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Abstract

This paper quantified the hydrological alteration of the Padma River basin caused by

the construction of Ferakka Barrage (FB) using innovative trend analysis (ITA), range

of  variability  approach (RVA),  and continuous  wavelet  analysis  (CWA).  We also

predict  flow regime  by proposing particle  swarm optimization  (PSO) based novel

hybrid machine learning algorithms. Results of the ITA showed the negative trend of

the  average  discharge  in  the  dry  season  (January-May),  while  the  RVA analysis

indicated  that  average  discharge  was  lower  than  environmental  flows.  The  CWA

demonstrated  a  substantial  effect  of  the  FB on  the  periodicity  of  the  streamflow

regime.  Results  showed  that  PSO-Reduced  Error  Pruning  Tree  (REPTree),  PSO-

random forest (RF), and  PSO-M5P were the optimal fit for average, maximum, and

minimum discharge prediction (RMSE = 0.14, 0.3, 0.18) respectively. 

Keywords: Farakka barrage, Bangladesh, Innovative Trend, RVA, CWA, Hybrid 

machine learning model

1. Introduction

One of the greatest modifications of the fluvial landscape on earth is the construction

of  artificial  structures,  such as  dams and/or  barrages  over  the  river.  Hydrological

alteration in the downstream of the river, after the construction of the barrage, is one

of  the  major  challenges  (Arévalo-Mejía  et  al.,  2020).  In  Bangladesh,  change  of

discharge downstream of the river due to the barrage is unequivocal.

Hydrological alteration signifies the indication of changes either by magnitude or by

timing  or  both of  the  factors  of  a  river  system.  Anthropogenic  activities,  such as
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dams, embankment, settlements and resource abstraction have the potential to alter

the natural stream flow pattern (Gain and Giupponi 2014; Poff et al., 1997). Land use

land  cover  changes  through  the  construction  of  artificial  structures  are  the  key

anthropogenic factor for the hydrological alteration of a river. The Padma river basin

has  been  considering  as  a  huge  dynamic  river  system  and  also  affected  by  the

excessive  human  interventions,  such  as  hydropower  generation,  as  well  as  the

negative  impacts  from the  changing  climatic  regime  in  this  region  (Mirza,  1998;

Nawfee et al., 2018). Until 1975, the river was its natural flow state. However, on 21

April 1975, the FB barrage was installed over Ganga River by the Indian government.

The barrage location is situated in Farakka, West Bengal at the upstream (16.5 km)

from the Indo-Bangladesh border. Following its operation, dry season flow reduced

significantly  (Mirza,  1998),  while  the  monsoonal  discharge  increased  in  the

downstream part of Bangladesh. Due to the barrage, there is a significant change in

the river flow pattern which affected the ecological and social systems, evidenced by

existing works (  Gain and Giupponi,  2014;  Talukdar  and Pal,  2020).  Besides,  the

withdrawal of water in the dry period induced hydro-geomorphological alterations .

The  barrage  also  affected  the  downstream  floodplain  regime,  including  its

connectivity, nutrients dynamics, and sediment influxes (McCartney, 2009).

The hydrological alteration of the river due to the construction of barrage or dam on

the river is well documented (Graf, 2006;  Islam, 2016;  Talukdar and Pal, 2017). To

investigate  the  impact  of  Farakka barrage  on the  downstream part  of  the river  in

Bangladesh, a good numbers of research have already been carried out (Rahman and

Rahman, 2017; Gain and Giupponi, 2014), but predicting the future flow by using

machine learning algorithms is still scarce. Thus, it is essential to predict the stream-
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flow by using machine learning algorithms in the Padma River basin for sustainable

water resource management

Water  resource  management  planners  depend  on  the  stream-flow regime  and  the

potential  flow  of  basin,  establish an  ecological  flow  condition,  and  warrant

sustainable  catchment  management  (  Akhter  et  al.,  2019).  However,  researchers,

especially  in  developing  countries,  encounter  the problems  of  data  scarcity  like

unavailability of long-term time series data,  because very few gauge stations have

been installed  over  river,  while  many rivers  do not have gauge station.  Similarly,

Padma River has  only single gauge station. Therefore, water resource management

planners  must  rely  on  the  applications  of  sophisticated  statistical  and  machine

learning techniques  for  quantifying  the trend,  stream-flow pattern,  periodicity  and

predicting  streamflow for incoming days to conserve/ restore the fluvial system and

sustainable development (Razavi and Coulibaly, 2012). Enhancing the forecasting of

streamflow in an  ungagged stream has  been a  major  goal  for  hydrologists  in  the

hydrology field (Blöschl, 2016). Recently, the machine learning algorithms have been

gaining attention to the researchers and scientists for forecasting future flow scenarios

under different hydrological conditions. For instance, Worland et al. (2018) applied a

set  of  eight  machine  learning  algorithms  to  compare  the  prediction  of  low-flow

indices for an ungauged river in the USA.

Of  late,  some  researchers  have  examined  the  possibilities  of  addressing  water

engineering problems by using advanced soft computing models. Machine learning

algorithms, such as Random forest, and random trees (RT), artificial neural network

(ANN),  support  vector  machine  (SVM),  bagging  etc.  have  been  progressively

employed in solving hydraulic engineering issues. Many recent works successfully

applied  the  machine  learning  algorithms  to  the  field  of  groundwater  hydrology
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( Sepahvand et al., 2019; Sihag et al., 2019), water resources ( Adnan et al., 2017) and

engineering ( Tien Bui et al., 2020). Ensemble machine learning algorithms have been

widely used in different fields, but few studies related to stream-flow prediction have

been conducted very recently (Granata et al., 2018). 

Keeping  the  research  gaps  in  mind,  this  paper  deals  with  the  development  and

application of three ensemble machine learning algorithms, such as PSO-RF, PSO-

REPtree, and PSO-M5P to forecast the stream-flow. So far, there is no study on the

prediction  of  streamflow  in  the  Padma  River  basin  by  using  machine  learning

algorithms. To the best of authors’ knowledge, the development and application of

PSO-M5P, PSO-RF, and PSO-REPtree along with ITA, RVA, and CWT methods,

have not yet been applied for quantifying the hydrological alteration and predicting

the stream-flow in relation to barrage or dam construction. Therefore, this study is an

attempt to quantify the hydrological alteration due to the FB as well as predicting the

stream-flow by  using  ensemble  machine  learning  algorithms  for  the  first  time  in

Bangladesh. 

2. Materials and methodology

2.1 Description of the study area

The Padma river is the major downstream stretch of the Ganges River, which flows

more than 2562 km2, originating from the Gangotri glacier of the Himalaya. The basin

area of the Ganges river is considered as one of the densely populated inhabitants on

the  Earth.  About  407  million  population  of  two  countries,  namely  India,  and

Bangladesh  either  directly  or  indirectly  obtain  benefits  from  the  Ganges  and  its

downstream  Padma  river.  This  river  plays  a  pivotal  role  in  the  socio-ecological

settings of these countries. The stretch of the Padma river runs for 108 km2 before the

confluence with river Meghna at Chandpur, Bangladesh. The total discharge of the
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Ganges river and Brahmaputra flows through the course of the Padma River is 30,000

m3/s-1 and sometimes, it reaches to 75,000 m3/s-1 during bank full stage (Dewan et al.,

2017). The elevation of the river course decreases by 5 cm/km (Sarker and Thorne,

2006). This study has been conducted on the Padma river basin, which covers almost

8  districts,  including  Pabna,  Shirajganj,  Natore,  Bogura,  Jaypurhat,  Naogaon,

Rajshahi,  Chapainawabganj  (Fig.  1).  Annually,  900  metric  tons  of  sediment  load

passes through the river, out of which, 60% of sediment is either silt or clay, while the

rest is bed load (Hossain, 2010). Dewan et al. (2017) described the floodplain of the

river as a ‘wandering’ pattern. Apart from this, this basin reports extreme variability

of flow regime (water and sediment), triggering from monsoonal precipitation and the

melting of the Himalayan ice, which causes frequent large floods of high magnitude

in Bangladesh.  Four seasons, such as summer (March to May), monsoon (June to

September),  post-monsoon  (October  to  November),  and  winter  (December  to

February)  have  predominated  in  this  region  with  significant  temperature  and

precipitation differences.
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Figure 1: Map showing the location of the Padma River basin, Bangladesh (SRTM

30m DEM, source: USGS).

2.2 Materials

Daily river water flow data (1970 to 2018) of the Padma river basin were collected

from the representative  gauge station (Hardinge Gauge station over  Padma River,

Pabna).

2.3 Methods for innovative trend analysis

In this  paper,  we used ITA, which was first  proposed by Sen (2012).  Sen (2012)

reported  some  limitations  in  most  commonly  employed  Mann-Kendall  and

Spearman’s rho tests, for instance, they need normally distributed datasets, long-term

time series datasets, independent  variables etc.  (Kişi  et al.,  2018),  which works in

accordance with a Cartesian coordinate system. For the ITA approach, the time series

data have been needed to be classified into two classes. The original trend indicator

has been expressed by the following equation 1:
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                                                                         (1)

where, ⏀ means the indicator of trend, number of total observations are denoted by n;

Xi denotes the data of first sub-series; Xj and  μ are represented as the data of the

second sub-series and mean value of the data of the first sub-series, respectively. The

increasing and decreasing trend can be identified by the positive and negative value of

⏀. 

2.4 Methods for hydrologic alteration using the range of variability approach 

Large numbers of flora and fauna form the ecosystem of a river and its floodplain.

The particular amount of stream-flow is required for their survival and good health

(Richter et al., 1996). If the required water availability is not available in the river, the

species do not get adequate water and then it becomes difficult for their survival. In

this  study,  we  attempted  to  identify  the  ecological  range  of  flow,  which  can  be

considered  as  suitable  for  sustaining  ecosystems and  also  presented  the  effect  of

stream-flow  change  on  the  ecological  state.  It  is  very  difficult  to  calculate  the

threshold  water  volume  level  needed  for  the  useful  existence  of  the  riparian

ecosystem.

Therefore, Richter et al. (1996) recommended several dispersion measures (e.g., ±1 or

±2 standard deviation, and eightieth percentile) for assessing primary threshold levels

of  stream-flow  condition.  Here,  the  standard  deviation  has  driven  RVA  for  the

monthly average, the maximum and minimum water level are calculated. Gain and

Giupponi (2014) reported ±1 SD-based RVA was computed for different months to

determine exceedance flow condition over time using the following Eq.2:

(Mean − SD) ≤ Parameter ≤ (mean + SD)                             (2)
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Richter et  al.  (2003) described that setting a flow range (RVA) is not the plan to

formulate  all  values of the downstream of river lie within the range,  however the

principle goal of RVA is to count the downstream flow of post change years, which

lie within this flow range with the same frequencies, which were observed during pre-

change period. In this way, the frequency of pre and post change years were counted

for every IHA parameters. The frequency of years during the pre-change period that

attains the threshold limits of RVA is regarded as the "expected" values. During the

post Farakka barrage period, the frequency of years  occupies the threshold levels of

RVA, considered as the “observed” values. In light of this computation, hydrologic

alteration  is  evaluated  (Pal  and  Talukdar,  2020).  In  this  manner,  the  degree  of

hydrological alteration (DHA) for each variable is computed by the below Eq. 3:

  (3)

The  stream-flow alteration  could  be  zero,  positive,  and  negative  values.  When  it

equals zero, indicating the present condition is within the anticipated range and no

alteration  happens  with  good  ecosystem health.  When  it  equals  a  positive  value,

expressing the observed values of the variables attained the threshold limit more times

than the expected, which indicates a good sign for the ecosystem, although it will not

be good for some species as they prefer to survive in optimal range. However, the

negative value of DHA indicates that the observed value does not attain the threshold

lime as expected value, which represents the bad ecosystem health. Consequently, the

species  living  there  may  have  faced  critical  situations for  survival.  The  HDA of

maximum, average, and minimum stream-flow was represented in the graphical form

of the heat map. 

2.5 Periodicity analysis by using continuous wavelet transform
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The periodicity analysis on the time series data using wavelet transformation is not

very old and is a modified form of Fourier transformation. In the case of the Fourier

transform, it reveals the information in one dimension. If it gives information about

the time domain,  the scale domain will  be lost  and vice versa. While the wavelet

transformation is able to give both time and scale domains information (Liu et al.,

2016; ). This is why wavelet transformation has become a popular technique to solve

the  time  series  problems  .  The  non-stationary  time  series  data  (mean,  variance,

covariance, and autocorrelation are changed over time and not able to get back to its

original state) are most appropriate to use the wavelet analysis to explore the volatility

of  the  data.  Therefore,  hydro-meteorological  time  series  data  is  one kind  of  non-

stationary  data,  consequently,  the  wavelet  transformation  is  a  useful  method.

Goupillaud et al. (1984) first used wavelets as a family of functions derived from the

translations and dilations of a single function, which is known as ‘‘mother wavelet”. 

2.6 Proposing PSO based novel hybrid machine learning algorithms for stream

flow prediction 

In  this  study,  we  proposed  PSO-RF,  PSO-REPtree,  and  PSO-M5P  algorithms  to

predict and forecast the stream-flow of the Padma river. Earlier studies have applied

several stochastic models, like the average model and autoregressive moving average

(ARMA),  moving  average  model  and  autoregressive  moving  average  (ARIMA)

models  to  predict  and  forecast  the  highly  nonlinear  stream-flow  behavior.  These

approaches  performed  well  when  the  data  placed  within  the  range  of  former

observations. When the data shows the extreme events, these models perform poorly.

However,  these  problems  have  been  solved  by  the  advancement  of  the  machine

learning algorithms.  Although the machine  learning algorithms have several  flaws

which  prevent  models  to  perform  accurately.  Therefore,  good  optimization  can
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overcome the flaws of the machine learning techniques. Therefore, in this paper, for

the first time, PSO-RF, PSO-REPtree and PSO-M5P have been applied for stream-

flow forecasting.

2.6. 1 Particle Swarm Intelligence

The PSO is a powerful meta-heuristic robust evolutionary algorithm for optimization

based on the population behaviour and was first proposed by Eberhart and Kennedy

(1995). The PSO theory was motivated by the social behavior of the fish and birds in

groups for optimizing the shortest route to find the food (Roshanravan et al., 2019).

Recently, the PSO algorithm has been successfully and extensively applied to resolve

the non-linear  problems in several  fields  like  Geology (Gilani  et  al.,  2020),  flood

susceptibility modelling (Bui et al., 2020), landslide susceptibility modelling ( Sun et

al.,  2020),  forest  fire  mapping(Zhang et  al.,  2020)  because of  the  higher  learning

speed  and  takes  less  memory  than  the  other  optimization  algorithm  like  genetic

algorithm (Nguyen et al., 2019). The swarm of particles in the PSO algorithm always

tries to find the potential answer to the problem which can be best positioned as per

the best solution. The particles in PSO travel randomly along the search space. Based

on its own and neighbor's knowledge, a swarm of particles dislocates in search space.

The  particles  become  skilled  from each  other  within  the  group and  travel  in  the

direction of their best neighbor based on the obtained knowledge. In a nutshell, the

PSO is based on the concept that each swarm of particles changes its location in the

search space in order to get the best position or location that it has ever been and the

best location nearer its neighbor. 

2.6.2 Machine learning algorithms

 Application of RF
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RF is a modified bagging supervised artificial intelligence model, commonly used for

prediction and classification.  In recent  times,  this  model is  applied for forecasting

time series datasets (Pal and Talukdar, 2020). The RF algorithm is a nonparametric

ensemble classifier tool that works by using the algorithm of the flexible decision tree

of  Breiman (Breiman,  2001).  The RF builds  decision  trees,  in  which each tree is

constructed by utilizing the bootstrap training samples (Breiman, 2001). To build a

better model, it is important to grow a large tree (Breiman, 2001). Accordingly, it is

necessary to have a requisite number of selected predictor variables at all the nodes of

the trees. The number of observations at the terminal nodes of the trees would be

minimum.  In this  method,  randomly selected training  data  from the actual  dataset

through the algorithm were applied to generate the model ( Breiman, 2001; Youssef et

al.,  2016).  The performance of  different  models  is  dependent  significantly  on the

optimization of the model's parameters. However in the present, the RF model has

been optimized by the PSO algorithm. 

Application of REPtree

The REPTree algorithm is a speedy decision tree logic algorithm that employs the

principle of computing information gain with entropy and reducing the variance error

(Quinlan,  1987;  Devasena,  2014).  REPtree  uses  the  regression  tree  algorithm and

generates several trees in different calculation procedures from where it took the best

one from all the produced trees (Devasena, 2014). REPTree is capable of generating

the modeling procedure flexible and easy using creating the training datasets when the

output is huge and it declines the complication of the tree interior structure (Mohamed

et  al.,  2012).  The  pruning  algorithm  in  this  method  has  taken into  account  the

backward over-fitting complexity and attempts to get the minimum version of best-

precision  tree logic using the post-pruning algorithm (Quinlan,  1987;  Chen et  al.,
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2019).  It  only  selects  values  for  numeric  attributes  once  (  Kalmegh,  2015).  The

performance  of  this  model  relies  on  information  gain  from  entropy,  reduction

variance, and declined error pruning model (Srinivasan and Mekala, 2014).  

2.6.3 Application of M5P

M5P tree,  introduced by Quinlan  (1992),  consists  of  a  conventional  decision  tree

having the option of linear regression functions at the nodes (Suthar and Aggarwal,

2019). The divergence metric is known as the Standard Deviation Reduction (SDR),

which is used to generate the decision tree. Moreover, a linear regression function is

also applied to develop tree models. The process works through pruning, evacuation,

and  substitution  of  trees.  Finally,  a  final  tree  model  is  constructed (Suthar  and

Aggarwal, 2019). A tree model generally used to predict the output of several input

values after analyzing the provided data sets. This algorithm handles continuous class

issues  rather  than  discrete  class  issues  and  can  deal  with  tasks  with  greater

dimensionality. The M5P tree exhibits piecewise information of each linear function

created to estimate nonlinear associations of each data set. M5P trees are easy but

efficient and appropriate tools for modeling the tree patterns and association for large

data sets (Quinlan, 1992).

2.6.3 Procedure for ensemble

In the present  study,  the  PSO algorithm was applied  to  obtain  the  best  structural

parameters of the mentioned machine learning algorithms. The ensemble procedure

for the proposed PSO-REPTree, PSO-RF, PSO-M5P could be as follows: parameters

initialization of PSO algorithm→ training and testing of machine learning algorithm

with the initialized  parameters→ calculation  of  fitness function→ fitness  value of

each swarm of particle in reference to local and global best values→ updating the

velocity  and position of each swarm of particle  accordingly→ reaching maximum
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number  of  iteration?  if  not  reached,  starting  again  from the  second stage→ if  it

reached the maximum number of iteration,  that would be the optimal parameters for

the machine learning algorithms. The initialization of parameters of PSO itself were

selected.  The  detailed  initialized parameters  and  the  optimized  parameters  for

machine learning algorithms were provided in supplementary table 1.

After the algorithms produced better prediction results, we went for forecasting the

stream-flow for incoming days. The flowchart adopted for this study is shown in Fig.

2.

Figure  2:  Flow  chart  of  assessing  the  impacts  of  hydrological  alteration  due  to

Farakka barrage in the Padma River basin.

2.7 Validations 

For  assessing  the  precision  of  the  models,  different  statistics

have been established and used. The best known and most widely used techniques

were used in the present study. In this work, Root Mean Square Error (RMSE), Mean

Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) measures were
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used to estimate performance of the different prediction models. The RMSE, MAE,

and MAPE were calculated by using Eqs. 6, 7 and 8, respectively. 

                           (6)

                                    (7)

             (8)

3. Results and analysis

3.1 Trend Analysis 

The outcome of innovative trend analysis is presented in Table 2, showing slope (D

value) for average, maximum, and minimum discharge of the river. Here, the positive

values indicate an increasing trend, and the decreasing trend was depicted by negative

values. From Table 2, it was found that the average discharge of January, February,

July,  November,  and  December  had  positive  D  value,  which  indicates  the  mean

discharge of the river has been increased. Whereas, March-June, and August-October

showed negative D value, indicating the decreasing stream flows (Table 2). Besides,

the graphical  results  of the ITA for average discharge for all  IHA parameters  are

shown in supplementary figure1. Stream flow is very low in May and the discharge

starts from 500 m3/s, possibly reflecting dry seasonal withdrawals of waters by the

FB. 

However,  for  maximum  discharge,  January-March,  July,  August,  and  October-

December  showed positive  values  (Table  2).  In  July,  December,  and  January  the

stream-flow increased significantly. The Negative D values were observed in April,

May,  June,  and September  (Table  2).  The graphical  form of  ITA showed a clear
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increasing trend in January, May, July, and October to December (Fig. S2). In the

case of minimum discharge,  the D value  showed a significant decreasing trend in

April and May. Other IHA parameters, like March, June, and September also showed

negative  trends.  July  and  January  showed  a  slight  positive  trend  for  minimum

discharge.  Figure  S3  showed  the  decreasing  trend  for  the  minimum discharge  of

March, April, May, June, and September.

Table  2:  Slope (D) value of  innovative  trend analysis  for average,  maximum and

minimum discharge in the Padma River basin

Month Slope (D) value

for average

Slope (D) value

for maximum

Slope (D) value

for minimum

January 0.878 1.23 0.237

February 0.339 0.92 0.024

March -0.190 0.47 -0.780

April -0.468 -0.083 -1.64

May -1.174 -0.011 -1.475

June -1.05 -0.137 -0.297

July 0.612 1.01 1.71

August -0.016 0.041 0.125

September -0.643 -0.552 -0.178

October -0.025 0.340 0.683

November 0.344 0.81 0.420

December 1.23 2.28 0.89

3.2 Modeling of hydrological alteration
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The monthly hydrological alteration of the post barrage period (1970 to 2018) for

average  flow  has  been  severely  altered  (Supplementary  table  2)  from its  natural

condition,  which  indicates  the  river  has  been  impacted  from  moderate  to  high

condition of hydrological  alteration,  while comparing with the scale developed by

Talukdar and Pal (2019). Consequently, the monthly alteration was evaluated through

the DFA to obtain the magnitude of hydrological alteration in the basin. 

In supplementary table 2, the high, low, and ecological thresholds were calculated by

using the RVA based on pre-barrage discharge data. The ecological threshold values

depicted the range of natural flow, which requires for sustaining a healthy ecosystem.

Values greater  than the higher threshold and smaller  than the lower threshold are

indicative  of  positive  and  negative  hydrological  alteration.  In  a  sense,  positive

hydrological alteration can be considered as good, but in case of some species, it can

cross their  optimal  required water  and can be harmful  for them to complete  their

survival cycle. The RVA analysis for maximum discharge illustrated that in February,

March,  April,  and May,  the water  flow was lesser than the lower RVA-threshold

(Supplementary table 2). However, in the case of minimum discharge, it was observed

that the discharge was lower than the low RVA threshold in the entire  year.  This

indicates  that  the observed discharge  was lower than  the expected discharge.  The

discharge  of  post-barrage  conditions  was  lesser  than  the  computed  threshold  of

ecological  water  throughout the year  indicating the altered hydrological  condition.

Subsequently, it is reasonable to state that the FB caused the hydrological alteration of

the Padma river in Bangladesh. 

To  quantify  the  hydrological  alteration  in  micro-scale  caused  by  FB installations

(considered all years), the heat maps were constructed (1976-2018) for maximum,

minimum and average discharge conditions (Figure 3a-c).  Results showed that the
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degree  of  alteration  gradually  increases  since  the  construction  of  the  FB,  which

expected to be continued in the future. The dendrogram showed a pattern with the

recorded months according to the extent of the hydrological alteration in the river.

Multilevel  hierarchy  showed  a  distinct  difference  in  the  degree  of  hydrological

alteration on a monthly scale.

Figure 3a showed the magnitude of hydrological alteration considering the maximum

discharge.  The  dark  yellow  color  denotes  the  decrease  of  the  flow  or  negative

hydrological alteration, while green color denotes the increase of the water flow or

positive  hydrological  alteration.  The  negative  hydrological  alteration  gradually

increased after the FB installation.  Results showed the discharge increases in July,

August, and October, indicating the change in flow due to monsoonal rainfall. The

increasing pattern extended to September, November, December, and June only until

2007. The discharge decreased from January to May except year 2007, perhaps, this

happened due to a residual effect of the large flood occurred in that year. In 2018, the

decreasing rate was high.  In fact, after  2007 the decreasing flow has been getting

elevated (3a). The degree of hydrologic alteration for minimum discharge is shown in

Figure  3b.  It  is  clearly  observed  that  the  post-barrage  period  records  very  low

discharge. It has been expected almost every year after the commissioning of the FB.

This  is  a  very  concerning  issue  for  the  hydrological  regime  of  Padma  River,

Bangladesh.  Two  recent  consecutive  years  2017  and  2018  showed  a  worsening

scenario (Fig.3b). The heat map of the hydrological alteration for average discharge

shown in  Fig.  3c,  which  indicated  decreasing  discharge  in  the  month  of  January,

February, March, April, May, June, September, October. On the other hand, July and

August had slightly upward discharge, however, from 2009 to 2018, the decreasing

rate is high (Fig 3c).
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Figure  3:  Degree  of  hydrological  alteration  for  (a)  Average,  (b)Maximum,  (c)

Minimum discharge

3.3 Periodicity Analysis

 Figures 4a-c showed the periodicity  analysis  of monthly average,  maximum,  and

minimum discharge for the period of 1970 to 2018. The color pallet of the wavelet

transform maps  showed the  distribution  of  power  (absolute  value  squared)  of  the

wavelet  transform computed from the time series discharge datasets.  The dark red

color  represented  the  stronger  power,  while  light  violet  color  expressed  the  weak

power. The solid black line bands were the strong power significant at the level of

0.05. In case of average discharge, the strong wavelet power spectrum was found in

the 1-month band for whole periods, which was significant at the level of 0.05, while
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a 0.5-month (15 days) band was observed in 1978, 1981, 1987, 1988, 1998-2000 (Fig.

4a). The relatively stronger power observed after 2003, indicating the disturbance of

the normal periodic cycle of discharge.  In case of maximum discharge,  the strong

wavelet power was found in the 1-month band for the whole time frame, while 0.5-

month (15 days) band was observed in 1987 to 1989, 1998; 0.125 to the 0.5-month

band was recorded in 2006 (Fig. 4b).
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Figure 4: Periodicity analysis using morlet’s wavelet transformation (a) average, (b)

Maximum and (c) Minimum discharge 
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In case of minimum discharge,  a strong wavelet  power spectrum was found in 1-

month band for the whole study period, while 0.5-month (15 days) band was found in

1974, 1975, 1978, 1980, 1985, 1994, 1998-2000, 1998, 2007, and 2011 (Fig. 4c). This

strong wavelet power spectrum represents the variance of flow. From the analysis of

average, maximum, and minimum, it is found that the highest power is in the band of

1 month.  It  means that all  flow properties have been changed almost  in the same

direction  and magnitude.  While,  the maximum concentration  of strong power was

observed after 2003 for average, maximum, and minimum discharge, which indicates

that the nature process of periodic cycle has been disturbed significantly after 2003.

Perhaps, the reason was the installation of FB in the downstream part. 

Figure 5a-c showed the significance level of wavelet power against time. The findings

showed that the significant power at the 95% level was centered in a 1-month band

which provides an impartial and balanced estimation of the time series analysis. 
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Figure  5:  Global  power  spectrum  at  0.05  significance  level  for  (a)  average,  (b)

Maximum and (c) Minimum discharge 
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3.4  Streamflow prediction  by  proposing  novel  hybrid  machine  learning

algorithm

The average,  maximum, and minimum discharge was predicted by using PSO-RF,

PSO-REPTree,  and  PSO-M5P  methods  from  1970  to  2018  (Figures  6-8).  The

discharge for all conditions were predicted since 1976-2018 based on the lagged input

parameters.  For  evaluation  of  the  all  predicted  models,  the  error  measures,  like

RMSE, MAE, and MAPE were computed between observed and simulated flow. The

error measures showed the closeness of observed and predicted stream-flow, if the

closeness or adjacency between the flows was reported, then the error would be less

and  vice-versa  (figure  6-8).  Figures  6,  7  and  8  showed  the  significance  of  the

predicted values. The predicted values and the observed values were almost similar in

the training dataset  and closeness is  more.  Therefore,  less error was found for all

prediction  models.  To  find  out  the  best  streamflow prediction  models,  the  error

measures were compared with each other. Lower values of RMSE, MAE, and MAPE

indicate a better fit. Table 4 showed that among three models, PSO-REPtree appeared

to be the best fitted for average discharge prediction, PSO-RF has the best fitted for

maximum discharge and PSO-M5P was the best for minimum discharge prediction

(Table 4).

Table 4: Performance measures between observed and simulated flow datasets  for

different models in this study 

PSO-RF PSO-M5P PSO-REPTree

RMSE Average 0.21 0.25 0.14
Maximum 0.3 0.36 0.41

Minimum 0.26 0.18 0.24
MAE Average 0.23 0.27 0.21

Maximum 0.29 0.42 0.35
Minimum 0.17 0.26 0.22

23



MAPE Average 0.32 0.36 0.24

Maximum 0.53 0.46 0.51
Minimum 0.29 0.21 0.25

Figure 6: Overlaying the actual average discharge and predicted average discharge by

(a) PSO-M5P, (b) PSO-REPTree, (c) PSO-RF model (N.B. Blue line represents the

95% confidence interval of the predicted data)
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Figure  7:  Overlaying  the  actual  maximum  discharge  and  predicted  maximum

discharge by (a) PSO-M5P, (b) PSO-REPTree, (c) PSO-RF model (N.B. Blue line

represents the 95% confidence interval of the predicted data)
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Figure 8: Overlaying the actual minimum discharge and predicted minimum discharge

by (a) PSO-M5P, (b) PSO-REPTree, (c) PSO-RF model (N.B. Blue line represents

the 95% confidence interval of the predicted data)

3.4.1 Average discharge forecasting 

Figure 9a showed the discharge of water from 1970-2018 and the predicted discharge

up to 2030. The actual discharge showed a gradual decrease in the flow. The predicted

discharge up to 2030 showed the gradual decreasing trend. The highest value among
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the predicted  discharges is 37260.7601 m3s-1  which was less than 55000 m3s-1  in the

observed year. So, the impact of the barrage is clear.

Figure 9(b) showed the average discharge of observed and predicted years. Here the

prediction is  done by the PSO-REPTree method which denotes that from 2019 to

2030 the discharge is decreasing. After the year 1990 discharge rate is decreasing in

most of the months. Most of them are in the range of 40000 m3s-1. The predicted data

shows that in future the highest discharge will be 35810.22 m3s-1which is less than the

actual discharge of the previous years.

Figure  9(c)  showed average  discharge  prediction  using  the  PSO-M5P  method.

Indicating  that  average  discharge  would  be  decreasing  in  the  future.  The  highest

average discharge is predicted to be about 30566.1274 m3s-1.
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Figure 9: Average discharge prediction  up to 2030 using (a) PSO-M5P, (b) PSO-

REPTree, (c) PSO-RF
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3.4.2 Maximum discharge forecasting 

The  maximum  discharge  of  the  Padma  River  is  predicted  using  PSO-RF,  PSO-

REPTree and PSO-M5P methods. Figs. 10 (a-c) shows that discharge is decreasing in

future. The Figure 10(a) depicted that the highest discharge will be around 40000 m3s-

1 in the predicted year until 2030. The highest discharge will be 41768.32 m3s-1 in the

year 2022. This is lower than the maximum discharge of the observed years from

1970 to 2018 as the maximum discharge is up to 50000 cubic meter per second. The

maximum discharge is lowered after year 2000 with two or three months exception. 
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Figure 10: Maximum discharge prediction up to 2030 using (a) PSO-M5P, (b) PSO-

REPTree, (c) PSO-RF

Figure 10(b) shows the maximum discharge using PSO-REPTree and its prediction up

to  2030,  illustrating  the gradual  decreasing  trend  of  the  water  flow.  The  method

predicted  that  the discharge will  be around 45128.11 m3s-1  in  future.  Figure 10(c)
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represents  the  maximum  discharge  prediction  using  the  PSO-M5P  method.  This

similar result is like maximum discharge. The maximum discharge could be around

45000 m3s-1. 

3.4.3 Minimum discharge forecasting 

The minimum discharge and its prediction up to 2030 is found by using PSO-RF,

PSO-REPTree  and  PSO-M5P  methods.  The  minimum  discharge  was  lower  than

40,000 from 1970 to 2018. But the predicted values show a huge decrease in the

minimum discharge from 2019 to 2030 which would be very alarming. The prediction

gives  that  the  highest  minimum  discharge  will  be  around  23982.73  m3s-1.  The

maximum predicted values are near 20000 m3s-1 (Figure 11a). 

31



Figure 11: Minimum discharge prediction up to 2030 using (a) PSO-M5P, (b) PSO-

REPTree, (c) PSO-RF

Figure  11(b)  shows  prediction  of  minimum  discharge  from  2019  to  2030.  This

illustrates the discharge will be very low and it will be around 10000 m3s-1. Figure

11(c) shows the prediction of the minimum discharge. It denotes that the discharge is
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decreasing gradually up to 2030. The predicted value shows that it will be 13237.72

m3s-1 in 2030.

4. Discussion

The findings from the analysis indicated the impacts of the FB on the river flow. The

river flow has been significantly obstructed by the FB over the entire downstream of

the Padma River  in Bangladesh.  Although people of the upstream of the dam are

getting  the  benefit  of  it,  it  becomes a  serious  burden on the  people  living  in  the

downstream of  the  dam.  The  hydrology  of  the  river  has  transformed  due  to  the

installation of the barrage and consequently,  the wetland areas of the Padma river

have  been  transformed.  Due  to  the  withdrawal  of  the  Ganges  water  by  FB,

Bangladesh has been experiencing severe environmental degradation due to low flow

in the Padma river.

The  analyses  identified  that  the  water  flow  obstruction  by  FB  is  responsible  for

numerous changes in the hydrological regime during the dry season in the Padma

river in Bangladesh (Mirza, 1997; Islam et al., 2016).

The present study clearly depicted the progressive rise of the degree of hydrological

alteration through a heat map (Figs. 4 and 5). Such a degree of alteration is caused by

increasing eco-deficit in the river (Pal and Talukdar, 2018). Supplementary table 1

showed  that  after  the  barrage  commissioned,  most  of  the  months  in  each  year

represented the highest discharge restricted below the lower threshold or very close to

the lower threshold flow of the river. Therefore, there are very obvious threats for the

natural  environment  of  the  river  in  terms  of  its  resources,  ecosystem  balance,

biodiversity,  hydrodynamics,  livelihoods,  and other socio-economic components of

the river basin in Bangladesh. The result found in this study is similar to the work of

Smakhtin et al. (2006), Gain, and Giupponi (2014). From the periodicity analysis, a
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significant  change  was  found  in  the  streamflow.  Sanz  et  al.  (2005),  Richter  et

al. (1996),  Olden  and  Poff  (2003)  reported  the  possible  impacts  of  hydrological

alteration on the biogeochemical cycle as well as biotic species diversity lived in the

aquatic systems.

Pal and Talukdar (2020) rightly documented that climate change or anthropogenic

control may be responsible for such changes. Talukdar and Pal (2017), accounted for

the construction of the Komardanga dam over the Dhepa river, a major contributing

tributary of river Punarbhaba and diversion of water through the canal system is the

major reason. Islam et al., (2014) claimed that the construction of Teesta Barrage on

the Teesta River is the major human interference. Pal (2015) studied the impact of the

Massanjore dam on the  Mayurakshi river and accounted for that dam was the main

reason for declining the flow in the downstream segment of the river. These studies

support the results of this study. 

Three  alternative  methods  (PSO-RF,  PSO-REPTree,  and  PSO-M5P)  are  used  for

discharge prediction and PSO-REPTree, PSO-RF, PSO-M5P appear as the best fit for

average,  maximum, and minimum discharge prediction respectively.  The predicted

results showed that the average highest discharge will be 35810.22 m3s-1 in future,

which  was  less  than  40000 m3s-1  in  the  observed  years.  By  using  PSO-RF,  the

maximum highest discharge will be 41768.31 m3s-1  in the year 2022. By using PSO-

M5P, the minimum highest discharge will be 13237.71 m3s-1  in the year 2028, but in

observed years, the highest minimum discharge was up to 40000 m3s-1.

5. Conclusion

Trend pattern, periodicity and prediction are vital statistical features of hydrological

alteration  of  the  stream-flow.  The  underneath  conclusions  were  drawn  from this

paper:
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● For assessing the change of the water  discharge and its  impacts  in  Padma

River due to FB, ITA, hydrological alteration, and periodicity analysis have

been done. In most of the month on average, maximum, minimum discharge;

the ITA shows a negative decreasing trend. In the dry season (January-May)

the trends are almost negative. 

● The RVA analysis for average discharge illustrates that in all the months the

discharge  is  lower  than  the  natural  flows.  It  is  found  that  hydrological

alteration has been gradually increased over time and expected to be further

altered in the future period. The variations are significant in yearly average

discharges  and  water  levels  but  changes  are  more  significant  in  yearly

minimum discharges and water levels. 

● The forecasting of the discharge up to 2030 reveals the decreasing possibility

of the streamflow. 
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