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1| INTRODUCTION

Chaos is a kind of seemingly random motion in the deterministic system, which is
extremely dependent on the initial value, so researchers have always thought that
chaos can be difficult to anticipate and control. After a long period of research and
exploration, however, Ott' proposed the OGY method, reached the purpose of
controlling chaos in 1990. In the same year, Pecora and Carroll* realized the
synchronization of chaotic systems and introduced the new conception of
drive-response, laying the foundation for the development of this unfathomable field.
As a pivotal of nonlinear dynamics, chaotic synchronization has captured great

attention among scholars in assorted fields. There are many popular research



directions in chaotic synchronization. For example, different synchronization types

8 etc.; various

including projective synchronization,”” generalized synchronization,®
methods to achieve synchronization state, like sliding mode control
method,g'loadaptive control,“']5 etc., and some important interdisciplinary
applications, viz. communication security,'® data encryption, and brain activity
modeling,17 etc. Yet in addition to these tasks, there is still a lot of room for
development. For instance, the efforts have been devoted to the synchronization of
multiple leaders-followers dynamic systems and multiple switching in the past fifteen
years.

Two-leader and single-follower systems are introduced into the combination
synchronization scheme by Runzi et al.'"® This scheme could break the situation that
chaotic synchronization was limited to the single-leader and single-follower systems.
Subsequently, the researchers put forward the synchronization method of
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combination-combination synchronization, compound-combination

25.2 . . . .
326 combination-combination

synchronization,zz'24 dual combination synchronization,
phase synchronization %’ etc. , which are not single-leader/single-follower systems. It
deserves to be specially noted that in safety communication, the strength of having
multiple leader-follower systems is that the signals being transmitted can be divided
into several different sections, and each section is loaded into different drive systems,

122 studied the

which can greatly enhance the anti-attack ability. Sun et a
combination-combination synchronization of four integer chaotic systems and
compound-combination synchronization of five integer chaotic systems.

The multiple switching synchronization scheme proposed by Ucar et al*® in 2008 is
a bold and interesting synchronization scenario. The special feature of multi-switch
synchronization is that the selection of leader and follower state variables is arbitrary,
and thence there are multiple possible synchronization directions. These kinds of
researches are crucial to communication security and only a handful of studies exist
for such topic. Vincent et al*’ extended the multi-switch synchronization from the

single-leader/single-follower systems to the two-leader/single-follower systems.

Shahzad®® discussed the multi switching synchronization for different orders of



integer order leader and follower systems. Khan et al’'??

investigated
combination-combination multi switching synchronization of four integer
hyperchaotic systems in 2017 and achieved dual combination multi switching
synchronization state of six integer time-delay chaotic systems in 2018. Aysha®
explored compound-compound multi switching anti-synchronization of six integer
hyperchaotic real systems. It's important to note that anti-synchronization is an
interesting phenomenon that has been focused greater attention on many physical
systems. Additionally, the integer-order systems and homologous fractional-order
systems are fundamentally distinct or different in kind. Most results or features of
integer order systems can’t simply extend to the fractional order cases. From what we
can learn, there is no report about multi-switch anti synchronization between
integer-order and fractional-order chaotic systems.

Complex chaotic systems, which first introduced by Fowler et al** have
captured great attention owing to their wide application foreground in the secure
communication domain. The complex variables can double the number of variables,
thereby increasing the amount of information transmitted and enhancing the security
of communication. Vijay et al’’ designed the appropriate control functions to achieve
combination-combination phase synchronization among four different fractional-order
complex chaotic systems. All scaling factors in the above multiswitching
synchronization are real matrices. We have learned about the complex scale factor is
harder to predict than the real scale factor. Therefore, choosing the scale matrix as a
complex matrix will greatly increase the wvariability and complexity of
synchronization. From an application point of view, different synchronization types
with complex scale matrix may provide better security and greater versatility. So far
as | know, up to this date, multi-switching complex synchronization about complex
variables has rarely been reported in view of the in fact that it is difficult to construct
Lyapunov function based on complex space. Therefore, how to effectively carry out
multi-switch anti synchronization between fractional and integer order complex
chaotic systems are particularly important in secure communication.

Inspired by the preceding discussion, in the present article, we put forward a new



synchronization scheme of complex compound-combination multi switching
anti-synchronization among three fractional-order complex chaotic leader systems and
two integer-order complex follower systems. This scheme can radically enhance
functionality at the anti-attack during the communication process due to its
complexity, and for all we know, so far, there are no results about this topic. By
designing suitable complex controllers without separating the real parts and the
imaginary parts, and choosing proper Lyapunov function of complex variables,
CCCMSAS has been achieved. In this paper, two examples are brilliantly finished
between different 3D fractional-order complex chaotic leader systems and 3D
integer-order complex chaotic follower systems as well as hyperchaotic complex
fractional-order chaotic systems and hyperchaotic integer-order complex chaotic
systems, respectively.

The rest of this article is arranged as below. We start with the definition of
multiswitching compound-combination complex anti-synchronization and put forward
a universal control mechanism of CCCMSAS among fractional order complex leader
systems and integer-order complex follower systems. Then, Section 3 introduces the
CCCMSAS among the three different fractional-order leader systems and two
different integer-order follower systems with complex variables. The CCCMSAS of
three identical fractional-order hyperchaotic complex leader systems and two identical
integer-order hyperchaotic complex follower systems was achieved in Section 4.

Finally, Section 5 generalizes a conclusion.

Notation C" represents n -dimensional complex vector space. If x, €C" then
X, =x/ + jx;, j is the square root of -1, superscripts rand i deputize for the real
part and imaginary part of complex vector X;,x, is the transpose of x,,x,” stands

for the conjugate transpose of X;,and ||x] || 1s matrix norm.

2 | DEFINITIONS AND PROBLEM FORMULATION

Suppose the three fractional order complex chaotic leader systems are



e zfl(xl)» (1)
d’x, _
e _fz(xz)» (2)
dx, _
e = fi(%), (3)

T .
where 0< g <15 % =(X0%,,%,) €C",k=12,3is a complex state vector,

ﬁ:(ﬁ]’ﬁz"“’ﬁn) N f;:(f;]aféza""fén) N f;,:(f;,]’féz""’f;n) are three 7
-dimensional complex continuous vector functions. Suppose X; = diag(x,,X,,"**,X,,),
X, =diag(xy, Xy, Xy, ) , Xy = diag(x;;, x5y, xy,).

The scaling compound signal of three fractional order complex chaotic leader

systems is described by

S =CX,(PX,+0X,), (4)
where C,P,QeC"" are complex scaling diagonal matrices, we assume

Czdiag(cl,cz,...,cn) ,Pzdiag(pl,pz,...,pn), 0= diag(ql,qz,...,qn) :
Suppose the two integer order complex chaotic follower systems with the

controllers are depicted as

32 :g](y])+ul’ )
V=8 (y2)+“2’ (6)
where yk:(yk],ykz,n_,ykn)re@" , k=12 1s the complex state vector,

g,g,:C" — C"are p-dimensional complex continuous vector functions and u,,u,
are two controllers of two follower systems (5),(6). Suppose Y, = diag(yll’yIZ""’y'") ’
Y, :diag(yzl’yzz"“’yN) )

The error system in matrix form is depicted as

e=AY, +BY,+S (7)



where A4,B e C"" are complex scaling diagonal matrices, and scaling matrices are
taken as A=diag(a,,a,, --,a,), B=diag(h,b,,---,b ) . Substituting Equation (4)
into (7) and the matrix form of the error is represented as

e=AY, + BY, + CX, (PX, + 0X,), (8)

wheree=diag(e,e,, ,e,).

n

Definition 1. For given leader and follower systems, if there exist five complex
constant nonzero diagonal matrices 4, B,C, P,Q € C"" such that

lim | = lim | 4Y; + BY, +CX, (PX, + 0X; )| =0, 9)

then the systems (1)-(3)and the systems (5),(6) are said to achieve complex

compound-combination anti-synchronization (CCCAS).
Remark 1. By multiplying both sides of Equation (8) by vector(1,1,-+-, 1);] , the matrix

form of the error is transformed into the vector form

¢ =(e.e, ) =es(LL,1)  =[AY, +BY, +CX,(PX, +0X,) }(LL-,1)

nxl "
Remark 2. The compound-combination complex anti-synchronization will be

achieved if the requirement is attained:
lime, = }ijg[akylk +b, 1y, + Xy (P + 4,53 ) | =0, (10)
where k=12,---,n,e=diag(e,e,,,e,).
Remark 3. Let us redefined the component of ¢, as
Cimse = D Vi +by, +c,x,, (psley +q, X5, ) , (11)
where k,I,m,s,g e(1,2,---,n)and subscript (klmsg)denotes k" component of y,

th
1" component of y,,m" component of X,,s” component of x,, and g"component

of x;. About Definition 1, the error elements are strictly selected to satisfy
k=l=m=s=g.

Definition 2. Based on Definition 1, the error states redeployed such that



k=I=m=s=g isnot satisfied, where k,/,m,s,ge(12,---,n)and

lim ||| = lim |4, + BY, + CX, (PX, + 0X, )| =0, (12)

t—w t—©

in that case, the leader systems (1)-(3) are called accomplished complex
compound-combination multi switching anti-synchronization (CCCMSAS) with the
follower systems (5),(6).

Remark 4. If A=0, or B=0 then the complex compound-combination multi
switching anti-synchronization problem will be turned into the complex compound

multi switching anti-synchronization of four complex chaotic systems.
Remark 5. If X, =al,a+#0, then complex compound-combination multi switching

anti synchronization changes to complex combination-combination multi switching

anti synchronization.
Remark 6. If X, =al,a#0, and 4=0 or B=0 then the complex

compound-combination multi switching anti synchronization problem will be turned
into complex combination multi switching anti-synchronization of three complex
chaotic systems.
Remark 7. If C =0then the complex multi switching anti synchronization could be
fully realized for complex chaotic systems (5), (6).
Remark 8. If B=0,C =0, then the synchronization problem will degenerate into the
control problem of the complex system (5).
Remark 9. If A=0,C =0 then the synchronization problem will degenerate into the
control problem of the complex system (6).
Theorem 1. The leader complex systems (1)-(3) will achieve CCCMSAS with follower
complex chaotic systems (5), (6) if the complex controllers are selected as
o, =-a, (g,k (y,)+ylk)—b, (gzl (y2)+y2,)—cmxlm (pstS +qu3g)

—C, X, (ps)'czé, + qgf@g +p.x, + qu3g) (13)

where o, = a,u,, +b,u2,,(k,l :1,2,---,n)_

Proff: The derivative of error components are

eklmsg = akylk +b1y21 +me]m (pstS + qu3g ) + cmxlm (ps‘x2s + qg‘ng ) > (14)



Insertion of (5), (6) into (11) gets

éklmsg =4a; (glk (yl ) + “1k)+ b, (gzl (J’Q ) Tuy ) +c,X, (psxz.s‘ +4q,%;5, ) T CoXim (psxz.s‘ + qu3g)

:akglk (yl ) +blg21 (yZ ) + cmxlm (pst.s‘ + qg‘ng ) + cm‘xlm (psxls‘ + qu3g ) + akulk + bluZI

(15)

Leto, =au, +b1”21’(l’k :1’2""’”) , by using (13)

e/dmsg = _aky]k _blyZI —me]m (ps'x2.y + qufsg) = _eklmsg (16)

The derivative of the error system in matrix form is depicted as

¢=AY, +BY, +CX, (PX, + 0X,) + CX, (PX, + OX,)

=A(G,(»)+U,)+B(G,(y,)+U,)+CX, (PX,+0X,)+CX,(PX,+0X,) (17)
=AG, (y,)+BG, (,)+CX, (PX, +0X,)+CX, (PX, +QX,)+ AU, + BU,,

where G](y]):diag(g]](y])’gIZ(y])"“’gln(yl))’ U, :diag(”m“]z"“’“]n)’

G, (yz) = diag(gzl(yz)’gzz(yz)""’gzn(J’2))’U2 = diag(”zl’”zz""auzn)’

U, :(umulz""’“]n)r Uy Z(u2],u22,---,u2n)T » & (yl):(gn(yl)aglz(yl)a'"agln(yl))T

£ (J’2) :(gzl(yz)’gzz(yz)a'"ag2n(yz))T .

We find that AU, +BU, and diag(o,,0,,--,0,) are equal and AU, +BU, can be

expressed as

AU, +BU, =—AG,(y,)- BG, (y,) - CX,(PX, + OX,) - CX, (PX, + OX,)-e. (18)

Define the Lyapunov function with complex variables as

V=%((e*)H e*). (19)

The derivative of V is

14 =%[(é*)ﬁ e +(e*)H é*:|

1

2

[(A(Gl (1) +U,)+B(G, (3,)+U,)+ CX, (PX, + X, )+ CX, (PX, + OX; ) o (1.1,++-,1), T e’

nxl

+E(6’*)H [(A(Gl (3)+U,)+B(G, (3,)+U, )+ CX, (PX, +0X, )+ CX, (PX, + OX, ) ]{(1,1,-+-,1)

T

nx1

]



(20)

which is negative definite. By using the Lyapunov stability theory, we obtain

—0

1im||e||=0_ This means that the CCCMSAS will be achieved for the leader complex

fractional-order chaotic systems (1)-(3) and follower complex integer-order chaotic

systems (5), (6).

3 | CCCMSAS AMONG FIVE 3D CHAOTIC SYSTEMS

Throughout this section, the nonlinear complex controllers are designed to realize

CCCMSAS between three different 3D fractional-order complex chaotic leader

systems and two different 3D integer-order complex chaotic follower systems.

The three fractional-order complex chaotic leader systems are defined as follows:

0.9
dx;
dtO.Q

0.9
d""x,,
dtO.Q

dt0.9

dtO.Q

0.9
d " x,,
dt0.9
0.9
d"x,,
dt0.9
0.9
d" x,

dt0.9

o . i T . 0
where X, =X, + jX|,, X, = X, + jx,

= 180)(11 X T X

0.9
d""x,,

0.9
d"xy,

(21)
1

= E(fnxlz +x11f12)_x13

=35 (x22 — Xy )

= _7x21 +28x22 = Xy Xo3 (22)

1,_ _
= E(xﬂxzz +X51%5 ) _3x23

=2.1(x32 —x31)

=27.9x;, —2.1x;,xy, (23)

1

5 (x31x32 + X305, ) —0.6x;,

T . 0 T . 1 T . 0
H X2] - X2] +]X2] H X22 _x22 +]X22 ’XSI - x3] +Jx3]

Xy, =X, + jx3, are complex variables, X, X,; ,Xyare real variables. The leader

systems are chaotic

when  (x,x,,%,) =(2+3/,5+6/,9)



(Xy1sXpsX03) =(6495,5+77,12)", (33,0, %53 ) =(8+7,j,6+8,,7)" see Figs.1-3,

respectively.
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FIGURE 3 Chaotic attractor for the system (23).

The two integer order complex chaotic follower systems with nonlinear controllers

are given by:



T :40()/]2 _y11)+“11
Vo =22y, = Vs g, (24)
Vi3 = 0'5(3_}11)}12 +y11)_;12)_5y13 +u,

Vo :14()/22 _y21)+“21
Vo =35Y51 = Vo1Vas — Var iy (25)
Vi3 = 0-5(3_}21)}22 +y21y22)_3-7y23 Uy,

where y;, = )}, +jJ’1i1 s Yo =V +jy1i2 y Vo =i +jy§] Vi =V +jy;2 are complex
variables, ),5,),; are real variables. The integer-order complex systems are chaotic

when (yn’ylz’ym)r:(1+2ja3+4ja5)r ) (y2],y22,y23)T=(3+6j,—3+j,3)T , S€C

Figs.4-5.
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FIGURE 4 Chaotic attractor for the system (24).
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FIGURE 5 Chaotic attractor for the system (25).

Arbitrary switched error states are chosen as below:

€310 = AV, + 0,15, + 035 (plle + q2x32)
€y = Ay V), + Dy, Hoixy (p2x22 + q1x31) (26)
€103 = A3 V;3 Dy, +HCox, (p3x23 +q2x32)

Theorem 2. The drive systems (21)-(23) and response systems (24)-(25) could

achieve CCCMSAS for the complex nonlinear controllers (27):



o, = au,, +bu,=—a, (40(y12 -y, )+y”)—b2 (35331 = VorVss = Yoz + V)
—CyX, (p]x2] +q2x32)—c3x13 (p1x21 +q,%;, + P X, +q2x32)

o, = a,u, +bu,,=—a, (22y12 —YuVis +y12)—b3 (0.5()721)/22 +y21)722)—3.7y23 +y23)
— 03X, (p2x22 +q]x31)—c3x]3 (pz)'c22 +q,X5, + PyXy, +q1x31)

o, = au, +bu, =—a, (0.5()7”)/12 + Y102 ) =5 +y13)—b1 (l4(y22 — ) +y21)

—C X, (p3x23 +4,%;, ) —CyXyy (p3x23 T q,X5, + P3Xyy T 45X5, )

(27)
Proff: The error dynamical system is
€310 = AV, 0,1y, 03Xy (plle +q,%;, ) +e3x, (pl)'cz1 +g,%5, )
€3 = Ay V), T DYy F X (pzx22 +q,%;, ) +e3x, (pz)&22 +q,%;, ) (28)
€193 = A3V + by, 00X, (p3x23 +q,%;, ) +¢,X,, (p3)€23 +q,X;, )
By substituting Egs. (24) - (25) into (28), the error dynamical systems of (21)-(25) are

translated into the formula, as described below:
€312 = 4 (40()/,2 _y11)+”11 )+b2 (35)/21 =Vl —Vn +”22)

+c3xl3 (p]x21 + q2x32 ) + c3xl3 (plx21 + q2x32)

33 = @, (22)/12 —Yulis +“12)+b3 (0-5()_’21)/22 + YQ1)722)_3-7)/23 +”23)

(29)
+ 3% (p2x22 +q,%;5, ) + 3% (pzic22 +q,%;, )
C31057 = s (0.5()7”)/12 + V110 )= 5V +u13)+b1 (14(y22 —y21)+u21)
+c,X,, (p3x23 +4,%;, ) +c,x,, (p35c23 + q2x32)
Denote
o, =au, +b,u,,
o, = a,u;, +byu,, (30)
O, = aju;; +bu,,
From (29) and (30), we get
€312 =, (40 (31, = 31)) + 5, (3590 = Yoy — )
+ 3% (p,x2] +4,%;, ) + 3% (plic21 + q2x32)+61
€301 =, (22)/,2 —y,]y,3)+b3 (0.5()721)/22 + y21)722)—3.7y23) 31
+ 3%, (p2x22 +q,%;5, ) + X5 (pzic22 +q,%;5, )+62
Eym = a5 (0.5(7, 00 + 31,7 ) =505 ) + b (14 (1 = 21 ))
+c,X,, (p3x23 +q,%;, ) +c,x), (p35c23 +q,%;, ) +o,




The Lyapunov function with complex variables is depicted as
1 H
V= —( e* e* ) N 32
() (32)
* T
Where e = (6123]2 ’62332] 4 e3]232 ) :

The derivative of V is

~
1l
N | —
1

&)'er(e) e

2312612312 +e23321623321 +631232631232 +6123 12612312 +623321623321 +e}l232631232 )

—_ —_
|

Il
D= o=
1

(@ (40(F = 70)) + By (35Fy = o s = P ) + 8 ( BTy + Gy ) + 6% (B + G ) 467 )€ |

a2 22y12 y11y13)+b (05(y21y22+y21y22) 3'7y23)+53';13 (ﬁ2f22+‘71'¥31)+c_)3)?13 (52;22+51;31)+62)823321j|

+

as 05 J’11J’12+y11y12) 5)_}13)_'_51(14(}_)22_yZI))_FC_.Z;lZ(ﬁ}fZ}+qZJ_C}2)+EZJ_ClZ (173;23+‘72)?32)+53)e31232j|

+
o

2312 40 y12 i ))+b2 (35)/21 — V)V _y22)+czx13 (pleI +‘I2x32)+c;x13 (plle +q25€32)+0'1 )j|

+
Ryl

3321 22)’12 J’11y13)+b3 (0.5()_/21)/22 + y21)722)_3~7y23)+03x13 (pzxzz + ‘I1x31)+csx13 (pzxzz +Q1x31 )+O'2 )j|

+
N |—= = N = w|~ wlw

|:231232 O 5 ynylz +y11y12) RN ) +b (14(y22 —Va )) +6,X), (pzxzz +4,%5, ) T X, (pzxzz + q2X32)+O'3 )j|
(33)
Substituting the numerical value equations of 0,,0,,0; in (33), we obtain
V= _512312612312 _523321323321 _531232831232 <0 (34)
Hence J is positive definite, the derivative of V is negative definite, indicating that

the CCCMSAS error system has reached asymptotically stable state.

In the numerical modeling, the initial states of the leader systems (21)-(23) and the

follower systems (24), (25) are randomly given by(x”,xlz,xm)r = (2+3j,5+6j,9)r,
r . AT T . AT
(xZ],xzz,xB) :(6+9],5+7],12) ,(x3],x32,x33) :(8+7],6+8],7) ,
r . Y T . T
(V0o vi2ss) =(1427,3444,5) (11, V2o v0s) =(3+6/,—-3+4,3) . We assume
a =1+j,a,=1-j a,=1 b =1+j b,=1-2j b,=1c,=1-2j c,=1+j ¢, =1

p=l+j,p,=1-j,p;=1,9q,=1+j,9,=1-j, g;=1. The initial values of complex

compound-combination multi switching anti-synchronization (CCCMSAS) error will



b€ (€13312> Xappots Ky ) =(97+163/,127+154/,~36+303;)" . Figure 6 shows the time

response of CCCMSAS errors €,3,,€,33,; and €;,,;, between the leader systems
(21)-(23) and follower systems(24)-(25), where the curves of blue, red and black

represent error states €,,,, €33, %py and solid and dotted lines present the

real-parts and imaginary parts of error states €,3,,,€33,5€103, respectively. Figures

7-12 show the time response of the real parts and imaginary parts of the complex

compound-combination multi switching anti-synchronization synchronized states

a,y, +b,y,, andc,x;, (p1x21 +q2x32) , 4V, +hy,and cpx (pzxzz + qlx3l) ,a,y,; + by, and

clez( p3x23+q2x32)0f the leader systems (21)-(23) and follower systems (24)-(25)

respectively. It should be noted that the controller involves the integer-order
derivative of the leader variables, but the known leader systems are fractional-orders.
Therefore, in this paper, the numerical simulation of state variable response is carried
out by using the engineering time-domain and frequency-domain conversion method
to convert the given fractional order leader system into integer order operation. As
expected, numerical simulation results show that CCCMSAS has been implemented
between five different complex chaotic systems (21)-(23) and (24)-(25), which is
consistent with the theoretical analysis and further demonstrates the effectiveness of

the controller.
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FIGURE 6 The CCCMSAS errors €,,;,,,€,3, ande,,,, between the leader systems (21)-(23)

and follower systems (24)-(25), where the full lines are depicted as real parts of €,,5,,5€5330,5 €123



and the dash lines represent imaginary parts of errors €3, €331 €337 -

FIGURE 7 Response for the real parts of the states
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where Im(aly” +bzyu) = +y1i1 +y;2 —2y,,,Im

( 3 |3 (plle +q2x3z

r

Xy

)

)) =X (x; +x;1 +x;z
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3x23 + q
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4 | CCCMSAS AMONG FIVE HYPERCHAOTIC SYSTEMS

In this section, we will implement the CCCMSAS among five hyperchaotic

complex systems.

Suppose three fractional-order complex hyperchaotic leader systems are



do.95x” '
PRXS = 15(3512 =X )+Jx14
d0'95x]2 |
dt™” =36, =X, =X, X5 + jX;,
4% (35)
3 L _
1% _E(xnxlz +x]]X]2)—4.5x13
Pz B ~
dt0'95]4 = E(XHXIZ +X,, %, ) -12x,,
d0'95x2] '
FAXE =15 (xzz — Xy ) 17,
d0'95x22 |
dr’” =360y, = Xy — Xy X5 + Xy,
%% (36)
o L— _
PR E(lexzz + X5, X5, ) —4.5x,,
%« B ~
dt0'9524 = E(lexzz + X5, X5, ) -12x,,
d0'95x3] '
PRXE =15 (x32 — X3 )+Jx34
d0'95x32 |
dt®” =306, — X3, = X355 + JXy,
%% (37)
3 L — _
RS —5(x3]x32 +x3]X32)—4.5x33
d0'95x34 ~ ~
PR §(x31x32 +x31x32)_12x34

T . 0 T . 0 T .0 T . 0 T .0
where X, =X, + X, X, =X, F X, L Xy =X+ X, Xy =X, + X, , Xy = X5, + X,
=X}, + jxi ] iabl 1 variabl
X3, = Xy, + JX3, are complex variables, X5, X,,%; , X, Xy, Xy, are real variables.

Suppose the two integer order complex hyperchaotic follower systems with

nonlinear controllers are

i :ls(ylz _y11)+jy14 tu,
Via =36) — Vi, = ViVt s Ty,
1

i3 :E(J_’nylz+y11y12)_4-5y13+”13 (38)

. 1,_ _
Via :E(ynylz +y11y12)_12y14 tuy,



Vo = ls(yzz — YV )+jyz4 +u,,
Vi =36, = Vo = Vo1 Vos  JVos iy
1

Va3 = E(J_jzlyzz + y21)722)_4-5y23 Uy, (39)

. 1,_ _
Yaa :E(yzlyzz +y21y22)_12y24 +uy,

r . q r . q r . r .
, where Y, =Y, + Vi, Yo =Vt Vi s Yoy = Vo H Vo s Vi = Vi +JVy, are complex
variables, ¥i3,)14,V2,Y,4 are real variables.

Arbitrary switched error states are selected as follows:

Clyzng = @Yy D,V +C3X 5 (pzxzz + Q4x34)
€113 = AV, T D3y X, (plle + Q3x33)
Cgn1 = A3 Y3 by, Xy, (pzxzz + Q1x31)

€ = AV, Th Yy X, (pzxzz + Q3x33)

(40)

Theorem 3. If the controller according to Theorem 1 is designed to Eq. (41), the

leader systems (35)-(37) and follower systems (38)-(39) can achieve CCCMSAS:

o, =—aq (15(3/12 — V) F D +y”)—b4 (0.5()721);22 + V0 ) —12y,, +y24)
—CyX, (p2x22 +q4x34)—c3x13 (pzic22 +q, X + D)Xy, +q4x34)

c,=-a, (36y” Vo =V Vizt VT ylz)—b3 (0.5()721)/22 +y21)722)—4.5y23 + y23)
- X, (p]x2] +q3x33)—clx” (p])'czl +q;%55 + PiXy, +q3x33)

o, =—a, (0.5()7”)/]2 + V1 )~ 450, +y13)—b2 (3655, = Yoy = VorVos + Vs + V)
—C, X, (pzx22 +q]x31)—c4x14 (pzic22 + %5, + PyXy, + q1x31)

o, = —524(0.5()7”)/]2 +3.) 12y, +y14)—b1 (15();22 — V31 ) Vo +y21)
—c,X,, (pzx22 + 5%, ) -CX,, (pzic22 + 353 + PyXyy + q3x33)

(41)

, Where 0, = ajt;, + by, 0, = ayuy, + by, 05 = Ay + by, 04 = auuy, + by,
The initial states of the leader systems (35)-(37) and the follower systems (38),

(39) are randomly taken as (%,,X,.Xs%,) =(12+10/,2+7;,9,10)"
(le,xzz,x23,x24)r:(10+12j,5+6j,4,8)T ,(x3],x32,x33,x34)T:(8+7j,6+8j,7,8)T ,

(yll’ylz’yl3’yl4)r:(12+10j’2+7j59510)r ) (y2],y22,y23,y24)T=(8+7j,6+8j,7,8)T .



The matrices elements of 4,B,C,P,Qare selected as @, =1+j,a,=1,a,=1a,=1,

b=1+j b,=10b,=1b,=1c =14 c,=1 ¢c;=1 ¢, =1 p=1+j p,=1 p,=1 p, =1,

2

g, =1+j,9,=1, q;=1,4q,=1, The initial values for the CCCMSAS errors

(Crusnar €113 Craiars €anns ) are (127 +767,-467 +1615,45+228/,-97+511,) . Figure
13 shows the time response of complex compound-combination multi switching
anti-synchronization errors € ,3,4,€3,13-€34,; and €,,,,; between the leader systems
(35)-(37) and follower systems(38)-(39), where the curves of blue, black , red and

green represent error States €43,4-€3113-€3401 » €41123 and solid and dotted lines are
depicted as the real parts and imaginary parts of € 43545€531135€30421> €41123 TESPECtiVEly.

We can see that CCCMSAS errors €434, €,3113>€30401and  €,1,3 progressively converge
to 0. Figs.14-21 indicate the time response of the real parts and imaginary parts of the

complex compound-combination multi switching anti-synchronization synchronized

states a, + b4y24 and X5 (pzxzz + q4x34) > azylz + b3y23 and Clxll (p1x21 + q3x33) )

ayy;5 +b,, and ¢,x, (P, +4,%,) , a,y, +by, and  ¢x, (p,x, +¢x,;) of the leader

systems (35)-(37) and follower systems (38)-(39) respectively. Sure enough, the
simulation results indicate that CCCMSAS has been accomplished well among five
complex hyperchaotic systems (35)-(37) and (38)-(39), which accord with the
theoretical analysis and further illustrates the feasibility of proposed nonlinear

controller.
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Re(a3yl3 +b2y22) = y13 +y;2 > Re(CAxIA (prZZ + qlx3l )) = xl4 ('x;z +x;l _x;l ) *
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Where Im(aAyIA +bly21 ) = y;Z +y;2 > Im(clxll (p2x22 +q3x33)) = (xl"l +xlll )(X;Z +x33)+x;2 (xl"l _xl,l) *

5 | CONCLUSIONS

In this article, we provide CCCMSAS among three fractional-order complex
chaotic systems and two integer order complex chaotic systems. The proposed scheme
extends the scale factors of multi-switch synchronization from the real space to the
complex space, and is distinct in research objects from the reported multi-switch
papers is that the leader and follower systems of this article are three fractional-order
chaotic systems and two integer-order complex chaotic systems, respectively. This
scheme may supply better security and greater versatility in secure communication.
Complex universal controllers are designed to lead to compound-combination
complex anti-synchronization in the form of multiswitching. With the view of to
perform the correctness and validity of the proposed complex compound-combination
multi switching anti-synchronization scheme in Sect.2, two examples are
accomplished well between different 3D fractional-order complex chaotic leader
systems and 3D integer-order complex chaotic follower systems as well as
hyperchaotic complex fractional-order chaotic systems and hyperchaotic integer-order
complex chaotic systems, respectively. The facts of the availability and reliability of
the method have been triumphantly confirmed by the graphical presentations. This

scheme not only greatly improving the security of communication process



information transmission, but also has potential advantages in realizing intelligent

synchronization.
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