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Abstract. In the subcritical energy case, local well-posedness is established in the
radial energy space for a class of fractional inhomogeneous Choquard equations. The
best constant of a Gagliardo-Nirenberg type inequality is obtained. Moreover, a sharp
threshold of global existence versus blow-up dichotomy is obtained for mass super-critical
and energy subcritical solutions.

1. Introduction

Our purpose in this paper is to investigate the Cauchy problem for the following fractional
inhomogeneous Schrödinger equation of Choquard type:

(1.1)

{
iu̇− (−4)su = ε(Iα ∗ | · |β|u|p)|x|β|u|p−2u,

u(0, ·) = u0,

where u : R × RN → C for some N ≥ 3, s ∈ (0, 1), p > 1, ε = ±1, β < 0 and 0 < α < N .
The fractional Laplacian operator stands for

(−4)s· := F−1(|ξ|2sF·),
where F is the Fourier transform. The Riesz-potential is defined as

Iα(x) :=
Γ(N−α2 )

Γ(α2 )π
N
2 2α|x|N−α

:=
K

|x|N−α
, x ∈ RN .

Here and hereafter, we assume that

(1.2) min{α,−β,N − α,N + β,N + α+ 2β, 2s+ α+ 2β} > 0

In three space dimension, for s = 1 and β = 0, the problem (1.1) corresponds to the
homogeneous Schrödinger-Choquard equation which has several physical origins such as
quantum mechanics [15], Hartree-Fock theory [17], and non-relativistic quantum theory
[11]. If p = 2, s = 1

2 , β = 0, then (1.1) models the dynamics of boson stars, where the
potential is the Newtonian gravitational potential in the appropriate physical units [7, 14].
When s = 1 and β < 0, some particular cases of the equation (1.1) arise in the study of the
mean-field limit of large systems of non-relativistic bosonic atoms and molecules [24, 9].
Before we proceed to the discussion, it is useful to look at the most vital symmetry which
is scaling. Indeed, the equation (1.1) enjoys the following scaling invariance

uλ(t) = λ
α+2s+2β
2(p−1) u(λ2st, λ·), λ > 0.
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For a real number µ, we have

‖uλ(t)‖Ḣµ = λ
µ−N

2
+α+2s+2β

2(p−1) ‖u(λ2st, λ·)‖Ḣµ .

So, the critical exponent is

sc :=
N

2
− α+ 2s+ 2β

2(p− 1)
,

for which the Ḣµ norm is unaffected by scaling. The case sc = 0 corresponds to the
mass critical exponent p∗ = 1 + α+2s+2β

N . The energy critical case sc = s corresponds to

p∗ = 1 + α+2s+2β
N−2s . For smaller p, that is p ∈]1, p∗[ which is called the energy subcritical

exponent, contracting time reduces the size of the Ḣs norm. This is the effect that will
be exploited to build up solutions.
In the case s = 1 and β = 0, the problem (1.1) was investigated in [8, 23], some particular
cases were considered by different authors [4, 10, 2]. In [19], the existence and asymptotic
properties of standing waves were investigated. Few paper deal with the general form.
Recently, in [21] the above problem was studied in the case s ∈ (1

2 , 1) and β = 0. Also,
the case s = 1 and β < 0 was investigated in [22].
Any solutions to (1.1), in the energy space, satisfies the following conserved quantities:

M(u(t)) :=

∫
RN
|u(t)|2dx = M(u0),

E(u(t)) :=

∫
RN
{|(−4)

s
2u(t)|2 +

ε

p
(Iα ∗ | · |β|u(t)|p)|x|β|u(t)|p}dx = E(u0).

It is well known that ε = 1 corresponds to the defocusing case. Thus, any subcritical
energy solution is claimed to be global. When ε = −1, which is said the focusing case, any
chance to control the Ḣs norm of the solution with the conservation laws. So, maximal
solution of (1.1) may blow-up in finite or infinite time.
It is the aim of this paper to investigate the problem (1.1). Indeed, local well-posedness in
the radial energy space and global existence in the defocusing case are obtained here. In
the focusing sign, the existence of global and non global solutions is discussed with respect
to a sharp Gagliardo-Nirenberg inequality related to (1.1).
The manuscript is organized as follows: Section two summarizes the main results. Section
three presents some technical tools needed here. Section four is devoted to establish
the existence of ground state for (1.1) and to prove a sharp Gagliardo-Nirenberg type
inequality. In Section five, a Virial type inequality is established. The two last Sections
are devoted, to show the well-posedness of the main problem, to give a sharp dichotomy
of global/non global existence of solutions, and to derive blow-up results.
We end this section with some notations. We consider the Lebesgue spaces Lr := Lr(RN )

equipped with norms ‖f‖r := ‖f‖Lr = (
∫
RN |f(x)|rdx)

1
r if r <∞, else ‖f‖∞ := ‖f‖L∞ =

sup essx∈RN |f(x)|. For vector valued functions ‖(fj)‖∞ := sup
j
‖fj‖∞. When r = 2, let

‖f‖ := ‖f‖2. The usual inhomogeneous Sobolev space is denoted by W s,r := W s,r(RN )

and endowed with the complete norm ‖f‖W s,r := (‖f‖r + ‖(−4)
s
2 f‖r)

1
r , in the case r = 2

we denote Hs := W s,2 which is equipped with ‖f‖Hs := (‖f‖2 + ‖(−4)
s
2 f‖2)

1
2 . We need

also to introduce some Böchner spaces Lq(Lr), Lq(Hs) and Lq(W s,r) equipped with their
naturally norms. If X is an abstract space, the set of continuous functions defined on [0, T [
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and valued in X is denoted by CT (X) := C([0, T ), X), if necessary the interval of time
may be closed. Also, we denote LqT (X) := Lq([0, T ), X). The set Xrd stands for the set of
radial elements in X. Any constant will be denoted by C which may vary from line to line.
For simplicity, let

∫
f(x)dx :=

∫
RN f(x)dx and

∫
f(x, y)dxdy :=

∫ ∫
f(x, y)dxdy. Finally,

if A and B are non-negative quantities, we write A . B to denote A ≤ CB. Moreover,
we use the notation A = O(B)(respectively A = o(B), A ∼ B) by which we mean that
A . B(respectively A . εB, A = B + o(B)) holds.

2. Main results

At First, let us introduce the following quantities

B :=
1

s
(Np−N − α− 2β) , A := 2p−B;

J(u) :=
‖u‖A‖u‖B

Ḣs∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx

for u ∈ Hs − {0}.

For a, b ∈ R, let

µ = min(2a+ (N − 2s)b, 2a+Nb) , µ = max(2a+ (N − 2s)b, 2a+Nb);

and

A = {(a, b) ∈ R∗+ × R s.t 2ap ≥ µ > 0 and µ ≥ 0}.
We denote also

vλa,b := λav(λ−b·) , La,b(v) := (∂λv
λ
a,b)|λ=1;

KQ
a,b(v) := (2a+ (N − 2s)b)‖v‖2

Ḣs + (2a+Nb)‖v‖2;

and

KN
a,b(v) := −1

p
(2ap+ b(N + α+ 2β))

∫
(Iα ∗ | · |β|v|p)|x|β|v|pdx;

S := M + E , Ka,b := La,bS = KQ
a,b +KN

a,b;

Ha,b := (1−
La,b
µ

)S = S −
Ka,b

µ
.

Now, we have to define the so called ground state solution of the problem (1.1).

Definition 1. Any solution to

(2.1) −(−4)sφ− φ+ (Iα ∗ | · |β|φ|p)|x|β|φ|p−2φ = 0, φ ∈ Hs − {0}.
which minimizes the problem

(2.2) ma,b := inf
v∈Hs−{0}

{S(v) s.t Ka,b(v) = 0},

is called ground state of the problem (1.1).

Our main results are the following:

Theorem 1. (Existence of ground state)
Let N ≥ 3, s ∈ (0, 1), p∗ < p < p∗ and taking (a, b) ∈ A, then

(1) m := ma,b is nonzero and independent of (a, b);
(2) there is a ground state solution to (2.1) and (2.2).
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Remark 1. The condition 2ap ≥ µ is due to the presence of β and it is used only in
(4.1).We can omit this condition if we assume that α + 2β ≥ 0. The condition p∗ < p is
needed only in (4.2). If we relax the set A to

A′ := {(a, b) ∈ R∗+ × R s.t 2ap+ (N + α+ 2β)b > µ > 0 and µ ≥ 0}.

Then, the previous Theorem holds for any exponent 1 + α+2β
N < p < p∗.

Theorem 2. (Sharp Gagliardo-Nirenberg inequality)

Let N ≥ 3, s ∈ (0, 1), α and β satisfying (1.2) and 1 + α+2β
N < p < p∗. Then

(1) there exists C(N, p, s, α, β) > 0 such that

(2.3) ∀u ∈ Hs,

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx ≤ C(N, p, s, α, β)‖u‖A‖u‖B

Ḣs .

(2) the minimization problem

1

C(N, p, s, α, β)
= inf

v∈Hs−{0}
J(v)

is attained in some Q ∈ Hs satisfying C(N, p, s, α, β) =
∫

(Iα ∗ | · |β|Q|p)|x|β|Q|pdx
and

(2.4) B(−4)sQ+AQ− 2p

C(N, p, s, α, β)
(Iα ∗ | · |β|Q|p)|x|β|Q|p−2Q = 0.

(3) Moreover, there is φ a ground state solution to (2.1) such that

(2.5) C(N, p, s, α, β) =
2p

A
(
A

B
)
B
2 ‖φ‖−2(p−1).

Remark 2. In the sequel, it is useful for some time that B > 2 in (2.3), this is verified
under the assumption p∗ < p.

Next, we show that (1.1) is well posed in Hs
rd for any exponent 2 ≤ p < p∗. However, the

energy is well defined for exponents such that 1 + α+2β
N < p ≤ p∗. Such restriction is due

to contraction arguments which are used in the proof, since the source term is singular for
1 + α+2β

N < p < 2.

Theorem 3. (Well-posedness in the radial energy space)
Let N ≥ 3, s ∈ [ N

2N−1 , 1), α, β satisfying (1.2). In addition, we suppose

N − 4s < α+ 2β,N + β > s,N + α+ 2β − 2s > 0 and 2 ≤ p < p∗.

Then, for all u0 ∈ Hs
rd there exists T ∗ := T ∗(‖u0‖Hs

rd
) > 0 such that (1.1) admits a unique

maximal solution

u ∈ CT ∗(Hs
rd) ∩ L

q
loc((0, T

∗),W s,r), ∀(q, r) ∈ Γs.

In addition, such solution satisfies the conservation lows

M(u(t)) = M(u0) and E(u(t)) = E(u0),

and it is global if one of the following assertions holds:

(1) ε = 1 and p < p∗;
(2) p < p∗;

(3) p = p∗ and M(u0) < ( p
C(N,p,s,α,β))

2
A .
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Remark 3. We remark that

(1) the condition N − 4s < α+ 2β means that 2 < p∗,
(2) results obtained in Theorems 1, 2, 3 are valid also for the following inhomogeneous

problem

(2.6)

{
iu̇− (−4)su = ε|x|β(Iα ∗ |u|p)|u|p−2u,

u(0, ·) = u0,

Indeed, replacing 2β by β and slight modifications in their proofs leads to the desired
results.

Now, we are interested on non-global solutions to (1.1). So, we establish first some Virial
type inequality. For that, we make use of ψ ∈ C∞0 (RN ) a radial cutoff function which is
introduced in [3] and defined as follows:

(2.7) ψ(x) =

{
1
2 |x|

2, for |x| ≤ 1,

C, for |x| ≥ 10.
and ψ′′ ≤ 1.

For all R > 0, we denote ψR := R2ψ( ·R). It is well known that ψR satisfies some properties
[3], mainly

ψ′′R ≤ 1, ψ′R(r) ≤ r, 4ψR ≤ N.
The localized Virial is denoted

Mψ[u] := 2I(

∫
u∇ψ.∇udx) = 2I(

N∑
k=1

∫
u∂kψ∂kudx).

Theorem 4. (Virial type identity)

Let N ≥ 3, s ∈ (1
2 , 1), α, β satisfying (1.2) and 1 + α+2β

N < p ≤ p∗. Assume that u ∈
CT (Hs

rd) is a solution of (1.1). Then

(1) For R > 0 and ε > 0 small enough, we have

d

dt
MψR [u] ≤ 2(N(p− 1)− α− 2β)E(u0)− 2N(p− p∗)‖u‖2Ḣs

+ C(R−2s +
‖u‖

1+ε
s

(p−1−α+2β
N

)

Ḣs

R(N−1−ε)(p−1−α+2β
N

)
).

(2) If p = p∗, E(u0) < 0 and N > 1 + 2s+ α+ 2β, then for R large enough, we have

d

dt
MψR [u] < 2sE(u0).

Remark 4. These estimates are established only for solutions of the main problem (1.1)
and do not concerns (2.6). In fact, the nonlinearity in (1.1) has a symmetry with respect
to the term |x|β, which is crucial in computations.

Theorem 5. (Blow-up vs global well-posedness)
Let N ≥ 3, s ∈ (0, 1), α, β satisfying (1.2). In addition we suppose N − 4s ≤ α + 2β and
0 ≤ sc < s. Let φ be a ground state solution to (2.1), u0 ∈ Hs

rd, and u ∈ CT ∗(Hs
rd) be a

maximal solution for (1.1).
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(1) Assume that s ∈ (1
2 , 1) and 1 + α+2β

N < p < 1 + 2s + α+2β
N . Suppose that either

E(u0) < 0 or E(u0) ≥ 0 with the two next inequalities

(2.8) E(u0)scM(u0)s−sc < E(φ)scM(φ)s−sc

(2.9) ‖u0‖scḢs
‖u0‖s−sc > ‖φ‖scḢs

‖φ‖s−sc

Then,
(a) if 0 < sc < s, then u blows-up in finite time, in particular T ∗ < ∞ and

lim sup
t→T ∗

‖u(t)‖Ḣs = +∞;

(b) if sc = 0, then u either blows-up in finite time or there exist C > 0 and an
instant of time t∗ > 0 such that

∀t ≥ t∗, ‖u(t)‖Ḣs ≥ Cts.

(2) Suppose that E(u0) ≥ 0 with (2.8) and

(2.10) ‖u0‖scḢs
‖u0‖s−sc < ‖φ‖scḢs

‖φ‖s−sc ,

then T ∗ =∞.

Remark 5. In the previous Theorem, the assumption p − 1 < 2s + α+2β
N is a natural

extension for the condition “σ < 2s” used in [3] to our problem. In the case β = 0, that
would give more wide interval for the exponent p, when compared with the assumption
p < 1

2s+1(1 + α
N + 4s) from [21].

3. Tools

The following Lemma summarize some classical results from[1, 5, 18], mainly Sobolev
injections and interpolation inequalities.

Lemma 1. Let N ≥ 2 and s ∈ (0, 1). Then

• Hs ↪→ Lq, for any q ∈ [2, 2N
N−2s ];

• Hs
rd ↪→↪→ Lq for any q ∈ (2, 2N

N−2s);

• for any r ∈ (1, Ns ) and q ∈ (r, Nr
N−rs ], we have W s,r ↪→ Lq;

• for any q ∈ [2, 2N
N−2s ], let θ := N

s (1
2−

1
q ), we have the so-called fractional Gagliardo-

Nirenberg inequality

(3.1) ‖u‖q . ‖u‖1−θ‖u‖θḢs ;

• if 1
2 < µ < s < N

2 , then for all u ∈ Hs, we have

(3.2) ‖(−4)
µ
2 u‖ ≤ ‖u‖1−

µ
s ‖(−4)

s
2u‖

µ
s ;

• if µ ∈ (1
2 ,

N
2 ), then for all u ∈ Hµ

rd, we have

(3.3) sup
x∈RN−{0}

|x|
N
2
−µ|u(x)| ≤ C(N,µ)‖(−4)

µ
2 u‖.

The next fractional chain rules [6] will be useful.

Lemma 2. Let s ∈ (0, 1] and 1 < p, pi, qi <∞ satisfying 1
p = 1

pi
+ 1

qi
. Then
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• if G ∈ C1(C), then

‖|∇|sG(u)‖p . ‖G′(u)‖p1‖|∇|su‖q1 ;

•
‖|∇|s(uv)‖p . ‖|∇|su‖p1‖v‖q1 + ‖|∇|sv‖p2‖u‖q2 .

Recall the Hardy-Littlewood-Sobolev inequality [16, 21].

Lemma 3. Let N ≥ 3, 0 < λ < N and 1 < r, s <∞ and f ∈ Lr, g ∈ Ls. If 1
r + 1

s + λ
N = 2,

then ∫
f(x)g(y)

|x− y|λ
dxdy ≤ C(N, s, λ)‖f‖r‖g‖s.

Corollary 1. Let N ≥ 3, 0 < α < N , 1 < q, r, s <∞ and f ∈ Lr, g ∈ Ls.
• if 1

r + 1
s = 1 + α

N , then∫
(Iα ∗ f)(x)g(y)dxdy ≤ C(N, s, α)‖f‖r‖g‖s;

• if 1
q + 1

r + 1
s = 1 + α

N , then

‖(Iα ∗ f)g‖q′ ≤ C(N, s, α)‖f‖r‖g‖s.

The last estimate is known as the Hardy-Littlwood-Paley inequality. Next, recall also the
generalized Pohozaev identity [13, 20].

Proposition 1. Let φ ∈ Hs, we have

φ is solution to (2.1)⇔ S′(φ) = 0,

Moreover, in that case Ka,b(φ) = 0,∀(a, b) ∈ R2.

Finally, let us recall the so-called radial Strichartz estimate [12].

Definition 2. A couple of real numbers (q, r) is said to be admissible, we denote (q, r) ∈
Γs, if

q ≥ 2, r ∈ [2,+∞), (q, r) 6= (2,
4N − 2

4N − 3
) and N(

1

2
− 1

r
) =

2s

q
.

Proposition 2. Let N ≥ 2, N
2N−1 ≤ s < 1 and u0 ∈ L2

rd. Then for any admissible pairs

(q, r) and (q̃, r̃) from Γs, we have

‖u‖Lqt (Lr) . ‖u0‖+ ‖iu̇− (−4)su‖
Lq̃
′
t (Lr̃′ )

.

Remark 6. The Strichartz inequality is compatible with truncations. Indeed, if we have
iu̇− (−4)su = h and (q, r), (q̃, r̃), (q̃1, r̃1) ∈ Γs then

‖u‖Lqt (Lr) . ‖u0‖+ ‖h‖
Lq̃
′
t (Lr̃′ (|x|<1))

+ ‖h‖
L
q̃′1
t (Lr̃

′
1 (|x|>1))

.
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4. Ground state and Sharp Gagliardo-Nirenberge inequality

4.1. Auxiliary lemmas. In this section, we are going to prove some intermediate results
which will be crucial to prove Theorem 1. For easy notations, let

uλ := uλa,b,K := Kλ
a,b,K

Q := KQ
a,b,K

N := KN
a,b,L := La,b;

and we keep the notation Ha,b.

Lemma 4. Let (a, b) ∈ A. Then

(1) min(LHa,b(u), Ha,b(u)) > 0 for all u ∈ Hs − {0},
(2) λ→ Ha,b(u

λ) is increasing.

Proof. Let u ∈ Hs − {0}, we have

Ha,b(u) = (1− L
µ̄

)S(u)

=
1

µ̄
(µ̄S(u)−K(u))

=
1

µ̄
{(µ̄− (2a+ (N − 2s)b))‖(−4)

s
2u‖2 + (µ̄− (2a+Nb))‖u‖2

+
1

p
(2ap+ b(N + α+ 2β)− µ̄)

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx}.

At this step, if we adopt the set A′ instead of A, one gets 2ap + b(N + α + 2β) − µ̄ > 0
which implies clearly that Ha,b(u) > 0. Otherwise, we have

µ̄ =

{
2a+Nb, if b ≥ 0

2a+ (N − 2s)b, if b ≤ 0.

In the case b > 0, we have

2ap+ b(N + α+ 2β)− µ̄ = 2a(p− 1) + b(α+ 2β) > 0.

Indeed, from (1.2), one has α+ 2β > −N . So

(4.1) 2a(p− 1) + b(α+ 2β) > 2a(p− 1)−Nb = 2ap− (2a+Nb) = 2ap− µ ≥ 0.

In the case b ≤ 0, from µ ≥ 0 we obtain b ≥ −2a
N . Hence

2a(p− 1) + b(α+ 2β + 2s) ≥ 2a(p− 1)− 2a

N
(α+ 2β + 2s) ≥ 2a(p− p∗).

Since p∗ < p, we obtain

(4.2) 2ap+ b(N + α+ 2β)− µ̄ = 2a(p− 1) + b(α+ 2β + 2s) > 0.

In summary, we obtain

(4.3) 2ap+ b(N + α+ 2β)− µ̄ > 0,∀(a, b) ∈ A.
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Thus Ha,b(u) > 0 for any (a, b) ∈ A.
Furthermore, we have

LHa,b(u) = L(1− L
µ̄

)S(u) = − 1

µ̄
(L − µ̄)(L − µ)S(u) + µ(1− L

µ̄
)S(u)

= − 1

µ̄
(L − µ̄)(L − µ)S(u) + µHa,b(u) > − 1

µ̄
(L − µ̄)(L − µ)S(u).

Clearly, we have (L − µ̄)(L − µ)‖u‖2Hs = 0, then

LHa,b(u) >
1

µ̄
(L − µ̄)(L − µ)(

1

p

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx)

=
1

pµ̄
(2ap+ b(N + α+ 2β)− µ̄)(2ap+ b(N + α+ 2β)− µ)∫

(Iα ∗ | · |β|u|p)|x|β|u|pdx

≥ 1

pµ̄
(2ap+ b(N + α+ 2β)− µ̄)2

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx.

Hence LHa,b(u) > 0, this complete the proof of the first point. The second point follows

from the equality ∂λHa,b(u
λ) = LHa,b(u

λ). �

Lemma 5. Let (a, b) ∈ A. If un ∈ Hs−{0} is a bounded sequence such that lim
n
KQ(un) =

0, then there exists n0 ∈ N such that: K(un) > 0,∀n ≥ n0.

Proof. First, let us remark that for any (a, b) ∈ A, we have

KQ(un) > 0 and ‖(−4)
s
2un‖2 . KQ(un).

In fact, the conditions µ > 0 and µ ≥ 0 ensure that 2a+ (N −2s)b > 0 in any cases. Since
p∗ < p < p∗, then (2.3) holds with B > 2. Hence∫

(Iα ∗ | · |β|un|p)|x|β|un|pdx . ‖un‖A‖(−4)
s
2un‖B = o(‖(−4)

s
2un‖2) = o(KQ(un)).

Thus, when n goes to +∞, one gets

K(un) = KQ(un)− 1

p
(2ap+ b(N + α+ 2β))

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx

= KQ(un) + o(KQ(un)) ∼ KQ(un) > 0

�

Remark 7. Whenever (a, b) 6= (1, −2
N ) then 2a+Nb > 0. In that case∫

(Iα ∗ | · |β|un|p)|x|β|un|pdx . ‖un‖A‖(−4)
s
2un‖B . KQ(un)2p.

Then K(un) ∼ KQ(un) holds for any exponent 1 + α+2β
N < p < p∗.

The last intermediate result is the following.

Lemma 6. Let (a, b) ∈ A. Then

ma,b = inf
u∈Hs−{0}

{Ha,b(u) s.t K(u) ≤ 0}.
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Proof. We have

‖uλ‖ = λ
2a+Nb

2 ‖u‖ and ‖uλ‖Ḣs = λ
2a+(N−2s)b

2 ‖u‖Ḣs .

Then the set {uλ, λ ∈ (0, 1]} is bounded in Hs. Now, let

r := inf
u∈Hs−{0}

{Ha,b(u) s.t K(u) ≤ 0}.

It is obvious that

{S(u) s.t K(u) = 0} = {Ha,b(u) s.t K(u) = 0} ⊂ {Ha,b(u) s.t K(u) ≤ 0}.

Hence r ≤ ma,b. Conversly, take u ∈ Hs−{0} such that K(u) < 0. We have lim
λ→0

KQ(uλ) =

0, taking account of Lemma 5, there exists λ ∈ (0, 1) such that K(uλ) > 0. Knowing
that K(u1) = K(u) < 0, so by a continuity argument there exists λ0 ∈ (0, 1) such that
K(uλ0) = 0. The function λ→ Ha,b(u

λ) is increasing, then

ma,b ≤ S(uλ0) = Ha,b(u
λ0) ≤ Ha,b(u

1) = Ha,b(u).

This valid for any u ∈ Hs−{0} such that K(u) ≤ 0, so we deduce ma,b ≤ r. This finishes
the proof. �

4.2. Proof of Theorem 1. Let (φn) be a minimizing sequence, with a rearrangement
argument via Lemma 6, we can assume that (φn) is radial decreasing and satisfies

(4.4) φn ∈ Hs
rd − {0},K(φn) = 0 and limHa,b(φn) = limS(φn) = ma,b.

First step. At first, we will prove that (φn) is bounded in Hs. In the case b > 0, let
λ := b

2a . Since K(φn) = 0 then dividing by 2a > 0, we get

(1 + (N − 2s)λ)‖(−4)
s
2φn‖2 + (1 +Nλ)‖φn‖2

= (1 + λ
N + α+ 2β

p
)

∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx.

Therefore

‖φn‖2Hs =

∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx+ λ{(2s−N)‖(−4)

s
2φn‖2 −N‖φn‖2

+
N + α+ 2β

p

∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx}.

So

‖φn‖2Hs − 2sλ‖(−4)
s
2φn‖2 − (1 + λ

α+ 2β

p
)

∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx

= −λN{‖φn‖2Hs −
1

p

∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx}

= −λNS(φn).

Knowing that S(φn)→ ma,b, then S(φn) defines a bounded real sequence. Hence, for any
real number δ, the following sequence is bounded:

2sλ‖(−4)
s
2φn‖2 + (δ − 1)‖φn‖2Hs + (1− δ

p
+
λ(α+ 2β)

p
)

∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx.
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Taking δ ∈ (1, p), it follows that (φn) is bounded in Hs. In the case −2a
N ≤ b ≤ 0, since

K(φn) = 0 then

µ̄S(φn) = µ̄S(φn)−K(φn)

= (2a+ (N − 2s)b)S(φn)−K(φn)

= −2bs‖φn‖2 +
1

p
(2a(p− 1) + b(α+ 2β + 2s))

∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx

≥ 1

p
(2a(p− 1) + b(α+ 2β + 2s))

∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx.

Implies

µ̄S(φn) + (2a(p− 1) + b(α+ 2β + 2s))S(φn) ≥ (2a(p− 1) + b(α+ 2β + 2s))‖φn‖2Hs .

Since

(4.5) 2a(p− 1) + b(α+ 2β + 2s) ≥ 2a(p− 1)− 2a

N
(α+ 2β + 2s) = 2(p− p∗) > 0,

then φn is bounded in Hs.

Second step. In this step, we will prove that ma,b > 0. Thanks to the compact injections,
one obtains

φn ⇀ φ in Hs and φn → φ in Lr, ∀r ∈ (2,
2N

N − 2s
).

Assume φ = 0, using the Hardy-Littlewood-Sobolev inequality, one gets

(4.6)

∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx . ‖|x|β|φn|p‖22N

α+N

.

Let µ := ( N−β )− > 1 and r := 2Np
α+N+2β−ε for some ε = 0+. We have 1

µ + p
r = α+N

2N , then

‖|x|β|φn|p‖ 2N
α+N

(|x|<1) ≤ ‖|x|
β‖µ(|x|<1)‖|φn|p‖ rp . ‖φn‖

p
r .

Because p∗ < p < p∗, one gets 2 < r < 2N
N−2s . Thus, when n goes to +∞, we have

‖|x|β|φn|p‖ 2N
α+N

(|x|<1) . ‖φn‖
p
r → 0.

Similarly, by choosing µ := ( N−β )+ > 1 and r := 2Np
α+N+2β+ε for some ε = 0+, we obtain

‖|x|β|φn|p‖ 2N
α+N

(|x|>1) → 0 when n→ +∞.

Therefore, by using (4.6), one gets∫
(Iα ∗ | · |β|φn|p)|x|β|φn|pdx→ 0 when n→ +∞.

Since K(φn) = 0, then lim
n
KQ(φn) = 0. So, by using Lemma 5 we obtain K(φn) > 0 for

large value of n. Then, φ 6= 0 by contradiction. Next, we have to prove that ma,b > 0.
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With lower semi-continuity of the Hs norm, we have

0 = lim inf
n

K(φn)

≥ (2a+ (N − 2s)b) lim inf
n
‖(−4)

s
2φn‖2 + (2a+Nb) lim inf

n
‖φn‖2

− 2ap+ b(N + α+ 2β)

p

∫
(Iα ∗ | · |β|φ|p)|x|β|φ|pdx

≥ K(φ).

Similarly, we obtain Ha,b(φ) ≤ ma,b. Furthermore, if K(φ) < 0 then there exists λ0 ∈ (0, 1)

such that K(φλ0) = 0. Therefore

ma,b ≤ S(φλ0) = Ha,b(φ
λ0) ≤ Ha,b(φ) ≤ ma,b.

Then
ma,b = S(φλ0) = Ha,b(φ

λ0) > 0.

Let φ := φλ0 , then φ is a minimizer for (2.2) which satisfies (4.4).

Third step. Finally, we are going to prove that φ satisfies (2.1). There exists a Lagrange
multiplier µ ∈ R such that S′(φ) = µK ′(φ). Hence

0 = K(φ) = LS(φ) = 〈S′(φ),L(φ)〉 = µ〈K ′(φ),L(φ)〉 = µLK(φ) = µL2S(φ).

We have

−L2S(φ)− µ̄µS(φ) = −(L − µ̄)(L − µ)S(φ)

≥ 1

p
(2ap+ b(N + α+ 2β)− µ̄)2

∫
(Iα ∗ | · |β|φ|p)|x|β|φ|pdx.

Taking account of (4.3), one gets L2S(φ) < 0. Consequently µ = 0 and then S′(φ) = 0.
Therefore, φ is a ground state and m := ma,b is independent of (a, b).

4.3. Proof of Theorem 2.

4.3.1. The interpolation inequality (2.3). By using of the Hardy-Littlewood-Sobolev in-
equality from Corollary 1, we have

(

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx)

2N
α+N . ‖|x|β|u|p‖

4N
α+N
2N
α+N

.

For any Hölder couples (r, r′) such that r := (α+N
−2β )− and r′ := (1 + ε) α+N

α+2β+N where

ε = 0+. We have

‖|x|β|u|p‖
4N
α+N
2N
α+N

(|x|<1)
. ‖|x|

2Nβ
α+N ‖2r(|x|<1)‖u‖

4Np
α+N

2Npr′
α+N

. ‖u‖
4Np
α+N

2Npr′
α+N

.

Since 1 + α+2β
N < p < p∗, then 2 < 2Npr′

α+N = (1 + ε) 2Np
α+2β+N < 2N

N−2s . Thanks to the

fractional Gagliardo-Nirenberg inequality from Lemma 1, one gets

‖u‖ 2Npr′
α+N

. ‖u‖θ
Ḣs‖u‖1−θ, where θ :=

N

s
(
1

2
− α+N

2Npr′
).

So

‖|x|β|u|p‖
4N
α+N
2N
α+N

(|x|<1)
. (‖u‖θ

Ḣs‖u‖1−θ)
4Np
α+N .
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Similarly, by taking r := (α+N
−2β )+ and r′ := (1 − ε) α+N

α+2β+N , we estimate integrals on

|x| > 1. So, for some ε small enough, we have∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx . ‖u‖BḢs‖u‖A.

4.3.2. The best constant of the Gagliardo-Nirenberg inequality. First, let us prove the equa-
tion (2.4). For that, let

ξ :=
1

C(N, p, s, α, β)
= inf

v∈Hs−{0}
J(v).

Using Schwartz symmetrization argument, there exists a sequence (vn) in Hs
rd − {0} such

that ξ = lim
n
J(vn). For λ, µ ∈ R, denoting uλ,µ := λu(µ·). we have

‖(−4)
s
2uλ,µ‖2 = λ2µ2s−N‖(−4)

s
2u‖2; ‖uλ,µ‖2 = λ2µ−N‖u‖2;∫

(Iα ∗ | · |β|uλ,µ|p)|x|β|uλ,µ|pdx = λ2pµ−N−α−2β

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx.

Hence, by some elementary computations we get

J(uλ,µ) = J(u).

Let us define

λn :=
‖vn‖

N
2s
−1

‖(−4)
s
2 vn‖

N
2s

and µn := (
‖vn‖

‖(−4)
s
2 vn‖

)
1
s .

So, ψn := vλn,µnn satisfies

‖ψn‖ = ‖(−4)
s
2ψn‖ = 1 and ξ = lim

n
J(ψn).

Then, for a subsequence denoted also (ψn) there exist ψ ∈ Hs
rd such that ψn ⇀ ψ. Now,

we are going to prove that∫
(Iα ∗ | · |β|ψn|p)|x|β|ψn|pdx→

∫
(Iα ∗ | · |β|ψ|p)|x|β|ψ|pdx.

For that, let

In :=

∫
(Iα ∗ | · |β|ψn|p)|x|β|ψn|pdx−

∫
(Iα ∗ | · |β|ψ|p)|x|β|ψ|pdx.

We have

In =

∫
(Iα ∗ | · |β(|ψn|p − |ψ|p))|x|β|ψn|pdx+

∫
(Iα ∗ | · |β|ψ|p)|x|β(|ψn|p − |ψ|p)dx

=

∫
(Iα ∗ | · |β(|ψn|p − |ψ|p))|x|β|ψn|pdx+

∫
(Iα ∗ | · |β(|ψn|p − |ψ|p))|x|β|ψ|pdx.

By using the Hardy-Littlewood-Sobolev inequality, we get

In . {‖|x|β|ψn|p‖ 2N
α+N

+ ‖|x|β|ψ|p‖ 2N
α+N
}‖|x|β(|ψn|p − |ψ|p)‖ 2N

α+N
.

Denote

I1
n := ‖|x|β(|ψn|p − |ψ|p)‖ 2N

α+N
(|x|<1) and I2

n := ‖|x|β(|ψn|p − |ψ|p)‖ 2N
α+N

(|x|>1)
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From (1.2), we have N > −β, N + α + 2β > 0 and N > α + 2β. So, let µ := ( N−β )− and

r := 2N
α+N− 2N

µ

> 1. By using Hölder inequality, the Mean Value Theorem and the function

x→ xr is convex, we get

I1
n ≤ ‖|x|β‖µ(|x|<1)‖|ψn|p − |ψ|p‖r(|x|<1)

. ‖|ψn|p − |ψ|p‖r

. ‖{|ψn|p−1 + |ψ|p−1}|ψn − ψ|‖r

. ‖{|ψn|r(p−1) + |ψ|r(p−1)}|ψn − ψ|r‖
1
r
1

. (‖ψn‖r(p−1)
pr + ‖ψ‖r(p−1)

pr )
1
r ‖ψn − ψ‖pr.

By using the inequality (a+b)ρ ≤ 2(aρ+bρ) for a, b nonnegative and 0 ≤ ρ ≤ 2, we deduce

I1
n . (‖ψn‖p−1

pr + ‖ψ‖p−1
pr )‖ψn − ψ‖pr.

Since 1 + α+2β
N < p < p∗, then 2 < rp < 2N

N−2s . So, by compact Sobolev injections one gets

lim
n
I1
n = 0. Similarly, one shows that ‖|x|β|ψn|p‖ 2N

α+N
defines a bounded sequence and that

I2
n . (‖ψn‖p−1

pr + ‖ψ‖p−1
pr )‖ψn − ψ‖pr,

Consequently, one obtains lim
n
In = 0. Hence, when n goes to +∞, we have

J(ψn) =
1∫

(Iα ∗ | · |β|ψn|p)|x|β|ψn|pdx
→ 1∫

(Iα ∗ | · |β|ψ|p)|x|β|ψ|pdx
.

Using lower semi-continuity of the Hs norm, we get ‖ψ‖ ≤ 1 and ‖(−4)
s
2ψ‖ ≤ 1. If ‖ψ‖ <

1 or ‖(−4)
s
2ψ‖ < 1, then ‖ψ‖A‖(−4)

s
2ψ‖B < 1, implies J(ψ) < ξ which contradicts the

definition of ξ. Thus, we have ‖ψ‖ = ‖(−4)
s
2ψ‖ = 1. Therefore ψn → ψ in Hs

rd and

C(N, p, s, α, β) =
1

ξ
=

1

J(ψ)
=

∫
(Iα ∗ | · |β|ψ|p)|x|β|ψ|pdx.

The minimizer ψ satisfies the Euler equation

∂εJ(ψ + εµ)|ε=0 = 0,∀µ ∈ C∞0 ∩Hs.

Hence, ψ satisfies the equation (2.4). It remains now to prove (2.5). For λ, µ ∈ R, we
introduce the scaling φ such that

ψ = φλ,µ := λφ(µ·).

In the equation (2.4), replacing ψ by φλ,µ, we obtain

−B
A
µ2s(−4)sφ+ φ− 2

ξ

A
pλ2p−2µ−α−2β(Iα ∗ | · |β|φ|p)|x|β|φ|p−2φ = 0.

Taking

µ = (
A

B
)

1
2s and λ = ((

A

B
)
α+2β
2s

A

2pξ
)

1
2(p−1) .

We get

(−4)sφ− φ+ (Iα ∗ | · |β|φ|p)|x|β|φ|p−2φ = 0.
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Since that 1 = ‖ψ‖ = λµ−
N
2 ‖φ‖, then

λ‖φ‖ = (
A

B
)
N
4s ;λ2(p−1)‖φ‖2(p−1) = (

A

B
)
N(p−1)

2s ; (
A

B
)
α+2β
2s

A

2pξ
‖φ‖2(p−1) = (

A

B
)
N(p−1)

2s .

We deduce the following

ξ =
A

2p
(
A

B
)
α+2β
2s (

A

B
)−

N(p−1)
2s ‖φ‖2(p−1)

=
A

2p
(
A

B
)−

N(p−1)−α−2β
2s ‖φ‖2(p−1)

=
A

2p
(
A

B
)−

B
2 ‖φ‖2(p−1).

Therefore

C(N, p, s, α, β) =
1

ξ
=

2p

A
(
A

B
)
B
2 ‖φ‖−2(p−1).

5. Well-posedness

In this section, we are going to prove Theorem 3.

5.1. Local well-posedness. We are concerned with the existence and uniqueness of so-
lution to the Cauchy problem (1.1). The sign of ε has no local effect, for that we assume
here ε = 1. For any T > 0 and R > 0 let us define

XT :=
⋂

(q,r)∈Γs

LqT (W s,r),

and

BT (R) := {v ∈ XT , s.t sup
(q,r)∈Γs

‖v‖LqT (W s,r) ≤ R}.

The closed ball BT (R) is equipped with the complete distance

d(u, v) := ‖u− v‖ST := sup
(q,r)∈Γs

‖u− v‖LqT (Lr).

Next, we introduce the so called Schrödinger mapping

Φ(u) := exp(−i · (−4)s)u0 −
∫ ·

0
exp(−i(· − τ)(−4)s)((Iα ∗ | · |β|u|p)|x|β|u|p−2u)dτ.
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Using the Strichartz estimate from Proposition 2 and Remark 6, one has for all u, v ∈
BT (R) and for any (q, r), (q1, r1) ∈ Γs:

d(Φ(u),Φ(v)) . ‖(Iα ∗ | · |β|u|p)|x|β|u|p−2u− (Iα ∗ | · |β|v|p)|x|β|v|p−2v‖
Lq
′
T (Lr′ (|x|<1))

+ ‖(Iα ∗ | · |β|u|p)|x|β|u|p−2u− (Iα ∗ | · |β|v|p)|x|β|v|p−2v‖
L
q′1
T (Lr

′
1 (|x|>1))

. ‖(Iα ∗ [| · |β|u|p − | · |β|v|p])|x|β|u|p−2u‖
Lq
′
T (Lr′ (|x|<1))

+ ‖(Iα ∗ | · |β|v|p)[|x|β|u|p−2u− |x|β|v|p−2v]‖
Lq
′
T (Lr′ (|x|<1))

+ ‖(Iα ∗ [| · |β|u|p − | · |β|v|p])|x|β|u|p−2u‖
L
q′1
T (Lr

′
1 (|x|>1))

+ ‖(Iα ∗ | · |β|v|p)[|x|β|u|p−2u− |x|β|v|p−2v]‖
L
q′1
T (Lr

′
1 (|x|>1))

.

Denote

(I) := ‖(Iα ∗ | · |β|v|p)[|x|β|u|p−2u− |x|β|v|p−2v]‖
Lq
′
T (Lr′ (|x|<1))

.

By the Mean Value Theorem, we have

(I) . ‖(Iα ∗ | · |β|v|p)|x|β(|u|p−2 + |v|p−2)|u− v|‖
Lq
′
T (Lr′ (|x|<1))

.

Let µ := ( N−β )− and r = 2Np
N+α+2β+2(p−1)s−ε where ε = 0+. If k := Nr

N−sr then

1 +
α

N
=

2

r
+

2

µ
+

2p− 2

k

=
1

r
+ (

1

µ
+
p

k
) + (

1

µ
+
p− 2

k
+

1

r
).

So, by using the Hardy-Littlwood-Paley inequality, one gets

(I) . ‖‖|x|β‖Lµ(|x|<1)‖v‖
p
k‖|x|

β‖Lµ(|x|<1)(‖u‖
p−2
k + ‖v‖p−2

k )‖u− v‖r‖Lq′T
. ‖(‖u‖2(p−1)

k + ‖v‖2(p−1)
k )‖u− v‖r‖Lq′T

.

Since N+α+2β−2s > 0, then 1 < r < N
s . So, by Sobolev injections, we have W s,r ↪→ Lk,

then

(I) . ‖(‖u‖2(p−1)
W s,r + ‖v‖2(p−1)

W s,r )‖u− v‖r‖Lq′T
.

Since p < p∗, then we can suppose ε = 0+ small enough such that p+ ε
N−2s < p∗. So

p(N − 2s) + ε < (N − 2s) + α+ 2β + 2s.

Then
p(N − 2s)− ((N − 2s) + α+ 2β) + ε

2s
< 1.

Thus
Np

s
(
1

2
− 1

r
) < 1,



L. CHERGUI/FRACTIONAL BI-INHOMOGENEOUS CHOQUARD EQUATION 17

and then 2p
q = Np

s (1
2 −

1
r ) < 1 which implies (2p − 1)q′ < q. So, there exists θ > 0 such

that 1
q′ = 2p−1

q + 1
θ . Using the Hölder inequality, one gets

(I) . T
1
θ (‖u‖2(p−1)

Lq(W s,r) + ‖v‖2(p−1)
Lq(W s,r))‖u− v‖Lq(Lr)

. T
1
θR2(p−1)d(u, v).

In a similar way as previous, by using the Hardy-Littlwood-Paley inequality with respect
to the following decomposition

1 +
α

N
=

1

r
+ (

1

µ
+
p− 1

k
+

1

r
) + (

1

µ
+
p− 1

k
),

we obtain

(II) := ‖(Iα ∗ [| · |β|u|p − | · |β|v|p])|x|β|u|p−2u‖
Lq
′
T (Lr′ (|x|<1))

. ‖(Iα ∗ | · |β[|u|p−1 + |v|p−1]|u− v|)|x|β|u|p−2u‖
Lq
′
T (Lr′ (|x|<1))

. ‖(‖u‖2(p−1)
k + ‖v‖2(p−1)

k )‖u− v‖r‖Lq′T
. ‖(‖u‖2(p−1)

W s,r + ‖v‖2(p−1)
W s,r )‖u− v‖r‖Lq′T

. T
1
θR2(p−1)d(u, v).

Now, in order to estimate integrals on |x| > 1, we make use of µ := ( N−β )+ and r1 :=
2Np

N+α+2β+2(p−1)s+ε with some ε = 0+. We obtain

‖(Iα ∗ [| · |β|u|p − | · |β|v|p])|x|β|u|p−2u‖
L
q′1
T (Lr

′
1 (|x|>1))

. T
1
θR2(p−1)d(u, v)

‖(Iα ∗ | · |β|v|p)[|x|β|u|p−2u− |x|β|v|p−2v]‖
L
q′1
T (Lr

′
1 (|x|>1))

. T
1
θR2(p−1)d(u, v).

In summary, we obtain

d(Φ(u),Φ(v)) . T
1
θR2(p−1)d(u, v).

When v = 0, it becomes

‖Φ(u)− exp(−i · (−4)s)u0‖ST ≤ CT
1
θR2p−1.

Then

‖Φ(u)‖ST ≤ ‖ exp(−i · (−4)s)u0‖ST + CT
1
θR2p−1

≤ ‖u0‖+ CT
1
θR2p−1.

Now, it remains to estimate

sup
(q,r)∈Γs

‖Φ(u)‖LqT (Ẇ s,r) = ‖(−4)
s
2 Φ(u)‖ST .
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Let (III) := ‖(−4)
s
2 Φ(u)‖ST − ‖(−4)

s
2u0‖. Thanks to the Strichartz estimate, one has

(III) . ‖(−4)
s
2 (Iα ∗ | · |β|u|p)|x|β|u|p−2u‖

Lq
′
T (Lr′ )

. ‖(Iα ∗ | · |β−s|u|p)|x|β|u|p−1 + (Iα ∗ | · |β|u|p−1|(−4)
s
2u|)|x|β|u|p−1

+ (Iα ∗ | · |β|u|p)|x|β−s|u|p−1 + (Iα ∗ | · |β|u|p)|x|β|u|p−2|(−4)
s
2u|‖

Lq
′
T (Lr′ )

.

Taking in account the chain rules from Lemma 2 and the Hardy-Littlwood-Paley inequality,
one controls the second and the fourth terms in the last inequality as previous. Therefore,
we obtain

(III) . T
1
θR2p−1 + ‖(Iα ∗ | · |β−s|u|p)|x|β|u|p−1‖

Lq
′
T (Lr′ )

+ ‖(Iα ∗ | · |β|u|p)|x|β−s|u|p−1‖
Lq
′
T (Lr′ )

.

Now, we introduce ρ := ( N
s−β )−. By the assumption N + β − s > 0, we have ρ > 1. Once

again, we make use of µ := ( N−β )−, r = 2Np
N+α+2β+2(p−1)s−ε and k = Nr

N−sr . We have

1 +
α

N
=

1

r
+ (

1

ρ
+
p

k
) + (

1

µ
+
p− 1

k
).

So, by using the Hardy-Littlwood-paley and Hölder inequalities, taking account of Sobolev
injections, we obtain

‖(Iα ∗ | · |β−s|u|p)|x|β|u|p−1‖
Lq
′
T (Lr′ (|x|<1))

. ‖‖|x|β−s‖ρ(|x|<1)‖u‖
p
k‖|x|

β‖µ(|x|<1)‖u‖
p−1
k ‖

Lq
′
T

. ‖‖u‖2p−1
W s,r‖

Lq
′
T

. T
1
θR2p−1.

Similarly

‖(Iα ∗ | · |β|u|p)|x|β−s|u|p−1‖
Lq
′
T (Lr′ (|x|<1))

. T
1
θR2p−1.

Also, to control integrals on |x| > 1, we use ρ := ( N
s−β )+, µ := ( N−β )+ and r := 2Np

N+α+2β+2(p−1)s+ε .

Thus, one gets

‖(Iα ∗ | · |β−s|u|p)|x|β|u|p−1‖
Lq
′
T (Lr′ (|x|>1))

. T
1
θR2p−1.

and

‖(Iα ∗ | · |β|u|p)|x|β−s|u|p−1‖
Lq
′
T (Lr′ (|x|>1))

. T
1
θR2p−1.

In summary, we obtain

‖(−4)
s
2 Φ(u)‖ST ≤ ‖u0‖Ḣs + CT

1
θR2p−1.

Then, by taking R > ‖u0‖Hs and T small enough, it follows that Φ is a contraction of
BT (R). So, it’s fix point is the unique solution to (1.1) in BT (R). Uniqueness of the
maximal solution follows from previous computations and standard translation argument.

5.2. Global well-posedness.



L. CHERGUI/FRACTIONAL BI-INHOMOGENEOUS CHOQUARD EQUATION 19

5.2.1. The defocusing (ε = 1) energy subcritical case. Let u ∈ C([0, T ∗[, Hs) be the unique
maximal solution of (1.1). Suppose that T ∗ < ∞ and take 0 < τ < T ∗, we consider the
following Cauchy problem

(5.1)

{
iv̇ − (−4)sv = (Iα ∗ | · |β|v|p)|x|β|v|p−2v, t ≥ τ,
v(τ, ·) = u(τ, ·).

Using contraction arguments as for the main problem (1.1), we prove the existence of
T > 0 and v ∈ C([τ, τ + T ], Hs) solution to (5.1). Thanks to the conservation laws, the

instant of time T does not depend on τ . Hence, taking in account that ‖(−4)
s
2u‖ remains

bounded, let τ be close to T ∗ such that T ∗ < τ + T , this contradicts the maximality of
T ∗. Then T ∗ =∞ and u ∈ C(R+, H

s).

5.2.2. The focusing (ε = −1) mass subcritical case. By using of the Gagliardo-Nirenberg
inequality (2.3), we have

E(u0) := ‖u(t)‖2
Ḣs −

1

p

∫
(Iα ∗ | · |β|u|p)|x|β|u|p−2udx

≥ ‖u(t)‖2
Ḣs −

C(N, p, s, α, β)

p
‖u(t)‖A‖u(t)‖B

Ḣs

≥ ‖u(t)‖2
Ḣs(1−

C(N, p, s, α, β)

p
M(u0)

A
2 ‖u(t)‖B−2

Ḣs
)

≥ ‖u(t)‖2
Ḣs(1−

C(N, p, s, α, β)

p
M(u0)

A
2 ‖u(t)‖

N
s

(p−p∗)
Ḣs

).

Consequently, if p < p∗ or p = p∗ and M(u0) < ( p
C(N,p,s,α,β))

2
A , then sup

[0,T ∗[
‖u(t)‖Ḣs < ∞

which implies that T ∗ =∞.

6. Virial type identity

In this section we have to prove Theorem 4.

6.1. Preliminary. Let us define the self-adjoint differential operator

Γψ := −i(∇.∇ψ +∇ψ.∇);

which acts on functions as follows

Γψf = −i(∇.((∇ψ)f) + (∇ψ).(∇f)).

Then

MψR [u(t)] = 〈u(t),Γψu(t)〉.
For m > 0, it is useful to define the function

um :=

√
sin(πs)

π

1

m−4
u =

√
sin(πs)

π
F−1(

Fu
| · |2 +m

).

Let [X,Y ] := XY − Y X denotes the commutator of X and Y . We have the following
general result.
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Lemma 7. For sufficiently smooth function g, we have

〈u, [−g, iΓψ]u〉 = 2

∫
|u|2∇ψ.∇gdx.

Proof.

〈u, [−g, iΓψ]u〉 = −〈u, [g,∇ψ.∇+∇.∇ψ]u〉
= −〈u, g∇ψ.∇u+ g∇((∇ψ)u)〉
+ 〈u,∇ψ.∇(gu) +∇((∇ψ)gu)〉
= −2〈u, g∇ψ.∇u〉+ 2〈u,∇ψ.∇(gu)〉

= 2〈u, u∇ψ.∇g〉 = 2

∫
ūu∇ψ.∇gdx = 2

∫
|u|2∇ψ.∇gdx.

�

6.2. The energy subcritical case. Using the equation (1.1), it follows that

d

dt
MψR [u(t)] = 〈u(t), [(−4)s, iΓψR ]u(t)〉+ 〈u(t), [−(Iα ∗ | · |β|u|p)|x|β|u|p−2, iΓψR ]u(t)〉.

According to computations in [3], one controls the dispersive term as follows

〈u(t), [(−4)s, iΓψR ]u(t)〉 ≤ 4s‖u(t)‖2
Ḣs + CR−2s.

Our aim now is to estimate the nonlinear term

N := 〈u(t), [−(Iα ∗ | · |β|u|p)|x|β|u|p−2, iΓψR ]u(t)〉.

Let g(x) := (Iα ∗ | · |β|u|p)|x|β|u|p−2, we obtain

N = 2

∫
|u|2∇ψR.∇((Iα ∗ | · |β|u|p)|x|β|u|p−2)dx.

= −2

∫
{∇(|u|2).∇ψR + |u|24ψR}(Iα ∗ | · |β|u|p)|x|β|u|p−2dx.

= −4

p

∫
∇ψR.∇(|u|p)(Iα ∗ | · |β|u|p)|x|βdx− 2

∫
4ψR(Iα ∗ | · |β|u|p)|x|β|u|pdx

= (
4

p
− 2)

∫
4ψR(Iα ∗ | · |β|u|p)|x|β|u|pdx+

4

p

∫
∇ψR.(∇Iα ∗ | · |β|u|p)|x|β|u|pdx

+
4

p

∫
∇ψR.∇(|x|β)(Iα ∗ | · |β|u|p)|u|pdx.

Denote

M1 :=
4

p

∫
∇ψR.(∇Iα ∗ | · |β|u|p)|x|β|u|pdx;

and

M2 :=
4

p

∫
∇ψR.∇(|x|β)(Iα ∗ | · |β|u|p)|u|pdx.
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Let D := {x ∈ RN s.t |x| ≤ R} × {y ∈ RN s.t |y| ≤ R} ⊂ R2N and Dc = R2N −D. We
have ∇Iα(x) = −K(N − α) x

|x|N−α+2 , then

M1 = −4K
p

(N − α)

∫
∇ψR(x).

x− y
|x− y|N−α+2

|y|β|u(y)|p|x|β|u(x)|pdydx

= −4K
p

(N − α)

∫
(∇ψR(x)−∇ψR(y)).

x− y
|x− y|N−α+2

|y|β|u(y)|p|x|β|u(x)|pdydx

+
4K
p

(N − α)

∫
∇ψR(y).

y − x
|y − x|N−α+2

|x|β|u(x)|p|y|β|u(y)|pdxdy.

The last term is −M1, so

M1 = −2K
p

(N − α)

∫
(∇ψR(x)−∇ψR(y)).

x− y
|x− y|N−α+2

|y|β|u(y)|p|x|β|u(x)|pdydx.

Since ∇ψR(x)−∇ψR(y) = x− y on D, then

− p

2K(N − α)
M1 =

∫
D

|y|β|u(y)|p|x|β|u(x)|p

|x− y|N−α
dydx

+

∫
Dc

(∇ψR(x)−∇ψR(y)).
x− y

|x− y|N−α+2
|y|β|u(y)|p|x|β|u(x)|pdydx

=

∫
|y|β|u(y)|p|x|β|u(x)|p

|x− y|N−α
dydx

+

∫
Dc
{(∇ψR(x)−∇ψR(y)).

x− y
|x− y|2

− 1}|y|
β|u(y)|p|x|β|u(x)|p

|x− y|N−α
dydx.

For the last integral on Dc, we have the following two cases: if |x− y| < R, then using the
Mean Value Theorem and the property ‖∇jψR‖∞ . R2−j(0 ≤ j ≤ 4), one has

|(∇ψR(x)−∇ψR(y)).
x− y
|x− y|2

− 1| . ‖∇2ψR‖∞ + 1 . 1.

Else, if |x− y| ≥ R, then

|(∇ψR(x)−∇ψR(y)).
x− y
|x− y|2

− 1| . 2‖∇ψR‖∞
R

+ 1 . 1.

Moreover, by symmetry∫
Dc

|y|β|u(y)|p|x|β|u(x)|p

|x− y|N−α
dydx ≤ 2

∫
(|x|>R)×RN

|y|β|u(y)|p|x|β|u(x)|p

|x− y|N−α
dydx

=
2

K

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx.

Therefore

M1 = −2(N − α)

p

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx).
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Next, we have to control M2. We have

p

4β
M2 =

1

β

∫
∇ψR(x).∇(|x|β)(Iα ∗ | · |β|u|p)|u|pdx

=

∫
∇ψR(x).

x

|x|2
(Iα ∗ | · |β|u|p)|x|β|u|pdx

=

∫
|x|<R

(Iα ∗ | · |β|u|p)|x|β|u|pdx+

∫
|x|>R

∇ψR(x).
x

|x|2
(Iα ∗ | · |β|u|p)|x|β|u|pdx

=

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx+

∫
|x|>R

{∇ψR(x).
x

|x|2
− 1}(Iα ∗ | · |β|u|p)|x|β|u|pdx.

For all |x| > R, we have

|∇ψR(x).
x

|x|2
− 1| . ‖∇ψR‖∞

R
+ 1 . 1.

Then

M2 =
4β

p

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx).

Replacing in N and taking in account that 4ψR(x) = N when |x| < R, we find

N = 2(
2

p
− 1)

∫
4ψR(Iα ∗ | · |β|u|p)|x|β|u|pdx−

2(N − α)

p

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx

+
4β

p

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx).

= {2N(
2

p
− 1)− 2(N − α)

p
+

4β

p
}
∫

(Iα ∗ | · |β|u|p)|x|β|u|pdx

+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx).

= −2
Np−N − α− 2β

p

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx

+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx).

Let

M3 :=

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx.
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Taking µ := ( N−β )+ and r := 2N
N+α+2β+ε where ε = 0+. Using Hardy-Littlwood-Sobolev

inequality, we obtain

M3 . ‖|x|β‖2µ(|x|>R)‖|u|
p‖2r(|x|>R)

. (

∫
|x|>R

|u|
2Np

N+α+2β dx)
N+α+2β

N

. (

∫
|x|>R

|u|
2Np

N+α+2β
−2|u|2dx)

N+α+2β
N

. ‖u‖2(p−1−α+2β
N

)

∞(|x|≥R) ‖u‖2(N+α+2β
N

)

. ‖u‖2(p−1−α+2β
N

)

∞(|x|≥R) .

Let δ := 1+ε
2 such that 1

2 < δ < s < N
2 . By using (3.2) and (3.3), yields

M3 . ‖u‖
2(p−1−α+2β

N
)

∞(|x|≥R)

. (R−(N
2
−δ)‖(−4)

δ
2u‖)2(p−1−α+2β

N
)

. R−(N−1−ε)(p−1−α+2β
N

)(‖u‖1−
δ
s ‖(−4)

s
2u‖

δ
s )2(p−1−α+2β

N
)

.
1

R(N−1−ε)(p−1−α+2β
N

)
‖(−4)

s
2u‖

1+ε
s

(p−1−α+2β
N

).

From previous computations, we obtain

d

dt
MψR [u] = 〈u(t), [(−4)s, iΓψR ]u(t)〉+ 〈u(t), [−(Iα ∗ | · |β|u|p)|x|β|u|p−2, iΓψR ]u(t)〉

≤ 4s‖u‖2
Ḣs + CR−2s − 2

Np−N − α− 2β

p

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx

+ C
1

R(N−1−ε)(p−1−α+2β
N

)
‖u‖

1+ε
s

(p−1−α+2β
N

)

Ḣs
.

Thus, we deduce the following desired estimate

d

dt
MψR [u] . 2(N(p− 1)− α− 2β)E(u0)− 2N(p− p∗)‖u‖2Ḣs

+O(R−2s +
1

R(N−1−ε)(p−1−α+2β
N

)
‖u‖

1+ε
s

(p−1−α+2β
N

)

Ḣs
).
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6.3. The mass critical case. Let us define ψ1 := 1 − ψ′′R and ψ2 := N − 4ψR. From
previous, we have

N = −2(1− 2

p∗
)

∫
4ψR(Iα ∗ | · |β|u|p)|x|β|u|pdx+M1 +M2

= −2N(1− 2

p∗
)

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx+ 2(1− 2

p∗
)

∫
ψ2(Iα ∗ | · |β|u|p)|x|β|u|pdx

− 2
N − α− 2β

p∗

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx)

= −2{N(1− 2

p∗
) +

N − α− 2β

p∗
}
∫

(Iα ∗ | · |β|u|p)|x|β|u|pdx

+ 2(1− 2

p∗
)

∫
ψ2(Iα ∗ | · |β|u|p)|x|β|u|pdx+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx)

= −4s

p∗

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx+ 2(1− 2

p∗
)

∫
ψ2(Iα ∗ | · |β|u|p)|x|β|u|pdx

+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx).

According to computations in [3], we get

d

dt
MψR [u] = 4s‖u‖2

Ḣs − 4

∫ +∞

0
ms

∫
ψ1|∇um|2dxdm+O(R−2s)

− 4s

p∗

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx+ 2(1− 2

p∗
)

∫
ψ2(Iα ∗ | · |β|u|p)|x|β|u|pdx

+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx)

= 4sE(u0)− 4

∫ +∞

0
ms

∫
ψ1|∇um|2dxdm+O(R−2s)

+ 2(1− 2

p∗
)

∫
ψ2(Iα ∗ | · |β|u|p)|x|β|u|pdx+O(

∫
|x|>R

(Iα ∗ | · |β|u|p)|x|β|u|pdx).

Let ρ := N+α+2β
α+2β+2s > 1 and

M4 :=

∫
ψ2(Iα ∗ | · |β|u|p)|x|β|u|pdx.
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Taking µ := ( N−β )+, r = 2N
N+α+2β+ε where ε = 0+. By Hardy-Littlwood-Sobolev and

Hölder inequalities, we have

M4 . ‖|x|β‖2µ‖|u|p∗‖r‖ψ2|u|p∗‖r

. ‖u‖p∗2Np∗
N+α+2β

(

∫
|x|>R

(|ψ2||u|p∗)
2N

N+α+2β dx)
N+α+2β

2N

. ‖u‖p∗
Ḣs

(

∫
|x|>R

(|ψ2u|)
2N

N+α+2β |u|(p∗−1) 2N
N+α+2β dx)

N+α+2β
2N

. ‖u‖p∗
Ḣs
{(
∫
|x|>R

|ψ2u|
2N

N+α+2β
ρ′
dx)

1
ρ′ (

∫
|u|2dx)

1
ρ }

N+α+2β
2N

. ‖u‖p∗
Ḣs

(

∫
|x|>R

|ψ2u|
2N

N+α+2β
ρ′
dx)

1
ρ′
N+α+2β

2N

. ‖u‖p∗
Ḣs

(

∫
|x|>R

|ψ2u|
2N
N−2sdx)

N−2s
2N

. ‖u‖p∗
Ḣs

(

∫
|x|>R

|ψ2u|
4s

N−2s |ψ2u|2dx)
N−2s
2N

. ‖u‖p∗
Ḣs
‖ψ2u‖

2s
N

∞(|x|≥R).

Using (3.2) and (3.3), for any δ such that 0 < δ := 1+ε
2 < s < N

2 , we get the following

M4 . ‖u‖p∗Ḣs
‖ψ2u‖

2s
N

∞(|x|≥R)

. ‖u‖p∗
Ḣs

(R−
N
2

+δ‖(−4)
δ
2ψ2u‖)

2s
N

. ‖u‖p∗
Ḣs

1

R
s
N

(N−1−ε) (‖ψ2u‖1−
δ
s ‖(−4)

s
2ψ2u‖

δ
s )

2s
N

. ‖u‖p∗
Ḣs

1

R
s
N

(N−1−ε) ‖ψ2u‖
1+ε
N

Ḣs
.

Hence, for any η > 0 and q := 2N
1+ε , by using the Young inequality, we have

M4 . η‖ψ2u‖2Ḣs + η1−q′(‖u‖p∗
Ḣs

1

R
s
N

(N−1−ε) )q
′
.

Estimating similarly as for M4, we get

M3 . ‖u‖p∗Ḣs

1

R
s
N

(N−1−ε) ‖u‖
1+ε
N

Ḣs

. η‖u‖2
Ḣs + η1−q′(‖u‖p∗

Ḣs

1

R
s
N

(N−1−ε) )q
′
.

In summary, from previous computations there exists C a positive constant such that

d

dt
MψR [u] ≤ 4sE(u0)− 4

∫ +∞

0
ms

∫
ψ1|∇um|2dxdm+ CR−2s

+ ηC‖ψ2u‖2Ḣs + ηC‖u‖2
Ḣs + 2Cη1−q′(‖u‖p∗

Ḣs

1

R
s
N

(N−1−ε) )q
′
.
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According to computations in [3], we have

s‖ψ2u‖2Ḣs =

∫ +∞

0
ms

∫
|∇(ψ2u)m|2dxdm

=

∫ +∞

0
ms

∫
|ψ2|2|∇um|2dxdm+O(1 + ‖∇ψ2‖2∞ + ‖4ψ2‖2∞)

=

∫ +∞

0
ms

∫
|ψ2|2|∇um|2dxdm+O(1 +R−2 +R−4).

Then

d

dt
MψR [u] ≤ 4sE(u0)− 4

∫ +∞

0
ms

∫
(ψ1 −

η

4s
C|ψ2|2 −

η

4s
C)|∇um|2dxdm

+ 2Cη1−q′(‖u‖p∗
Ḣs

1

R
s
N

(N−1−ε) )q
′
+O(η +R−2s +R−2 +R−4).

Let γ := 2
q′p∗

, with the assumption N > 1 + 2s + α + 2β, we have γ > 1. Moreover, by

using the Young inequality once again, we obtain

η1−q′(‖u‖p∗
Ḣs

1

R
s
N

(N−1−ε) )q
′

= ((η‖u‖Ḣs)
p∗ η

− 1
q
−p∗

R
s
N

(N−1−ε) )q
′

. η2‖u‖2
Ḣs +

η
−γ′q′( 1

q
+p∗)

R
γ′q′s
N

(N−1−ε)
.

Consequently

d

dt
MψR [u] ≤ 4sE(u0)− 4

∫ +∞

0
ms

∫
(ψ1 −

η

4s
C|ψ2|2 −

η + η2

4s
C)|∇um|2dxdm

+O(η +R−2s +R−2 +R−4 +
η
−γ′q′( 1

q
+p∗)

R
γ′q′s
N

(N−1−ε)
).

Taking η = R−σ, where 0 < σ < 2s(N−1−ε)
2Np∗+1+ε . We get

η
−γ′q′( 1

q
+p∗)

R
γ′q′s
N

(N−1−ε)
=

1

R
γ′q′{−σ( 1

q
+p∗)+

s
N

(N−1−ε)}
.

Since −σ(1
q +p∗) + s

N (N − 1− ε) > 0, then by taking R large enough and using properties

of ψi, one gets
d

dt
MψR [u] ≤ 2sE(u0).

7. Sharp criteria for global/non global solutions

7.1. Intermediate results. In order to prove Theorem 5, we need the following auxiliary
results.

Lemma 8. Let s ∈ (1
2 , 1), u0 ∈ Hs

rd such that E(u0) 6= 0 and u ∈ CT ∗(H
s
rd) be the

maximal solution of (1.1). If there exist R > 0, t0 > 0 and C > 0 such that

MψR [u(t)] ≤ −C
∫ t

t0

‖u(τ)‖Ḣsdτ,∀t ≥ t0,
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then T ∗ <∞.

Proof. See [3, 21]. �

Lemma 9. Under the flow of (1.1), the following conditions are invariant:
1/ (2.8) and (2.10);
2/ (2.8) and (2.9).

Proof. Together conservation laws and the Gagliardo-Nirenberg inequality (2.3), give

E(u0) = ‖u(t)‖2
Ḣs −

1

p

∫
(Iα ∗ | · |β|u|p)|x|β|u|pdx

≥ ‖u(t)‖2
Ḣs −

C(N, p, s, α, β)

p
M(u0)

A
2 ‖u(t)‖B

Ḣs .

Denoting

X(t) := ‖u(t)‖2
Ḣs and D :=

C(N, p, s, α, β)

p
M(u0)

A
2 .

So

(7.1) X(t)−DX(t)
B
2 ≤ E(u0), ∀t ∈ [0, T ∗).

The function f(x) := x−Dx
B
2 has a global maximum on R+, at the point xm := ( 2

BD )
2

B−2

with the maximum value f(xm) := B−2
B ( 2

BD )
2

B−2 = B−2
B xm, equivalently xm = B

B−2f(xm).

Using the Pohozaev identities, we have KN+α+2β,−2p(φ) = 0 and KN,−2(φ) = 0, then

‖φ‖2
Ḣs =

B

A
‖φ‖2 and

∫
(Iα ∗ | · |β|φ|p)|x|β|φ|pdx =

2p

B
‖φ‖2

Ḣs .

Thus

E(φ) =
B − 2

B
‖φ‖2

Ḣs =
B − 2

A
‖φ‖2.

Using previous relation, the condition (2.8) becomes

E(u0) <
B − 2

A
M(φ)

s
scM(u0)

sc−s
sc .

By using (2.5), we have

f(xm) =
B − 2

B
(

2p

C(N, p, s, α, β)M(u0)
A
2 B

)
2

B−2

=
B − 2

B
((
A

B
)
2−B
2 M(φ)p−1M(u0)−

A
2 )

2
B−2

=
B − 2

A
M(φ)(p−1) 2

B−2M(u0)−
A
B−2

=
B − 2

A
M(φ)

s
scM(u0)

sc−s
sc > E(u0).

Therefore

xm =
B

B − 2
f(xm) =

B

A
M(φ)

s
scM(u0)

sc−s
sc .

From the inequality (7.1), we deduce

(7.2) f(‖u(t)‖2
Ḣs) ≤ E(u0) < f(xm).
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1/ The condition (2.10) implies

(‖u0‖2Ḣs)
scM(u0)s−sc < (‖φ‖2

Ḣs)
scM(φ)s−sc .

Equivalently

‖u0‖2Ḣs < ‖φ‖2Ḣs(
M(φ)

M(u0)
)
s−sc
sc

<
B

A
M(φ)

s
scM(u0)

s−sc
sc = xm.

Knowing that u ∈ CT ∗(Ḣs), then by (7.2) and a continuity argument, one gets

‖u(t)‖2
Ḣs < xm, ∀t ∈ [0, T ∗).

2/ In a similar way as previous, the condition (2.9) is equivalent to ‖u0‖2Ḣs > xm. So, by

a continuity argument, we obtain

‖u(t)‖2
Ḣs > xm, ∀t ∈ [0, T ∗).

Therefore, conditions (2.8) and (2.10), as well as (2.8) and (2.9) are invariant under the
flow of (1.1). �

7.2. Proof of Theorem 5.

7.2.1. The case 0 < sc < s and E(u0) < 0: Let u ∈ CT ∗(H
s
rd) a solution of (1.1) and

δ := N(p− p∗), by the Virial type identity, we have

d

dt
MψR [u(t)] ≤ 2(N(p− 1)− α− 2β)E(u0)− 2δ‖u‖2

Ḣs

+ C(R−2s +
1

R(N−1−ε)(p−1−α+2β
N

)
‖u‖

1+ε
s

(p−1−α+2β
N

)

Ḣs
).

The assumption p < 1 + 2s+ α+2β
N makes possible the choose of ε small enough such that

1+ε
s (p − 1 − α+2β

N ) < 2. Using the lower bound of ‖u‖Ḣs , for R large enough, uniformly
on time, we have

d

dt
MψR [u(t)] ≤ (N(p− 1)− α− 2β)E(u0)− δ‖u‖2

Ḣs .

By integrating on time, there exists t0 sufficiently large such that

MψR [u(t)] < 0,∀t ≥ t0.

Integrating once again on [t0, t], we obtain

MψR [u(t)] ≤ −δ
∫ t

t0

‖u(τ)‖2
Ḣsdτ,∀t ≥ t0.

Thanks to Lemma 8, one gets T ∗ = +∞.
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7.2.2. The case 0 < sc < s and E(u0) > 0 under (2.8) and (2.9): Taking 0 < µ < 1 such
that

E(u0)scM(u0)s−sc < ((1− µ)E(φ))scM(φ)s−sc .

So

(7.3) (
E(u0)

1− µ
)scM(u0)s−sc < E(φ)scM(φ)s−sc .

Then
E(u0)

1− µ
< f(xm).

We deduce that
f(‖u(t)‖2

Ḣs)

1− µ
≤ E(u0)

1− µ
< f(xm).

Thus

(7.4) f(‖u(t)‖2
Ḣs) ≤ E(u0) < (1− µ)f(xm).

For µ small enough, we have

(7.5) (1− µ)f(xm) < f(
xm

1− µ
).

Indeed, we have

f(
xm

1− µ
) =

xm
1− µ

−D x
B
2
m

(1− µ)
B
2

=
xm

1− µ
(1−D 1

(1− µ)
B−2
2

x
B−2
2

m )

=
xm

1− µ
(1− 2

B

1

(1− µ)
B−2
2

).

Since

lim
µ→0

f(
xm

1− µ
) = lim

µ→0

xm
1− µ

(1− 2

B

1

(1− µ)
B−2
2

) =
B − 2

B
xm = f(xm).

Then there exists µ small enough such that (7.5) is satisfied. Together with (7.4), give

(7.6) f(‖u(t)‖2
Ḣs) < f(

xm
1− µ

),∀t ∈ [0, T ∗).

In the other hand, since ‖φ‖2
Ḣs = B

B−2E(φ) then by using (2.9) and (7.3), one gets

‖u0‖2scḢs
> (

B

B − 2
E(φ))scM(φ)s−scM(u0)sc−s

> (
B

B − 2
)sc{E(φ)scM(φ)sc}M(u0)sc−s

> (
B

B − 2
)sc{(E(u0)

1− µ
)scM(u0)s−sc}M(u0)sc−s

= (
B

B − 2
)sc(

E(u0)

1− µ
)sc .
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Hence

(7.7) ‖u0‖2Ḣs >
B

B − 2

E(u0)

1− µ
≥ B

B − 2

f(xm)

1− µ
=

xm
1− µ

.

In summary, by using (7.6), (7.7) and a continuity argument, we deduce

‖u(t)‖2
Ḣs >

B

B − 2

E(u0)

1− µ
, equivalently (1− µ)(B − 2)‖u(t)‖2

Ḣs > BE(u0), ∀t ∈ [0, T ∗).

Inserting this bound in to the Virial type identity, we obtain

d

dt
MψR [u(t)] ≤ 2sBE(u0)− 2(N − p∗)‖u(t)‖2

Ḣs

+OR(1)(1 + ‖u(t)‖
1+ε
s

(p−1−α+2β
N

)

Ḣs
)

≤ −2sµ(B − 2)‖u(t)‖2
Ḣs +OR(1)(1 + ‖u(t)‖

1+ε
s

(p−1−α+2β
N

)

Ḣs
)

≤ −sµ(B − 2)‖u(t)‖2
Ḣs .

In the last inequalities OR(1) → 0 when R → +∞ uniformly on time and ε > 0 small

enough such that 1+ε
s (p − 1 − α+2β

N ) < 2, which is possible since p < 1 + 2s + α+2β
N by

assumption. Therefore, the proof follows once again by Lemma 8.

7.2.3. The case 0 ≤ sc < s and E(u0) ≥ 0 under (2.8) and (2.10): Thanks to Lemma 9,
in this case we have sup

t∈[0,T ∗)
‖u(t)‖Hs <∞. Then T ∗ = +∞, and u is a global solution for

(1.1).

7.2.4. The case sc = 0: In the mass critical case sc = 0, the blow up condition stated above
leads us to a contradiction. Indeed, conditions (2.8) and (2.9) becomes M(u0) < M(φ)
and M(u0) > M(φ). Thus, for sc = 0 the only admissible condition is E(u0) < 0. From
Theorem 4, we have

d

dt
MψR [u(t)] ≤ 2sE(u0),∀t ∈ [0, T ∗).

So, in a similar way as in [3, 21], the solution u either blows up in finite time or blows up
in infinite time such that

‖u(t)‖Ḣs ≥ Cts, ∀t ≥ t∗.
with some constants C > 0 and t∗ > 0.
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[18] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 49(3), 315-334(1982).
[19] V. Moroz and J. V. Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative

properties and decay asymptotics, J. Funct. Anal., 265, 153184(2013).
[20] Shin-ichi Shirai, Some applications of the Pohozaev identity, J. Math. Phys., 50, 042108(2009).
[21] T. Saanouni, A note on the fractional Schrödinger equation of Choquard type. J. Math. Anal. Appl.,

470, 1004-1029(2019).
[22] T. Saanouni, Sharp threshold of global well-posedness vs finite time blow-up for a class of inhomoge-

neous Choquard equations. J. Math. Phys., 60, 081514(2019).
[23] T. Saanouni, Scattering threshold for the focusing Choquard equation, Nonlinear Differ. Equ. Appl.,

26(41), (2019).
[24] H. Spohn, On the Vlasov hierarchy, Math. Method Appl. Sci. 3, 445455(1981).

Lassaad Chergui, Department of Mathematics, College of Science and Arts in Uglat Asug-
our, Qassim University, Buraydah, Kingdom of Saudia Arabia.
E-mail address: L.CHERGUI@qu.edu.sa ; chergui.lassaad@yahoo.fr


