s10021‐007‐9099‐7
Wang, C., Wang, C., & Wang, Z. (2010). Effects of submerged macrophytes
on sediment suspension and NH4-N release under hydrodynamic conditions.
Journal of Hydrodynamics, 22(6),
810-815, doi:10.1016/S1001-6058(09)60120-7.
Wang X., Han J., Xu L., Wan R., & Chen Y. (2014). Soil Characteristics
in Relation to Vegetation Communities in the Wetlands of Poyang Lake,
China. Wetlands, 34(4), 829-839, doi:10.1007/s13157-014-0546-x.
Waycott, M., Longstaff, B.J., & Mellors, J. (2005). Seagrass population
dynamics and water quality in the Great Barrier Reef region: a review
and future research directions.
Marine
Pollution Bulletin, 51 (1–4), 343–350,
http://dx.doi.org/10.1016/j.marpolbul.2005.01.017.
Yang, J. Q., Kerger F., & Nepf M. H. (2015). Estimation of the bed
shear stress in vegetated and bare channels with smooth beds, Water
Resources Research, 51, 3647–3663, doi:10.1002/ 2014WR016042.
Zhang, Y., Lai, X., & Jiang, J. (2016). The impact of plant morphology
on flow structure: comparative analysis of two types of submerged
flexible macrophyte. Hydrological Sciences Journal, 61(12), 2226–2236,
doi:10.1080/02626667.2015. 1099792.
Zhang, Y., Lai, X., Zhang, L., Song, K., Yao, X., Gu, L., & Pang, C.
(2020). The Influence of Aquatic Vegetation on Flow Structure and
Sediment Deposition: A Field Study in Dongting Lake, China, Journal of
Hydrology, doi:10.1016/j.jhydrol.2020.124644.
Zhang, Y., Tang, C., & Nepf, H. (2018). Turbulent kinetic energy in
submerged model canopies under oscillatory flow. Water Resources
Research, 54.https://doi.org/10.1002/2017WR021732.