NOTE ON SOME FRACTIONAL BI-INHOMOGENEOUS
SCHRODINGER-CHOQUARD EQUATIONS

L. CHERGUI

ABSTRACT. In the subcritical energy case, local well-posedness is established in the
radial energy space for a class of fractional inhomogeneous Choquard equations. The
best constant of a Gagliardo-Nirenberg type inequality is obtained. Moreover, a sharp
threshold of global existence versus blow-up dichotomy is obtained for mass super-critical
and energy subcritical solutions.

1. INTRODUCTION

Our purpose in this paper is to investigate the Cauchy problem for the following fractional
inhomogeneous Schrodinger equation of Choquard type:
i — (=A)u= el * |- |°ul?)|z]|uP~?u,
u(0, ) = uyp,

where v : R x RN — C for some N > 3,5 € (0,1),p>1l,e=+1,<0and 0 < a < N.
The fractional Laplacian operator stands for

(—A)% = FH(E[*F),
where F is the Fourier transform. The Riesz-potential is defined as

L(*32)

T(2)7 20|z N—o
Here and hereafter, we assume that
(1.2) min{a, -8, N —a, N+ 5, N + a+25,2s + o+ 25} >0

In three space dimension, for s = 1 and 8 = 0, the problem (1.1) corresponds to the
homogeneous Schrodinger-Choquard equation which has several physical origins such as
quantum mechanics [15], Hartree-Fock theory [17], and non-relativistic quantum theory
[11). If p = 2,5 = %,B = 0, then (1.1) models the dynamics of boson stars, where the
potential is the Newtonian gravitational potential in the appropriate physical units [7, 14].
When s = 1 and 8 < 0, some particular cases of the equation (1.1) arise in the study of the
mean-field limit of large systems of non-relativistic bosonic atoms and molecules [24, 9].
Before we proceed to the discussion, it is useful to look at the most vital symmetry which
is scaling. Indeed, the equation (1.1) enjoys the following scaling invariance

(1.1)

In() == r € RY.

= [N e

a+2s+28 %
ux(t) = A 20 u(A*t, A-), A > 0.
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For a real number u, we have
_ N at+2s+2p
lux ()l g = N2 7200 (A28 X) |

So, the critical exponent is
N a+2s+20
Se i =— — ————,
TR 2
for which the H* norm is unaffected by scaling. The case s, = 0 corresponds to the
mass critical exponent p, = 1 + %SHB The energy critical case s. = s corresponds to

p* =1+ %‘o’gjﬁ For smaller p, that is p €]1,p*[ which is called the energy subcritical
exponent, contracting time reduces the size of the H*® norm. This is the effect that will
be exploited to build up solutions.

In the case s = 1 and 8 = 0, the problem (1.1) was investigated in [8, 23], some particular
cases were considered by different authors [4, 10, 2]. In [19], the existence and asymptotic
properties of standing waves were investigated. Few paper deal with the general form.
Recently, in [21] the above problem was studied in the case s € (%, 1) and 8 = 0. Also,
the case s =1 and < 0 was investigated in [22].

Any solutions to (1.1), in the energy space, satisfies the following conserved quantities:

Mu(®) = | (o) de = M),

Bu) = [ A=0)u0F + S e |- Pl ol ) Phe = Buo)

It is well known that ¢ = 1 corresponds to the defocusing case. Thus, any subcritical
energy solution is claimed to be global. When ¢ = —1, which is said the focusing case, any
chance to control the H* norm of the solution with the conservation laws. So, maximal
solution of (1.1) may blow-up in finite or infinite time.

It is the aim of this paper to investigate the problem (1.1). Indeed, local well-posedness in
the radial energy space and global existence in the defocusing case are obtained here. In
the focusing sign, the existence of global and non global solutions is discussed with respect
to a sharp Gagliardo-Nirenberg inequality related to (1.1).

The manuscript is organized as follows: Section two summarizes the main results. Section
three presents some technical tools needed here. Section four is devoted to establish
the existence of ground state for (1.1) and to prove a sharp Gagliardo-Nirenberg type
inequality. In Section five, a Virial type inequality is established. The two last Sections
are devoted, to show the well-posedness of the main problem, to give a sharp dichotomy
of global/non global existence of solutions, and to derive blow-up results.

We end this section with some notations. We consider the Lebesgue spaces L" := L"(R")
equipped with norms || f||, := || f||zr = (fRN ]f(x)|rdx)% if r < 00, else || flloo := |[fllze =
sup ess, ecrn | f(x)]. For vector valued functions ||(f;)|co := sup|| fjlloc. When r = 2, let

J
£l :== lIfll2. The usual inhomogeneous Sobolev space is denoted by W*" := W=7 (RN)

and endowed with the complete norm || f[|ysr == (||£]|" + [ (=2)2 f||")7, in the case r = 2
we denote H® := W*? which is equipped with ||f||gs := (|| f||> + H(—A)%fﬂg)% We need
also to introduce some Bochner spaces LI(L"), L9(H®) and L9(W*") equipped with their
naturally norms. If X is an abstract space, the set of continuous functions defined on [0, 7'
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and valued in X is denoted by Cp(X) := C([0,7T), X), if necessary the interval of time
may be closed. Also, we denote LL(X) := L1([0,T), X). The set X, stands for the set of
radial elements in X. Any constant will be denoted by C which may vary from line to line.

For simplicity, let [ f(x)dz := [pn f(2)dz and [ f(z,y)dzdy := [ [ f(x,y)dzdy. Finally,
if A and B are non-negative quantities, we write A < B to denote A < CB. Moreover,
we use the notation A = O(B)(respectively A = o(B), A ~ B) by which we mean that
A < B(respectively A S eB, A= B+ o(B)) holds.

2. MAIN RESULTS

At First, let us introduce the following quantities
1
B:=-(Np—N-«a—-238),A:=2p— B;
s

| Al .

J o x| 1PlulP)|2)Plufpde

J(u) == for u € H* — {0}.

For a,b € R, let
= min(2a + (N — 2s)b,2a + Nb) , i = max(2a + (N — 2s)b, 2a + Nb);

and

A={(a,b) € R} xR s.t 2ap>7 >0 and pu > 0}.
We denote also

vap = AV(AT) | Lap(v) = (0r0) ) =13

Kf,,,(v) = (2a + (N = 25)b)||v|1%,, + (2a + Nb)|Jv|/%;

and
N 1 B, |P B, |P
Kqp(v) == —§(2ap+ b(N +a+28)) [ (Lax||"|vf)|z]”|vPdu;

S=M+E, Ko :=LepS = K2+ Ky

a K(Z
Ej’)S:S—f’b.
n

Ha,b = (1 —
Now, we have to define the so called ground state solution of the problem (1.1).

Definition 1. Any solution to

(2.1) ~(=2)°¢ = 6+ (I | - 79" |2|°|6[P %6 = 0,6 € H* — {0}
which minimizes the problem
(2.2) mapi= inf (S(0) st Kup(v) = 0,

is called ground state of the problem (1.1).
Our main results are the following:

Theorem 1. (Ezistence of ground state)

Let N > 3,5 € (0,1),p« < p < p* and taking (a,b) € A, then
(1) m :=mqy is nonzero and independent of (a,b);
(2) there is a ground state solution to (2.1) and (2.2).
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Remark 1. The condition 2ap > [ is due to the presence of B and it is used only in
(4.1). We can omit this condition if we assume that o+ 28 > 0. The condition p, < p is
needed only in (4.2). If we relax the set A to

A" :={(a,b) e R xR s.t 2ap+ (N + o+ 28)b > 1 > 0 and p > 0}.

Then, the previous Theorem holds for any exponent 1 +

2
an\,ﬁ <p<p*.

Theorem 2. (Sharp Gagliardo-Nirenberg inequality)
Let N > 3,s € (0,1), a and 8 satisfying (1.2) and 1 + O‘J]“Vw <p<p*. Then
(1) there exists C(N,p,s,a, ) > 0 such that

(2.3) Vu € H, /(Ia * |- |Pul?) el [ulPde < C(N, p, s, a0, B)||ull *|u] 5.

(2) the minimization problem
1 .
C(N,p,s,a,f) - velgrrslf{o}
is attained in some Q € H* satisfying C(N,p, s, o, B) = [(Io*]- 181QP)|x|?|QPdx

J(v)

and
2p _
2.4 B(-A)Q+AQ — —————— (I + |- °|QP)|z||Q[P2Q = 0.
24)  BAFQ+AQ- grtslla x| QPP Q = 0
(3) Moreover, there is ¢ a ground state solution to (2.1) such that
2p A B
(2:5) O(N.p.s.a.8) = () o 27,

Remark 2. In the sequel, it is useful for some time that B > 2 in (2.3), this is verified
under the assumption p, < p.

Next, we show that (1.1) is well posed in H?, for any exponent 2 < p < p*. However, the
a+2p
N

energy is well defined for exponents such that 1 + < p < p*. Such restriction is due
to contraction arguments which are used in the proof, since the source term is singular for
142428 < p <2,

Theorem 3. (Well posedness in the radial energy space)

Let N > 3,s € [2N 7, 1), a, B satisfying (1.2). In addition, we suppose
N—-4s<a+28,N+8>s,N+a+28—-2s>0and2<p<p.

Then, for allug € Hyy there exists T* := T*(||luo||ms,) > 0 such that (1.1) admits a unique

mazximal solution

UGCT*( )qu

loc

(0, T*), W) ¥(q,r) € Ts.
In addition, such solution satisfies the conservation lows
M(u(t)) = M(uo) and E(u(t)) = E(uo),
and it is global if one of the following assertions holds:
(1) e=1 and p < p*;
(2) p<ps
(3) p=p« and M(uo) < (zrnpsar)

o
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Remark 3. We remark that

(1) the condition N —4s < a+ 23 means that 2 < p*,
(2) results obtained in Theorems 1, 2, 8 are valid also for the following inhomogeneous
problem
(2.6) i — (=)*u = ela|’ (Lo * Jul?)[ulP~>u,
. u(0, ) = uo,
Indeed, replacing 23 by B and slight modifications in their proofs leads to the desired
results.

Now, we are interested on non-global solutions to (1.1). So, we establish first some Virial
type inequality. For that, we make use of ¢ € C5°(RY) a radial cutoff function which is
introduced in [3] and defined as follows:

(2.7) ¥(x) zlet’, for faf <1, dy” <1
. ) = an .
C, for |z| > 10. B

For all R > 0, we denote g := sz(ﬁ). It is well known that g satisfies some properties
[3], mainly

YR <1, YR(r) <7 AYg < N.
The localized Virial is denoted

N
Mylu] == 23(/uV1b.Vudx) = QJ(Z/uakwﬁkudx).
k=1

Theorem 4. (Virial type identity)
Let N > 3,5 € (%,1), a, B satisfying (1.2) and 1 + %NQB < p < p*. Assume that u €
Cr(H?,;) is a solution of (1.1). Then

(1) For R> 0 and € > 0 small enough, we have

d
@MwR[UJ <2(N(p—1) —a—28)E(uo) — 2N (p — p.)||ul/%,.
14e(, 1_ at28
bl O
+C(R™* + H ).

R(N-1-e)(p—1-2%2)

(2) If p=1p«, E(up) <0 and N > 1+ 2s+ a+ 20, then for R large enough, we have

d

$M¢R[u] < 2sE(up).

Remark 4. These estimates are established only for solutions of the main problem (1.1)
and do not concerns (2.6). In fact, the nonlinearity in (1.1) has a symmetry with respect
to the term |x|®, which is crucial in computations.

Theorem 5. (Blow-up vs global well-posedness)

Let N > 3,s € (0,1),a, 8 satisfying (1.2). In addition we suppose N —4s < a+ 283 and
0 <s.<s. Let ¢ be a ground state solution to (2.1), ug € H?,, and w € Cp-(H?;) be a
mazximal solution for (1.1).
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(1) Assume that s € (3,1) and 1 + # <p<1l4+2s+ &NM Suppose that either
E(ug) <0 or E(ug) > 0 with the two next inequalities

(2.8) E(u)™ M (uo)™ > < E(¢)* M(p)" >

(2.9) [[uoll. lluol ™% > ll¢ll . 1ol

Then,
(a) if 0 < s. < s, then u blows-up in finite time, in particular T* < oo and
lim sup ||u(t)|| 7. = +o0;
t—T*
(b) if sc = 0, then u either blows-up in finite time or there exist C > 0 and an
instant of time t* > 0 such that
Vit >t (u(t)| s > Ct°.
(2) Suppose that E(ug) > 0 with (2.8) and
(2.10) [[uol % [luol~ < el 7. 011>,
then T = oo.
Remark 5. In the previous Theorem, the assumption p — 1 < 2s + O‘—}'\?B is a natural
extension for the condition “o < 2s” used in [3] to our problem. In the case § = 0, that

would give more wide interval for the exponent p, when compared with the assumption
p < ﬁ(l + & +4s) from [21].

3. TooLs

The following Lemma summarize some classical results from[l, 5, 18], mainly Sobolev
injections and interpolation inequalities.

Lemma 1. Let N > 2 and s € (0,1). Then

[ ] HS — Lq; fO?ﬁ any q 6 [27 NQi\;s];
o H? —— L% for any q € (2, %)’

e for anyr € (1, %) and q € (r, %], we have W™ — L4;

e for any q € [2, NQfNQS], let 0 := %(% — %), we have the so-called fractional Gagliardo-
Nirenberg inequality

—0 0
(3.1) lullg < Nl lull.;

° if%<,u<s<%, then for all w € H®, we have

(3:2) (=) 2ull < [full' =5 [[(=2)2ull5;
e ifue(3,%), then for allu € HY,, we have
N_ L
(3:3) sup a2 Hu(x)] < C(N, w)[[(=A) 2 ul.

zeRN —{0}
The next fractional chain rules [6] will be useful.

Lemma 2. Let s € (0,1] and 1 < p,p;, q; < oo satisfying % = p% + i. Then
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e if G € CL(C), then
IVIFG)llp S NG @) llp, 11V ullgy

VI (wo)llp S NV FPullp, [vllgr + 1TV I0]lp, 1ullg, -
Recall the Hardy-Littlewood-Sobolev inequality [16, 21].

Lemma 3. Let N >3, 0< A< Nandl<r,s<ooand f € L", g € L°. If%—i—%—i—%:l
then

wdmy < C(N, s, M Nl llglls-

Corollary 1. Let N >3,0< a< N, 1 <q,r,s<oo and f € L", g € L°.
. if%—i—%:l%—%, then

/(Ia * f)(2)g(y)dzdy < C(N, s, )| fll]lglls;
° if%—k%—i—%:l—i—%, then

I+ gl < C(N,s, @) fllr[lgls-

The last estimate is known as the Hardy-Littlwood-Paley inequality. Next, recall also the
generalized Pohozaev identity [13, 20].

Proposition 1. Let ¢ € H®, we have

¢ is solution to (2.1) & S'(¢) = 0,
Moreover, in that case K,p(¢) = 0,V(a,b) € R%
Finally, let us recall the so-called radial Strichartz estimate [12].

Definition 2. A couple of real numbers (q,r) is said to be admissible, we denote (q,r) €
Ly, if

AN — 2 1 1 2s

,m) and N(= — =) = —.

q 22,1 € [2,400),(q,7) # (2 3 T

Proposition 2. Let N > 2, % <s<1landuy€ L%d. Then for any admissible pairs

(q,7) and (q,7) from T, we have

lull Lgzry < Nuoll + e = (=A)ull 1 o0y

Remark 6. The Strichartz inequality is compatible with truncations. Indeed, if we have
i — (=A)*u=h and (q,7),(q,7), (q1,71) € T's then

< ~/ =7 =1 " .
Julzzcery S Wooll + gy + Wl ot
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4. GROUND STATE AND SHARP (GAGLIARDO-NIRENBERGE INEQUALITY

4.1. Auxiliary lemmas. In this section, we are going to prove some intermediate results
which will be crucial to prove Theorem 1. For easy notations, let

u = uib,K = Ké"b,KQ = Kﬁb,KN = K]Yb,ﬁ = Lgp;

a
and we keep the notation H,.

Lemma 4. Let (a,b) € A. Then

(1) min(LHgp(u), Hyp(w)) > 0 for all w € H® — {0},
(2) A\ — H,p(u?) is increasing.

Proof. Let uw € H® — {0}, we have

Hap(u) = (1 §>s<u>
=;W&w—Kw»
1

= —{(n— Q2a+ (N =25)b) | (=2)2ul® + (& — (2a + Nb))|lu]*

L(2ap-+ N 0 +28) = ) [ (T x| Pl ol fuPda).

At this step, if we adopt the set A’ instead of A, one gets 2ap + b(N + a+28) — i > 0
which implies clearly that H,p(u) > 0. Otherwise, we have

) 2a+ Nb, if b > 0
| 20+ (N —2s)b, ifb<O0.

In the case b > 0, we have
2ap +b(N +a+28) — i =2a(p—1)+bla+25) > 0.
Indeed, from (1.2), one has oo +28 > —N. So
(4.1) 2a(p — 1)+ b(a +28) > 2a(p — 1) — Nb = 2ap — (2a + Nb) = 2ap — pu > 0.

In the case b < 0, from > 0 we obtain b> —QW“. Hence

2a(p— 1)+ bla+28+2s) > 2a(p—1) — 2ﬁa(oz + 28+ 2s) > 2a(p — p«).
Since p* < p, we obtain
(4.2) 2ap + b(N +a+28) — i =2a(p— 1)+ bla+ 25+ 2s) > 0.
In summary, we obtain

(4.3) 2ap+b(N +a+28) — > 0,¥(a,b) € A.
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Thus H,p(u) > 0 for any (a,b) € A.
Furthermore, we have

LHap(u) = £(1 = 2)S(u) = =2(L = B)(£ = )S(u) +p(1 =

= (£ = )L = () + uHaslw) > —=(£ = )£ = S(w).
Clearly, we have (£ — fi)(£ — p)||ul|3;s = 0, then
o o Pl
— —(2ap+ BN + 0+ 28) = ) 2ap + BN + 2+ 25) ~ )

/ (I * | - 1P )]l |ulP de

c 1 L
[

CHqy(u) > ;w —B)(L — p)(

1
2 ]Tﬂ(2ap+b(N+0< +20) - M)Z/(Ia | Ll ) ulP da.

Hence LH,p(u) > 0, this complete the proof of the first point. The second point follows
from the equality 8>\Ha7b(u’\) = EH,Lb(u)‘). O

Lemma 5. Let (a,b) € A. Ifu, € H*—{0} is a bounded sequence such that lim K9 (u,,) =
0, then there exists ng € N such that: K(u,) > 0,Yn > ng. !
Proof. First, let us remark that for any (a,b) € A, we have

K®(uy) >0 and [[(—A)2un||? < K9 (uy).

In fact, the conditions i > 0 and p > 0 ensure that 2a + (/N —2s)b > 0 in any cases. Since
P« < p < p*, then (2.3) holds with B > 2. Hence

/(Ia w | P lun P 2P lunlPda S N | (=2)2un]l® = o(ll(=2) 2 un||?) = o(K(un))-
Thus, when n goes to +o00, one gets

- ;(2ap+b(N+Oé+25))/(Ia * |- ul?) ) ulPde
= K% up) + o(K9(up)) ~ K%(up) >0

K (up) = K9(uy)

Remark 7. Whenever (a,b) # (1, 32) then 2a+ Nb > 0. In that case
/(Ia * | P lunl?) 2 lunPde S Jlun | (=2) 2wl ® S K9 (un) .

Then K (uy,) ~ K% (uy,) holds for any exponent 1 + % <p<p
The last intermediate result is the following.

Lemma 6. Let (a,b) € A. Then

Map = o o Hao(u) 51 K(u) < 0}.
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Proof. We have

24+ Nb 2a+(N—2s)b
el = A7Z Nl and [Jutl e = A2 Hlull e
Then the set {u*, A € (0,1]} is bounded in H*. Now, let
= inf {H 4 K(u) <0}
rim it {Husw) st K(u) <0}

It is obvious that
{S(u) s.t K(u) =0} = {Hgp(u) s.t K(u) =0} C {Hyp(u) s.t K(u) <0}.
Hence r < mg . Conversly, take u € H*—{0} such that K(u) < 0. We have )l\ir% K9 =
H

0, taking account of Lemma 5, there exists A € (0,1) such that K(u*) > 0. Knowing
that K(u') = K(u) < 0, so by a continuity argument there exists Ao € (0,1) such that
K(u*) = 0. The function A\ — H, (") is increasing, then

Mab < S<u)\0) - Ha,b(u)\o) < Ha,b(ul) - Ha,b(u)-

This valid for any u € H* — {0} such that K(u) <0, so we deduce mq < 7. This finishes
the proof. O

4.2. Proof of Theorem 1. Let (¢,,) be a minimizing sequence, with a rearrangement
argument via Lemma 6, we can assume that (¢, ) is radial decreasing and satisfies

(4.4) on € Hyy — {0}, K(¢n) = 0 and lim H, () = im S(¢n) = ma.p.

First step. At first, we will prove that (¢,) is bounded in H®. In the case b > 0, let
A= %. Since K(¢y,) = 0 then dividing by 2a > 0, we get

(L+ (N = 29)0)(=2)36ul + (1 + NA) bl
— (4 AW) / (Lo * |- 1Plul?) [P b0 Pl

Therefore

1nllZs = /(Ia * |- 1P1onl?) )’ |gnlPda + A{(25 — N)||(=2)2 dul* = Nlignl?

N+ a+20
y A / (Lo # | - 1P|l |2l |6 Pd).
So

lonlls — 25AI(=2)3 nll® — (1 + X )/(Ia # |- 1P1gnlP) 2| | dnlP da
1

— AN (I0ulye = o [ (o] Plnl?) ol 6, Pd)
= —ANS(¢n).

Knowing that S(¢r) — mqp, then S(¢,) defines a bounded real sequence. Hence, for any
real number ¢, the following sequence is bounded:

s d A 2
25AI(=8) 6+ 3 = DlGalle + (1~ + W) [ a1 Pionl el

a+ 203
p



L. CHERGUI/FRACTIONAL BI-INHOMOGENEOUS CHOQUARD EQUATION 11

Taking § € (1,p), it follows that (¢, ) is bounded in H®. In the case _TQ‘L < b <0, since
K (¢,) =0 then
1S (¢n) = 1S (dn) — K(én)
= (2a+ (N = 25)b)S(¢n) — K(¢n)

= 208, + 1 (Galp— 1)+ bla+ 26 +25)) [ (o] PlouP)lal’ 6, P
L2alp— 1)+ ba-+ 25+ 29)) [ |- Plonl? )il P
Implies

fiS(¢n) + (2a(p — 1) + b(e + 28 + 25))S(¢n) > (2a(p — 1) + b(av + 28 + 25)) || by |77
Since

2a

(4.5) 2a(p—1) + bl +28+2s) > 2a(p— 1) 7

(a+28+2s) =2(p—ps) >0,

then ¢,, is bounded in H*.

Second step. In this step, we will prove that m,;, > 0. Thanks to the compact injections,
one obtains
2N

"N — 23)'
Assume ¢ = 0, using the Hardy-Littlewood-Sobolev inequality, one gets

¢n — ¢ in H® and ¢, = ¢ in L",Vr € (2

(4.6) /(Ia * |+ 171n[?) 2’| fnlPde S H|~’U\ﬁ!¢n|p||2z%~
Let p:= (%)_ >1andr:= #gﬁ—e for some € = 0*. We have i + 2= ot then

e16nP1 25 iy < Moty NonPlz S Ndul2

2N

Because p. < p < p*, one gets 2 <r < 575, Thus, when n goes to +oo, we have

121180 7]l 23 (u1<1) S lBnllE = 0.

N

Similarly, by choosing p := (Tﬁ)+ ~1andr:— — 20p

aTNToATE for some ¢ = 0™, we obtain

H’Jf|ﬂ‘¢n’pH%(|x|>1) — 0 when n — +o0.

Therefore, by using (4.6), one gets
/(Ia | - |P|dnlP)|x|?|pn|Pdz — 0 when n — +oo.

Since K (¢p) = 0, then lim K9(¢,) = 0. So, by using Lemma 5 we obtain K (¢,) > 0 for
n
large value of n. Then, ¢ # 0 by contradiction. Next, we have to prove that mg; > 0.
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With lower semi-continuity of the H® norm, we have
0 = lim inf K (¢y,)
> (2a 4 (N — 25)b) liminf || (=A) 2y || + (2a + Nb) lim inf || ¢y, |2

_ 2ap+b(N + a +28)
p

/ (L % |- [P|6[P) 2] PP dz
> K(¢).

Similarly, we obtain H, 3(¢) < mgp. Furthermore, if K (¢) < 0 then there exists Ao € (0, 1)
such that K(¢*) = 0. Therefore

Map < S(¢™) = Hap(6™°) < Hap(¢) < map.
Then
map = S(¢™°) = Hop(9™) > 0.
Let ¢ := ¢, then ¢ is a minimizer for (2.2) which satisfies (4.4).

Third step. Finally, we are going to prove that ¢ satisfies (2.1). There exists a Lagrange
multiplier x4 € R such that S’(¢) = pK'(¢). Hence

0= K(¢) = LS(¢) = (5'(9), L(¢)) = p(K'(¢), L(9)) = nLEK (¢) = pL>S(9).
We have

—L28(¢) — apS(¢) = —(L — p)(L — p)S(¢)
> (ap+ BN +a+28) = )? [ (o] - I6)fal 61
Taking account of (4.3), one gets £25(¢) < 0. Consequently p = 0 and then S'(¢) = 0.
Therefore, ¢ is a ground state and m := m,, is independent of (a, b).
4.3. Proof of Theorem 2.

4.3.1. The interpolation inequality (2.3). By using of the Hardy-Littlewood-Sobolev in-
equality from Corollary 1, we have

2N P =
(/(Ia w |- [P ul?) el [ulPde) s+ S ||z ul|| 55
For any Holder couples (r,r’) such that r := (“_Jgjﬁv )~ and 7 = (1 + E)% where
e =0". We have

;) = 2N R ark
Al oty S Wl Wy el s S Tl
Since 1 + aJ]rvw < p < p*, then 2 < 2651%/ = (1+ €>a+22];ﬁ_N < 2. Thanks to the
fractional Gagliardo-Nirenberg inequality from Lemma 1, one gets
_ N1 o+ N

[l 5y =7, where 6= (5 = S0,

So "
_ 4Np
(e S (lull e llull =) 2+

o (lzl<1) ~
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i ; — (atNY+ A at+N ; ;
Similarly, by taking r := (7—2/3) and ' = (1 — s)m, we estimate integrals on
|z| > 1. So, for some & small enough, we have

A
/(Ia | P ul?) 2P JulPde < Jlul .l

4.3.2. The best constant of the Gagliardo-Nirenberg inequality. First, let us prove the equa-
tion (2.4). For that, let

1

5 = —C(N’p’ 57 o IB) = UEI—}ISlf{O} J(’U)

Using Schwartz symmetrization argument, there exists a sequence (v,) in H?, — {0} such
that £ = lim J(v,). For A, u € R, denoting u™* := Au(u-). we have
n

N3 = A2V (=AYl )2 = A2 ful
A A
/ (Lo # | - [P ]uH P ]

Hence, by some elementary computations we get

J(uM) = J(u).

Pdx = )\QPMNaw/(Ia s | - P ulP)|z)P |ulPda.

Let us define N
N_q
Ap 1= —anHj + and g, = (
[(=A)2 vy 2

lonll 2

I(=2)3 0,

@

So, ¥, := vpmH satisfies
[nll = [(=2) 0]l = 1 and € = lim J ().

Then, for a subsequence denoted also (1)y,) there exist ¢» € H?, such that v, — 1. Now,
we are going to prove that

[ sl Proaialonlrds [ (1o |- Ploplelwrda.
For that, let
Ini= [(ax |- Ploal)al [onlPdo — [ (x| Ploplel ol
We have
b= [Uas |- Pl? = WP IaP ke + [ PPl (ol ~ )
= [ s 1Pl = Wl ol + [ e Pl = el
By using the Hardy-Littlewood-Sobolev inequality, we get

In S Al nl ] n + 211 _2n 2l (nl” = 17

[e3

2N .
a+N
Denote

I = 2l (Wi l? = )| 25411y and 22 2= [l ([l = ()] 2 oo

a+




14 L. CHERGUI

From (1.2), we have N > —3, N+ a+28 >0 and N > a + 28. So, let p:= (&)~ and

B
ri= Oﬁ]%f% > 1. By using Holder inequality, the Mean Value Theorem and the function
n

xr — x" is convex, we get
Ly < WP lluga<ny 1onl” = [91P lnai<1)
S Mnl? = [0
S H{Ion P~ + [P~ o — I
1
S Il @™ + DY, — [l
1
S a1 + 11152 9 — Pllpr-

By using the inequality (a+b)? < 2(a” +bf’) for a, b nonnegative and 0 < p < 2, we deduce

Ly S ([l + 19005 Dllon = ®llpr-

Since 1+ O‘Hﬁ <p<p* then2 <rp< N 2 . So, by compact Sobolev injections one gets

limI! = 0. Slmllarly, one shows that |||2|%[1),|P|| 2v_ defines a bounded sequence and that
n a+N

Iy < (lnllprt + 1915 1n = % llpr,

Consequently, one obtains lim I, = 0. Hence, when n goes to +o00, we have
n

1 1
— .
JUa x| 1P lon[P) 2| |¢pnlPda [ (Lo * |- P[0 P) || |y|Pda
Using lower semi-continuity of the H*® norm, we get ||| < 1 and ||(—=A)24| < 1. If ||| <

Lor [[(=A)29] < 1, then |[4||4](=A)24]|P < 1, implies J(¢)) < & which contradicts the
definition of £&. Thus, we have ||| = [[(=A)24|| = 1. Therefore ¢, — 9 in H?, and
1 1
C(N,p,s,a,) = = = — :/ I+ | - [P10)P) )P |y |Pde.
( )ﬁJ(dJ) (Lo |- P11 ][]
The minimizer v satisfies the Euler equation
O:J (Y + ep)|e=0 = 0,V € C5° N H®.

Hence, v satisfies the equation (2.4). It remains now to prove (2.5). For A\,u € R, we
introduce the scaling ¢ such that

J(wn) =

=M= A ().

In the equation (2.4), replacing 1 by ¢M*, we obtain

B S S 5 — —— —

— (A G+ 6 = 2 pN P2 T (I x| P|0) 27|62 = 0.
Taking

A 1 A a+2ﬁ A
= (Z2)32s — ((= 20p-1) .
p= () and A= (5)F )@

We get

(=2)°¢ = ¢+ (Lo |- |”|0P)|z|” |62 = 0.
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Since that 1 = ||¢b]| = A\~ 2 ||#||, then

A No-1»y A at2p A Ne-1
2s .

A x
Mgl = (F) 522 Dg)P0D = (Z) 751 (5) 5 ||¢||2p V=(3)

We deduce the following

A A at28 A Nep-1

§=5,F " T el
= ()T e
= 25 Flolpo
Therefore
CN,p,5,0,0) = ¢ = () F gl 207D

£ A

5. WELL-POSEDNESS

In this section, we are going to prove Theorem 3.

5.1. Local well-posedness. We are concerned with the existence and uniqueness of so-
lution to the Cauchy problem (1.1). The sign of € has no local effect, for that we assume
here e = 1. For any 7' > 0 and R > 0 let us define

Xp:= () LLW*),
(g,r)€l’s

and

Br(R) :={ve Xr, st sup |[vllpgmwsr) < R}
(g,r)€l’s

The closed ball Br(R) is equipped with the complete distance

d(u,v) = [[u —vllsy == sup [u—vl|pzrr).
(g,7)€Ts

Next, we introduce the so called Schrédinger mapping

®(u) = exp(—i- (=4)%)uo - /0 exp(—i(- = 7)(=L)°) (Lo | - I*[ul?) 2]’ [uP~u)dr.
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Using the Strichartz estimate from Proposition 2 and Remark 6, one has for all u,v €
BT(R) and for any (Qar)7 (QI7T1) el

A (), D)) S T+ - Pl ol a2 = (T < PloP) 1ol 20l g

I . B1,,1p Bl 1P—2,, _ I . Blo,|P Bly|p—2 ’ ,
1 Pl = Lo - PPl ol g

STt 1 Plul? = - PRoPDlaP Lol 2ul g ey
o | Pl a2 = 210200y ey
[ Phl? = Pl Dl a2l g

L x| - [BlyP BlulP~2y — |z|Plu|P~2 - :
Pl = ol o2l g g

Denote

(1) = (T + - P o) 2Pl =20 = ol o200l ey

By the Mean Value Theorem, we have

< B0 IPY 1B (1ag1P—2 P—2Y)|,, _ ,
(1) S (T |- Lol (2 4 o}~ vruLw(lM))-

2Np
N+a+28+2(p—1)s—¢

where e =01, If k& :=

Let p:= (%)— and r =

a 2 2 2p-—2

1+ —=—=-+-—

+N 7°+,u+ 2
1 1 p 1 p—-2 1
_r+(u+k)+(u+ 3 +)

So, by using the Hardy-Littlwood-Paley inequality, one gets

-2 -2
(D) S M1 i<y 1R | ooy <y (el 2 + ol Mu =l

1) 2 1)
S AR + o277 )Ilu—vlerLqTf

Since N+a+26—2s > 0,then1 <r < % So, by Sobolev injections, we have W*" — L*,
then

2 1)
() S el + ol e = ol
T

Since p < p*, then we can suppose € = 0" small enough such that p + N2

p(N —2s)+e < (N —2s)+a+ 208+ 2s.

Then
p(N —2s)— ((N —2s)+a+28)+e¢
2s

< 1.

Thus
Np 1 1
LG-0<,

s 2 r
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and then % = Np(l _ 1) <1 which implies (2p — 1)¢’ < g. So, there exists § > 0 such

s \2
that = 7 237—1 + %. Using the Holder inequality, one gets

(1) S Tl 2400y + 012l = o]l o)
< T3 R2P=Dd(y, v).
In a similar way as previous, by using the Hardy-Littlwood-Paley inequality with respect
to the following decomposition
1 -1 1 1 -1

=+ e+ 2,

1+
N r 7 k 7 k

we obtain
(D) 5= a1 Plal? = |- PloPDlal el oy

S [ Pl 4 o~ = oDl Pl =ul Ly g0y

1) 1)
SARIEE™ + o)) fu — vlirll g

SNl + ol )Hu—vHrHLqTf

< 79 R2P=Vq(u, v).

~

Now, in order to estimate integrals on |z| > 1, we make use of p := (%ﬁ and ry :=

2Np

NTaToptap Tsre With some & = 0*. We obtain

BL P — 1 1B P By P2 , < 75 p2(-1)
(T 0 Plal? = |- PRl 2l g S TR Vi)

< 79 R2P—Vq(u, v).

I C1B1a,|P BlulP—2q — Bly|p—2 / /
1o |- Plol)llal el = 2P0l g g0 S

In summary, we obtain
A(®(u), ®(v)) < T9R2PDd(u, v).
When v = 0, it becomes
1®(u) — exp(—i - (—A)*)ug|ls, < CT7R>L.
Then
|9(u)l|sp < lexp(—i - (—A)*)uolls,. + CT R~
< |luo|| + CT5 R*,
Now, it remains to estimate

sup [ @(u)ll o (girery = [(=2)22(u)]| 5,
(qu)EFS
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Let (IT1) := ||(—=A)2®(u)| s, — [|(—A)2ugl||. Thanks to the Strichartz estimate, one has

< I(_ A3 1B, IP B,,|P—2 ,
(1) S (=8)2 (Lo | - [7ul?)|z]7[ul UIILqT(L,«/)

S - 1P )2l ™ + Lo |- PlulP7H(=A)2ul) |2 ufP

+ (Lo x| - [PulP) )P~ ulP ™t + (Ta * ] - IBIUV’)Ix|6!UIp_2l(—A)§UIIILqT/(LT/)-

Taking in account the chain rules from Lemma 2 and the Hardy-Littlwood-Paley inequality,
one controls the second and the fourth terms in the last inequality as previous. Therefore,
we obtain

1 J— p— —
(I11) S TTR®™ 4 || (Lo # |- P ul?) |l P uP~ |

SO R T T [

L%’ (LT'/)

'y

Now, we introduce p := (3N5> By the assumption N + 5 — s > 0 we have p > 1. Once
again, we make use of y := (%) , N+a+262f212p sz and k =
a 1 1 p -1
14+ — == T £ -
+ N r * (,0 + k) ( + k )

So, by using the Hardy-Littlwood-paley and Holder 1nequahtles, taking account of Sobolev
injections, we obtain

_ —1
(Lo - 177 Jul?) | ufP~ 1IILq (L (z]<1)) ,SIIHIJJIB *Notia <0 el 11217 g <y el 7
2p—1
S Mullper !l o
< ToR» L,
Similarly
B1a, 1P| | B—5],,|P—1 1 op—1
Lo Pl oy S THE

Also, to control integrals on |z| > 1, we use p := (375) NTRES (%) and r :=

Thus, one gets

2Np
N+a+28+2(p—1)s+e”

I - P el Rl g 10y S THE

and
1 —
[t - PRl P~ g gy S THE

In summary, we obtain
s 1 _on_
1(=2)2®(u)|l sy < lluoll g« + CTo R*~.

Then, by taking R > ||ug||gs and T small enough, it follows that ® is a contraction of
Br(R). So, it’s fix point is the unique solution to (1.1) in Br(R). Uniqueness of the
maximal solution follows from previous computations and standard translation argument.

5.2. Global well-posedness.
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5.2.1. The defocusing (e = 1) energy subcritical case. Let u € C([0,T*], H®) be the unique
maximal solution of (1.1). Suppose that 7% < oo and take 0 < 7 < T™, we consider the
following Cauchy problem

{ i — (=L v = (Lo * |- |°|vP) |z’ |o]P?0,t > 7,
(5.1)

U(Ta ) = U(T, )

Using contraction arguments as for the main problem (1.1), we prove the existence of
T >0 and v € C([r,7 + T], H®) solution to (5.1). Thanks to the conservation laws, the
instant of time 7" does not depend on 7. Hence, taking in account that ||(—A)2u| remains
bounded, let 7 be close to T* such that T* < 7+ T, this contradicts the maximality of
T*. Then T = oo and u € C(R4, H?).

5.2.2. The focusing (e = —1) mass subcritical case. By using of the Gagliardo-Nirenberg

inequality (2.3), we have

1 -
E(ug) = |u(t)|};. — , /(Ia w | P Jul?) el uP P udz

C(N
> ()|, — Wuuuwuu(mgs

1_ C(N7p7s7a7/8)M
p

CN? 5 Oy Lby A N _ .
> (@), (1~ S0y o) 7).

> [lu(®)]1%.( (u0) ® [[u()|Z7?)

Consequently, if p < p, or p = p, and M (ug) < (ﬁ)%, then sup [lu(t)|z. < oo
[0,7%]

7p,5,017ﬁ

which implies that T* = oco.

6. VIRIAL TYPE IDENTITY

In this section we have to prove Theorem 4.

6.1. Preliminary. Let us define the self-adjoint differential operator
Ty = —i(V.Vy + V.V);
which acts on functions as follows
Ly f = —=i(V.((VP)f) + (V§).(V)).
Then

My [u(®)] = (u(t), Tyu(t)).
For m > 0, it is useful to define the function

sin(ms) 1 . sin(ms) F Fu )

T m-—A T [-2+m
Let [X,Y] := XY — Y X denotes the commutator of X and Y. We have the following
general result.

U 1=
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Lemma 7. For sufficiently smooth function g, we have
(u, [—g,iLylu) = 2/ [u|?V1).V gda.

Proof.

(u, [=g,ilyJu) = =(u, [9, V.V + V.Vi)]u)
= —(u, gV.Vu + gV ((Vip)u))
+ (u, Vi.V(gu) + V((VY)gu))
= —2(u, gV.Vu) + 2(u, Vo).V (gu))

= 2(u,uVi).Vg) = z/uuw.wdx = 2/\u|2v¢.v9da:.

6.2. The energy subcritical case. Using the equation (1.1), it follows that

%MwR [u()] = (u(t), [(=2)°, Ty pJut)) + (ut), [=(La * | - [Plul) ||’ [ul?~2, Dy, u(?).

According to computations in [3], one controls the dispersive term as follows
(), [(— )%, Tyelu(®)) < Aslu(t)|, + CR.
Our aim now is to estimate the nonlinear term
N = (ult), [~ (Lo * [ - 1Pul?) el |ulP~2, Ty u(?)).
Let g(z) := (In * | - |®|u|P)|z|?|u[P~2, we obtain
N = 2/!U|2V¢R-V((Ia * |- P Lul?) ) |ulP~?)da.
= =2 [ (T (uP):Fbn -+ 1D Pl ol
= [ VoV () Lo+ |- PluPalde —2 [ Sville |-l fol P do
= (=) [ Svnlle sVl el [uPdo+ 5 [ Vi (VI x|l ol da
40 [ Vo)l x| Pl .

Denote

4
M= p/V%-(Wa w | Jl?) ) ulPde;

and

4
M=y /WR.V(!xﬁ)(Ia | Plul?)ufda.
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Let D:={z € RV st || < R} x {y € RN st |y| < R} € R?YN and D¢ = R?N — D. We
have VI, (z) = —K(N — a)w\,%aﬁ, then

Mlz—— “a / V(). gl () Pl () Py

x

=, V- )/(WJR( ) = Vibr(y))- H;NQHIWW( )Pl u(x) [P dyda

K N—a / V(o). e ol (o) Pl (o) Py

The last term is — M7, so

My = _quv —a) / (Von() = Vo) o= el b)) Pdyd.

Since VYr(z) — Vir(y) = ¢ — y on D, then

p ly[2lu(y) P |2 [u(z)|?
I S V/ - dyd
K(N—a) *~ Jp  Ju—ye

n /D (V) - Viér(y). ‘m‘ﬁ
:/|y|ﬂ|u(y)|p|$|ﬁ|u($)| dydz

|z — y|N—«

[yl lu(y)P|z)° |u(x)Pdyde

) vy WP
+ Dc{(va(m) V¢R(y))|w_y‘2 1} ‘J}—y‘N_a dydz.

For the last integral on D¢, we have the following two cases: if |z —y| < R, then using the
Mean Value Theorem and the property ||V/¢g|lc < R*77(0 < j < 4), one has

vy
s =1 S IV*rlleo +1 S 1.

|(VYr(z) — VYr(y)). ﬁ

Else, if [z —y| > R, then

+1< 1

T Al

(Ver(a) = Viin(y)- [ =

Moreover, by symmetry

/ |y|ﬁ|u(y)|p!fﬂ|6|u(93)|pd de < 2/ 1P |u(y) [Pl |Pu(z)[?
N—a yaxr = N—-a
¢ |z — yl (|2|>R) xRN |z —yl
_2
K Jiz>r

dydzx
(Lo * | P Lul?) 2] [ulPd.

Therefore

2(N —
My = =2 Pl lupds + O (e |- Plap)fel ),
p lz|>R
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Next, we have to control Ms. We have

2y = 5 [ Vun) Vel |- Pl
- / Vsz(w)-W(Ia | Pl
[ Pl b+ [ Vo) Pl ol P
2| <R o[> R ||

X
= /(Ia * ’ . |5‘u’p)|x’f3’u‘pdw + /| R{Vd,R(x).TC’Q — 1}(Ia * ‘ . ’B’u’p)’x‘ﬁ‘u‘ludm.
z|>

For all |x| > R, we have

Then

4
My =22 [(tos | Plapal s+ O [ (Las |- Plap)fol?lul?do)

|z|>R

Replacing in A and taking in account that Avypg(x) = N when |z| < R, we find

N= 2<; ) / Dpr(Ta # | - 1PJulP) 2l ulPde — Q(NPjC” / (L% |- PluP)lelluPde

48
+2 / (L # |- [Pl ulPdz + O / (L * | - 1P|l [ulP de).

|z|>R
2(N — «)
p

Lo / Lo * |- 1P Jul?) ) |ulPd).
|z|>R

Np— N —a—2
— -2 b / (Lo * |- 1P uf?) 2]l de

Lo / Lo * |- 1P ul?) ) |ulPd).
|z|>R

- {2N(§ 1y 4 ‘f} / ot |- Plup)lalPlupdz

Let

M; = / (L * | - 1P| ulPd.
|z|>R



L. CHERGUI/FRACTIONAL BI-INHOMOGENEOUS CHOQUARD EQUATION 23

Taking p := (g@)Jr and r =
inequality, we obtain

WNQ/HE where ¢ = 07. Using Hardy-Littlwood-Sobolev

Mz S 1212 o1y P12 g )

2Np
< / | ¥ i)
lz|>R

2Np
< / | T2 2 )
|z|>R

N+a+28
N
N+a+2,8

(p—1—

N+a+28
~ ||u||oo(|1‘|>R 259

Il

)

< 22

Let 6 := 1€ such that § <6 <s < & By using (3.2) and (3.3), yields

s
My S Nl psn
< (R™GE|(=A) 2201 5F5)
< RN (12 (- ) B )21
S ()b e,

R(Nflfs)(pflf%w)
From previous computations, we obtain

%MW[U] = (u(t), [(=2)%, iTyplult)) + (w(t), [~ (Lo * | - I*[ul?) ]’ [ulP 2,0y Ju(t))

Np—N—a—2
< ds|u))?, + CR™% — 2L - c 5/(Ia*|.|5|u|p)lx\5lul”dx

. full 7 O,
R(N-1-¢)(p—1- 2128 Hs

+C

Thus, we deduce the following desired estimate

%Mw[u] S2N(p—1) — a —28)E(ug) — 2N(p — p.)||ull%.

—2s 1 (P 1_76)
TOR 2 R(N 1—¢)(p—1-2128) s HHS .
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6.3. The mass critical case. Let us define ¢y := 1 — ¢ and ¢ := N — A¢r. From
previous, we have

2
N ==21-2) / App(Ta | - [Plul?))z | JulPde + My + M,
2 2
— N1 - 2) / (Lo * | 1Pul?) |2l JupPde +2(1 — 2) / bo(Ta | - PlufP) 2’ |ufPde
p* p*

N—-—a-20
B — /(Ia x| IBIUIP)!x\ﬁUIpderO(/I R(Ia x| - P ul?) |z |ufPda)
% x|>

— _3 M 1B, P B, P
2N = =)+ o) [Pl ol P

2
+2(1-—) /1/12(% |- Pul?) |z ufPde + O(/ (Lo # | - [P |uf?) 2| ulPdx)
P« |z|>R
4 2
= —pj (Ia# | - [Pluf?) ]| |ufPdz +2(1 — ;) /1/12(Ia # |- P ul?) |z ) ufPde

e / (T # | - 1Pul?) 2] |ufPde).
|z|>R

According to computations in [3], we get

d +oo
& Myglu] = sl - 4/ m* / V|2 dzdm + O(R™2)
0
4 2
- pj (Ioo % | - 1Pluf?) ) [ufPda + 2(1 — 17) /¢2(Ia | Pluf?) | ulPdo

+O([ (e Plup)lal?lurds)
|z|>R
+oo
= 4sE(ug) — 4/ m® /1/11|Vum|2da:dm + O(R™%)
0
2
+201 =) /wz(fa w | P Jl?) el P ulPde + O(/ (Lo |- 1P |ul?) ) ul dz).

|z|>R

._ N+a+28
Let p:= a+2°/é+2s > 1 and

M= [ all | Plap)lal?lupda,
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i e (NN+ o — 2N

Taking p = (Z3)" 1 = Nrarosee
Hoélder inequalities, we have

M S el Ml ozl

where ¢ = 07. By Hardy-Littlwood-Sobolev and

S lulP” )R dr) T

s ([ (lalfu
N+a+28 J|z|>R
N+a+28

2N 2N
S lully. (| (il 5 D ) 5
x|>

1. N+a+t28

P 2Ny, L 2
< Jlull 4 /| el 7 g / uf?de)s } 5
xT|>

P 2N p/ 1 N+o+28
< Jluf / | T ) A
|z|>R

N—-2

Dae 2N S
< Jlufl / ] P25 ) "5
|z|>R

N—-2s

< Jlull. / ] 55 [y 2l
|z|>R

2s
S Ml 2wl oy ry-

Using (3.2) and (3.3), for any & such that 0 < § := = < s < %, we get the following

2s
My S Nullfy 2wl o my

_N s 2s

S llull, (R (= L) 2 40ul)
]. [ s 5. 2s
Px 1-= 5 “\ %N
S bl g a1l )

P 1 >a
S llull ~*SWH¢2UHHZ :

2N

{te» by using the Young inequality, we have

Hence, for any n > 0 and ¢ :=

/ 1 /
< 2 1—q D q
My S lfgaul .+ (ull, - ymi=)”

Estimating similarly as for My, we get

1

1te
Ms < lu %WHUHHNS

1 /

< 2 1-¢ D+ q
Sl + 0 Ol sy

In summary, from previous computations there exists C' a positive constant such that

d +o0

& Myalu] < 45B(up) — 4 / m’ / 0|Vt [2dadm + CR™
0

+nC | aull%, + nCllullZ, + 200"~ (Jlul: S — )7

nClldull%y, +1n . +2Cn s
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According to computations in [3], we have
+oo
ol = [ m* [ 190 P
0
+o00 ) ) ) ,
= [ [ Pl + 00+ [ + 15012
0

—+00
:/ ms/]¢2]2\Vum|2dxdm+(’)(1+R_2+R_4).
0

Then
Ly, ] < 4sE( /+°° /¢ Ol — L)V dad
— sE(u - — u xdm
darontt 0) P 2 4s "
+ 200 7 (||ul2, m) "+ O+ R P+R24+RY.
Let ~ : , with the assumption N > 1+ 2s 4+ o + 23, we have v > 1. Moreover, by

p
using the Young inequality once again, we obtain

1 q P nigip* q
7 (Jlul Hgm) = ((nllull ) *W)

/

o 77—7 7' (++p)
S n ||U|| s + s .
T2 (N-1—¢)
Consequently

d e n+ 1
—M < 4sE( 2 _ |2
dt v (U] < 4sE(uo) / / Y1 — SCWQ\ " C)|Vup|“dzdm

nf'v’q’(%rp*)

+O0(n+R ¥ +R?+R "+ —7——).
RT‘(N—l—E)

2s(N—1—¢)
2Npatite "

711
—'q' (5+p+) 1

Taking n = R79, where 0 < 0 < We get

Ui _
RM(N—I—s) N R’Y/q/{_a(l+p*)+%(N_1_a)}‘

Since —U(% +p«) + 5 (N —1—¢) > 0, then by taking R large enough and using properties
of v;, one gets

d
@MwR [u] <2sE(up).

7. SHARP CRITERIA FOR GLOBAL/NON GLOBAL SOLUTIONS

7.1. Intermediate results. In order to prove Theorem 5, we need the following auxiliary
results.

Lemma 8. Let s € (3,1), ug € H$, such that E(ug) # 0 and u € Cr-(HZ,;) be the
mazximal solution of (1.1). If there exist R > 0,tg > 0 and C > 0 such that

MmeS—C/WWMm%Wzm,
to
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then T™ < oco.
Proof. See [3, 21]. O

Lemma 9. Under the flow of (1.1), the following conditions are invariant:
1/ (2.8) and (2.10);
2/ (2.8) and (2.9).

Proof. Together conservation laws and the Gagliardo-Nirenberg inequality (2.3), give

1
Bun) = (Ol — 5 [ (Lo x| Plul?)laffupds
> ()], — L5 0By ) 2.,
Denoting
X(t) = a3, and D= CEP 200 i 02
So g
(7.1) X(t) -~ DX(t)% < E(ug),Vt € [0,T%).

2
The function f(z) := x— Dz has a global maximum on Ry, at the point ay, := (25)72

with the maximum value f(z,,) := E(L)%—ﬂm equivalent] = 2>
m) = 5 (Bp = 25*Ip, equivalen yxm—Bizf(xm).

Using the Pohozaev identities, we have Kn4qa4238,—2p(¢) = 0 and Ky _2(¢) = 0, then

B 2p
613, = F10l and [ (x| Plop)lal?lopdn = ol
A B
Thus B9 B9
E(d) = Z—216l12 = 221612
)= 222160 = 2219l
Using previous relation, the condition (2.8) becomes

B -2 s sc=s
2 0(6)% M(uo) 5

E(UO) <

By using (2.5), we have
B-2 2p 2

Tem) = s it )38
B B—-2 A 4
(=
= 2 M) M ()

B—-2 s se—s

= S M9 M(uo) 5 > Blug).

_2
)sz

)2 M($)P M (uo)

Therefore B B
Tm = ﬁf(l"m) = ZM(@ se M (ug) .

From the inequality (7.1), we deduce
(7.2) Flu®lF.) < E(uo) < f(m).
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1/ The condition (2.10) implies
(ol )% M (uo)* = < (|9l F.)% M (¢)*".

Equivalently

2 2 M(¢) S
uoll . < Il 's(m) e

B S S—Sc
< ZM((;S)ScM(Ug) se = Typ.

Knowing that u € Cp+«( H %), then by (7.2) and a continuity argument, one gets
[u()]|2, < @m, ¥t € [0,T%).

2/ In a similar way as previous, the condition (2.9) is equivalent to |luo||%, > ¥m. So, by
a continuity argument, we obtain

u(t)||%, > @m, Yt € [0,T7).

Therefore, conditions (2.8) and (2.10), as well as (2.8) and (2.9) are invariant under the
flow of (1.1). O

7.2. Proof of Theorem 5.

7.2.1. The case 0 < s, < s and E(ug) < 0: Let u € Cp«(H};) a solution of (1.1) and
0 := N(p — p«), by the Virial type identity, we have
d

i Myplu(®)] < 2(N(p—1) — a = 28)E(uo) ~ 26]|ull%.

1 j(77_1_(%5\12[3))

1
—2s s
+C(R™™ + R(N—l—e)(p—l—af\,%) [ull

H
The assumption p < 1+ 2s+ O‘—]FV% makes possible the choose of € small enough such that
He(p—1-— O‘JJFVQ’B ) < 2. Using the lower bound of ||u|| z., for R large enough, uniformly
on time, we have

d
T M u(t)] < (N(p = 1) = a = 28)E(uo) = dl|ull,.
By integrating on time, there exists ¢y sufficiently large such that

My [u(t)] < 0,Vt > t.

Integrating once again on [tg, t], we obtain
t
Myp[u()] < =6 | [lu(r)||F.dr, Ve > to.

Thanks to Lemma 8, one gets T™ = 400.
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7.2.2. The case 0 < s, < s and E(ug) > 0 under (2.8) and (2.9): Taking 0 < 1 < 1 such

that
E(UO)SCM(UO)sfsC < ((1 _ M)E((/)))SCM(Qb)SiSC.
So
(7.3) (lf(_u(L))SCM(uO)s—sc < E(¢)SCM(¢)S_SC,
Then Blu)
Uo
1_H<f@M.

We deduce that

PR3 _ B

T 1o, S
Thus
(7.4) F(lu@®))F.) < Euo) < (1= p) f(zm).
For p small enough, we have
Tim,
(7.5) (1 =) f(xm) < f(ﬂ)'
Indeed, we have
3
.’Em xm :L'm
f( )= - D B
L—p” 1—p (1—p)2
m 1 B2
= & (1 -D B2 T )
L=u (1—p)2
Tm 2 1
=7 .1-5 =5
H (L—p) 2
Since ) . B_o
Tm . Lm -
I — 1 1- = - m = F(@m).
fing (70 = B 170 ) = e = o)
Then there exists p small enough such that (7.5) is satisfied. Together with (7.4), give
T .
(7.6) Flllu)I.) < FE—)vte [0,77).

In the other hand, since ||¢||%, = 525 E(¢) then by using (2.9) and (7.3), one gets

B
Juoll 3 > (55— B(@))* M(8)~* M(ug)*~*

> (

A B(8) T M(8) }M (0)

> (BBi 2)56{(]15(_“33 )3 M (ug)® %} M (ug)®~*

-
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Hence
B E(UO)> B f(xm): Tm
B—-21—-py " B-21—p 1—pu

In summary, by using (7.6), (7.7) and a continuity argument, we deduce

(7.7) ol >

B FE
) > oy o equivalently (1= ) (B — 2)u(0)}, > BE(us), e € 0.1°).
Inserting this bound in to the Virial type identity, we obtain
d
2 Mup[u(t)] < 25BE(uo) = 2(N — p.)[u(®),
L (p-1-2528)
+ORMA+ u@) . T
2 L (p-1-220)
< —2su(B = 2)[Ju()[| 3, + Or(1)(1 + u@)l ;. )
< —su(B = 2)|lu(t)|F.-

In the last inequalities Or(1) — 0 when R — +oo uniformly on time and & > 0 small

enough such that 1£(p — 1 — aﬁﬁ) < 2, which is possible since p < 1+ 2s + aJ]rVQ'B by

assumption. Therefore, the proof follows once again by Lemma 8.

7.2.3. The case 0 < s. < s and E(ug) > 0 under (2.8) and (2.10): Thanks to Lemma 9,

in this case we have sup ||u(t)||gs < co. Then T™ = +o00, and u is a global solution for
tel0,T*)
(1.1).

7.2.4. The case s = 0: In the mass critical case s. = 0, the blow up condition stated above
leads us to a contradiction. Indeed, conditions (2.8) and (2.9) becomes M (up) < M(¢)
and M (ug) > M(¢). Thus, for s, = 0 the only admissible condition is E(up) < 0. From
Theorem 4, we have

d *

£M¢R[u(t)] < 2sE(up),Vt € [0,T7).

So, in a similar way as in [3, 21], the solution w either blows up in finite time or blows up
in infinite time such that

|w(t)|| g = Ct3,Vt > t,.
with some constants C' > 0 and ¢, > 0.
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