References
Adolf, J.E.; Burns, J.; Walker, J.K., and Gamiao, S., 2019. Near shore
distributions of phytoplankton and bacteria in relation to submarine
groundwater discharge-fed fishponds, Kona coast, Hawai’i, USA. Estuarine
Coastal and Shelf Science, 219, 341-353.
Alorda-Kleinglass, A.; Garcia-Orellana, J.; Rodellas, V.;
Cerda-Domenech, M.; Tovar-Sanchez, A.; Diego-Feliu, M.; Trezzi, G.;
Sanchez-Quilez, D.; Sanchez-Vidal, A., and Canals, M., 2019.
Remobilization of dissolved metals from a coastal mine tailing deposit
driven by groundwater discharge and porewater exchange. Science of the
Total Environment, 688, 1359–1372.
Burnett W.C.; Bokuniewicz, H.; Huettel, M.; Moore, W.S., and Taniguchi,
M., 2003. Groundwater and pore water inputs to the coastal zone.
Biogeochemistry, 66(1 /2), 3-33.
Burnett, K.M.; Wada, C.A.; Taniguchi, M.; Sugimoto, R., and Tahara, D.,
2018. Evaluating the tradeoffs between groundwater pumping for
snow-melting and nearshore fishery productivity in obama city, Japan.
Water, 10(11), 1556. DOI: 10.3390/w10111556
Burnett, W.C.; Taniguchi, M., and Oberdorfer, J., 2001. Measurement and
significance of the direct discharge of groundwater into the coastal
zone. Journal of Sea Research, 46, 109-116.
Cable, J.E.; Burnett W C.; Chanton, J.P.; Corbett, D.R., and Cable,
P.H.,1997. Field evaluation of seepage meters in the coastal marine
environment. Estuarine,Coastal and Shelf Science, 45, 367-375.
Cen, R.R.; Liu, Y.N.; Xing, N.; Chen, M.; Cheng, H., and Cai, Y.H.,
2017. Sources and conservative mixing of uranium in the Taiwan Strait.
Acta Oceanologica Sinica, 36(3), 72-81.
Chang, Y.W.; Hu, X.N.; Zhang, H.X., and Chen, L, 2018. Quantifying
seawater-groundwater exchange rates in muddy tidal flat: a case study of
the south coast of the Laizhou Bay. Marine Science Bulletin, 37(4),
450-458. (in Chinese)
Charette, M.A.; Moran, S.B.; Pike, S.M., and Smith, J.N., 2001.
Investigating the carbon cycle in the Gulf of Maine using the natural
tracer thorium 234. Journal Of Geophysical Research-Oceans, 106(C6),
11553-11579.
Cho, H.M.; Kim, G., and Shin, K.H., 2019. Tracing nitrogen sources
fueling coastal green tides off a volcanic island using radon and
nitrogen isotopic tracers. Science of the Total Environment, 665,
913-919.
da R.; Cacinele M.; Barboza; Eduardo, G.; Niencheski, L., and Felipe,
H., 2018. Radon activity and submarine groundwater discharge in
different geological regions of a coastal barrier in Southern Brazil.
Environmental Earth Sciences, 77(14), 527. DOI:
10.1007/s12665-018-7711-0
Dias, T.H.; de O.; J.; Sanders, C.J.; Carvalho, F.; Sanders, L.M.;
Machado, E.C., and Sa, F., 2016. Radium isotope (Ra-223, Ra-224, Ra-226
and Ra-228) distribution near Brazil’s largest port, Paranagua Bay,
Brazil. Marine Pollution Bulletin, 111(1/2), 443-448.
Dimova, N.T.; Swarzenski, P.W.; Dulaiova, H., and Glenn, C.R., 2012.
Utilizing multichannel electrical resistivity methods to examine the
dynamics of the fresh water-seawater interface in two Hawaiian
groundwater systems, Journal Of Geophysical Research-Oceans, 117,
C02012. DOI: 10.1029/2011JC007509.
Donis, D.; Janssen, F.; Liu, B.; Wenzhofer, F.; Dellwig, O.; Escher, P.;
Spitzy, A., and Bottcher, M.E., 2017. Biogeochemical impact of submarine
ground water discharge on coastal surface sands of the southern Baltic
Sea. Estuarine, Coastal and Shelf Science, 189, 131-142.
Dzhamalov, R.G, and Safronova, T.I, 2002. On estimating chemical
discharge into the world ocean with groundwater. Water Resources, 29(6),
626-631
Franz, M.; Lieberum, C.; Bock, G., and Karez, R., 2019. Environmental
parameters of shallow water habitats in the SW Baltic Sea. Earth System
Science Data, 11(3), 947–957.
Guo, X.Y.; Xu, B.C.; Yu, Z.G.; Li, X.Q.; Nan, H.M.; Jian, H.M.; Jiang,
X.Y.; Diao, S.B., and Gao, M.S., 2017. Radium isotopes assess water
mixing processes and its application in the Zhujiang River estuary.
Chinese Journal of Oceanology and Limnology, 35, 1108-1116.
Henderson, R.D.; Day-Lewis, F.D.; Abarca, E.; Harvey, C.F.; Karam, H.N.;
Liu, L.B., and Lane, J.W., 2010. Marine electrical resistivity imaging
of submarine groundwater discharge: sensitivity analysis and application
in Waquoit Bay, Massachusetts, USA. Hydrogeology Journal, 18(1),
173-185.
Hou, L.J.; Li, H.L.; Zheng, C.M.; Ma, Q.; Wang, C.Y.; Wang, X.J., and
Qu, WJ., 2016. Seawater-groundwater Exchange in a Silty Tidal Flat in
the South Coast of Laizhou Bay, China. Journal of Coastal Research, 74,
136-148. DOI: 10. 2112 / SI74-013.
Hwang, D.W.; Kim, G.; Lee, W.C., and Oh, H.T., 2010. The role of
submarine groundwater discharge (SGD) in nutrient budgets of Gamak Bay,
a shellfish farming bay, in Korea. Journal of Sea Research, 64(3),
224-230.
Johnson, C.D.; Swarzenski, P.W.; Richardson, C.M.; Smith, C.G.; Kroeger,
K.D., and Ganguli, P.M, 2015. Ground-truthing Electrical Resistivity
Methods in Support of Submarine Groundwater Discharge Studies: Examples
from Hawaii, Washington, and California. Journal of Environmental And
Engineering Geophysics, 20(1), 81–87.
Kang, K.M.; Kim, D.J.; Kim, Y.; Lee, E.; Kim, B.G.; Kim, S.H.; Ha, K.;
Koh, D.C.; Cho, Y.K., and Kim, G., 2019. Quantitative estimation of
submarine groundwater discharge using airborne thermal infrared data
acquired at two different tidal heights. Hydrological Processes, 33,
1089-1100.
Kelly, J.L.; Dulai, H.; Glenn, C.R., and Lucey, P.G., 2019. Integration
of aerial infrared thermography and in situ radon-222 to investigate
submarine groundwater discharge to Pearl Harbor, Hawaii, USA. Limnology
and Oceanography, 64(1), 238-257.
Kim, G.; Ryu, J.W.; Yang, H.S., and Yun, S.T., 2005. Submarine
groundwater discharge (SGD) into the Yellow Sea revealed by Ra-228 and
Ra-226 isotopes: Implications for global silicate fluxes. Earth and
Planetary Science Letters, 237(1/2), 156-166.
Kohout, F.A, 1966. Submarine springs: A neglected phenomenon of coastal
hydrology. Hydrology, 26, 391-413.
Krall, L.; Trezzi, G.; Garcia, O.J.; Rodellas, V.; Morth, C.M., and
Andersson, P., 2017. Submarine groundwater discharge at Forsmark, Gulf
of Bothnia, provided by Ra isotopes. Marine Chemistry, 196, 162–172.
Lamontagne, S. and Webster, I.T., 2019. Theoretical Assessment of the
Effect of Vertical Dispersivity on Coastal Seawater Radium Distribution.
Frontiers in Marine Science, 6,357. DOI: 10.3389/fmars.2019.00357.
Lee, B.J.; Lee, J.H., and Kim, D.H., 2018. An alternative approach to
conventional seepage meters: Buoy-type seepage meter. Limnology and
Oceanography, 16(5), 299-308.
Lee, D.R, 1977. A device for measuring seepage flux in lakes and
estuaries. Limnology and Oceanography, 22, 140-147.
Li, H.L. and Jiao, J.J., 2013. Quantifying tidal contribution to
submarine groundwater discharges: A review. Chinese Science Bulletin,
58(25), 3053-3059.
Li, N.; Guo, X.J.; Ma, Q.W., and Zhang, Y.F., 2019. The research of
electrical resistivity system’s application effect simulation in coastal
submarine confined groundwater discharge. Acta Oceanologica Sinica,
41(5), 128-137.(in Chinese)
Li, X.Y.; Dong, N.; Zhang, L.; Xiao, G.Q.; Wang, H.P. and Jiang, X.Y,
2019. Radium isotopes distribution and submarine groundwater discharge
in the Bohai Sea. Groundwater for Sustainable Development, 9.
DOI:10.1016/j.gsd.2019.100242.
Liu, H.T.; Guo, Z.R.; Gao, A.G.; Yuan, X.J., and Zhang, B., 2016. O-18
and Ra-226 in the Minjiang River estuary, China and their hydrological
implications. Estuarine Coastal and Shelf Science, 173, 93-101.
Liu, J.A.; Du, J.Z., and Yi, L.X., 2017. Ra Tracer-Based Study of
Submarine Groundwater Discharge and Associated Nutrient Fluxes into the
Bohai Sea, China: A Highly Human-Affected Marginal Sea. Journal of
Geophysical Research-Oceans, 122(11), 8646-8660.
Liu, J.A.; Du, J.Z.; Wu, Y., and Liu, S.M., 2018. Nutrient input through
submarine groundwater discharge in two major Chinese estuaries: the
Pearl River Estuary and the Changjiang River Estuary. Eatuarine Coastal
and Shelf Science, 203, 17-28.
Liu, J.A.; Su, N.; Wang, X.L., and Du, J.Z., 2017. Submarine groundwater
discharge and associated nutrient fluxes into the Southern Yellow Sea: A
case study for semi-enclosed and oligotrophic seas-implication for green
tide bloom. Journal of Geophysical Research-Oceans, 122(1), 139-152.
Liu, Y.; Jiao, J.J., and Cheng, H.K., 2018. Tracing submarine
groundwater discharge flux in Tolo Harbor, Hong Kong (China).
Hydrogeology Journal, 26(6), 1857-1873.
Ma, Q.; Li, H.L.; Wang, X.J.; Wang, C.Y.; Wan, L.; Wang, X.S., and
Jiang, X.W., 2015. Estimation of seawater–groundwater exchange rate:
case study in a tidal flat with a large-scale seepage face (Laizhou Bay,
China). Hydrogeology Journal, 23, 265-275.
Maher, D.T.; Call, M.; Macklin, P.; Webb, J.R., and Santos, I.R., 2019.
Hydrological Versus Biological Drivers of Nutrient and Carbon Dioxide
Dynamics in a Coastal Lagoon. Estuaries and Coasts, 42, 1015-1031.
Moore, W.S, 1996. Large groundwater inputs to coastal waters revealed by
Ra-226 enrichments. Nature, 380(6575), 612-614.
Moore, W.S, 2010. The effect of submarine groundwater discharge on the
ocean. The Annual Review of Marine Science, 2, 59-88.
Moore, W.S. Seasonal distribution and flux of radium isotopes on the
southeastern US continental shelf, 2007. Journal of Geophysical
Research—Oceans, 112, C10. DOI: 10.1029/2007JC004199.
Niencheskil, L.F.H., and Windom, H.L., 2015. Chemistry of a Surficial
Aquifer of a Large Coastal Lagoon Barrier and its Relation to Adjacent
Surface Waters of Brazil. Journal of Coastal Research, 31(6), 1417-1428.
Nikpeyman, Y.; Hosono, T.; Ono, M.; Yang, H.; Ichiyanagi, K.; Shimada,
J., and Takikawa, K., 2019. Sea surficial waves as a driving force that
enhances the fresh shallow coastal groundwater flux into the oceans.
Environmental Earth Sciences, 78(8), 252. DOI:
10.1007/s12665-019-8258-4.
Oberdorfer, J.A, 2003. Hydrogeologic modeling of submarine groundwater
discharge: Comparison to other quantitative methods. Biogeochemistry,
66(1-2), 159-169.
Oehler, T.; Tamborski, J.; Rahman, S.; Moosdorf, N.; Ahrens, J.; Mori,
C.; Neuholz, R.; Schnetger, B., and Beck, M., 2019. DSi as a Tracer for
Submarine Groundwater Discharge. Frontiers in Marine Science, 6, 563.
DOI: 10.3389/fmars.2019.00563.
Paulsen, R.J.; Smith, C.F.; O’Rourke, D., and Wong, T.F., 2001.
Development and evaluation of an ultrasonic ground water seepage meter.
Groundwater, 39(6), 904-911.
Qu, W.J.; Li, H.L.; Huang, H.; Zheng, C.M.; Wang, C.Y.; Wang, X.J., and
Zhang, Y., 2017. Seawater-groundwater exchange and nutrients carried by
submarine groundwater discharge in different types of wetlands at
Jiaozhou Bay,China. Journal of Hydrology, 555, 185–197.
Robinson, C.; Li, L., and Barry, D.A., 2007. Effect of tidal forcing on
a subterranean estuary. Advances in Water Resources, 30(4), 851-865.
Sadat, N.M. and Glamore, W., 2019. Porewater exchange drives trace
metal, dissolved organic carbon and total dissolved nitrogen export from
a temperate mangrove wetland. Journal of Environmental Management, 248,
UNSP 109264. DOI: 10.1016/j.jenvman.2019.109264
Santos, I. R.; Eyre, B.D., and Huettel, M., 2012. The driving forces of
porewater and groundwater flow in permeable coastal sediments: A review.
Estuarine,Coastal and Shelf Science, 98, 1-15.
Sholkovitz, E.; Herbold, C., and Charette, M., 2003. An automated
dye-dilution based seepage meter for the time-series measurement of
submarine groundwater discharge. Limnology and Oceanography, 1, 16-28.
Slomp, C.P. and Van, C.P., 2004. Nutrient inputs to the coastal ocean
through submarine groundwater discharge: controls and potential impact.
Journal Of Hydrology, 295(1-4), 64-86.
Swarzenski, P.W.; Reich, C.; Kroeger K.D., and Baskaran, M., 2007. Ra
and Rn isotopes as natural tracers of submarine groundwater discharge in
Tampa Bay, Florida. Marine Chemistry, 104 (1/2), 69-84.
Tamborski, J.; Bejannin, S.; Garcia-Orellana, J.; Souhaut, M.;
Charbonnier, C.; Anschutz, P.; Pujo-Pay, M.; Conan, P.; Crispi, O.;
Monnin, C.; Stieglitz, T.; Rodellas, V.; Andrisoa, A.; Claude, C., and
Van, B.P., 2018. A comparison between water circulation and
terrestrially-driven dissolved silica fluxes to the Mediterranean Sea
traced using radium isotopes. Geochimica et Cosmochimica Acta, 238,
496-515.
Tamborski, J.; Van, B.P.; Rodellas, V.; Monnin, C.; Bergsma, E.;
Stieglitz, T.; Heilbrun, C.; Cochran, J.K.; Charbonnier, C.; Anschutz,
P.; Bejannin, S., and Beck, A., 2019. Temporal variability of lagoon-sea
water exchange and seawater circulation through a Mediterranean barrier
beach. Limnology and Oceanography, 64(5), 2059-2080.
Taniguchi, M.; Burnett, W.C.; Smith, C.F.; Paulsen, R.J.; O’Rourke, D.;
Krupa, S.L., and Christoff, J.L., 2003. Spatial and temporal
distributions of submarine groundwater discharge rates obtained from
various types of seepage meters at a site in the Northeastern Gulf of
Mexico. Biogeochemistry, 66(1/2), 35-53.
Taniguchi, M.; Ishitobi, T.; Chen, J.Y. ; Onodera, S.I.; Miyaoka, K. ;
Burnett, W.C.; Peterson, R.; Liu, G.Q., and Fukushima, Y., 2008.
Submarine groundwater discharge from the Yellow River Delta to the Bohai
Sea, China. Journal of Geophysical Research-oceans, 113, C06025,
doi:10.1029/2007JC004498.
Wang, B.; Guo, Z.R.; Yuan, X.J.; Zhang, B.; Ma, Z.Y., and Liu, J., 2014.
Distribution characteristics of radium isotopes and their influence
factors in the water of Jiaozhou Bay area. Nuclear Techniques, 37(3),
030206-1-030206-9.(in Chinese)
Wang, X.J.; Li, H.L.; Jiao, J.J.; Barry, D.A.; Li, L.; Luo, X.; Wang,
C.Y.; Wan, L.; Wang, X.S.; Jiang, X.W.; Ma, Q., and Qu, W.J., 2015.
Submarine fresh groundwater discharge into Laizhou Bay comparable to the
Yellow River flux. Scientific Reports, 5, 8814. DOI: 10.1038/srep08814.
Wang, X.J.; Li, H.L.; Zhang, Y.; Qu, W.J., and Schubert, M., 2019.
Submarine groundwater discharge revealed by Rn-222: comparison of two
continuous on-site Rn-222-in-water measurement methods. Hydrogeology
Journal, 27, (5), 1879-1887.
Wang, X.L. And Du, J.Z., 2016. Submarine groundwater discharge into
typical tropical lagoons: A case study in eastern Hainan Island, China.
Geochemistry Geophysics Geosystems, 17(11), 4366-4382.
Xia, D.; Yu, Z.G.; Xu, B.C.; Gao, M.S.; Mi, T.Z.; Jiang, X.Y., and Yao,
P., 2016. Variations of Hydrodynamics and Submarine Groundwater
Discharge in the Yellow River Estuary Under the Influence of the
Water-Sediment Regulation Scheme. Estuaries and Coasts, 39(2), 333-343.
Xing, Q.G.; Braga, F.; Tosi, L.; Lou, M.J.; Zaggia, L.; Teatini, P.;
Gao, X.L.; Yu, L.J.; Wen, X.H., and Shi, P., 2016. Detection of Low
Salinity Groundwater Seeping into the Eastern Laizhou Bay (China) with
the Aid of Landsat Thermal Data. Journal of Coastal Research, 74,
149-156. DOI: 10. 2112 / SI74 -014.
Xu, B.C.; Burnett, W.; Dimova, N.; Diao, S.B., and Mi, T.Z., 2013.
Hydrodynamics in the Yellow River Estuary via radium isotopes:
Ecological perspectives. Continental Shelf Research, 66, 19–28.
Xu, B.C.; Xia, D.; Burnett, W.C.; Dimova, N.T.; Wang, H.J.; Zhang, L.J.;
Gao, M.S. ; Jiang, X.Y., and Yu, Z.G., 2014. Natural Rn-222 and Rn-220
indicate the impact of the Water-Sediment Regulation Scheme (WSRS) on
submarine groundwater discharge in the Yellow River estuary, China.
Applied Geochemistry, 51, 79-85.
Yang, D.F.; Miao, Z.Q.; Xu, H.Z.; Chen, Y. And Sun, J.Y., 2014. Jiaozhou
Bay water exchange time. Marine Environmental Science, 32(3),
373-380.(in Chinese)
Yu, X.Y.; Xin, P.; Wang, S.S.J.; Shen, C.J., and Li, L., 2019. Effects
of multi-constituent tides on a subterranean estuary. Advances in Water
Resources, 124, 53–67.
Yuan, X.J.; Guo, Z.R.; Huang, L.; Zhang, B.; Ma, Z.Y., and Liu J., 2016.
Estimating Submarine Groundwater Discharge into the Jiaozhou Bay Using
~(226)Ra. Journal of Jilin University. Earth Science
Edition, 46(5), 1490-1500. (in Chinese)
Zarnoch, C.B.; Hoellein, T.J.; Furman, B.T., and Peterson, B.J., 2017.
Eelgrass meadows, &ITZostera marina&IT (L.), facilitate the ecosystem
service of nitrogen removal during simulated nutrient pulses in
Shinnecock Bay, New York, USA. Marine Pollution Bulletin, 124(1),
376-387.
Zhang, Y.; Li, H.L.; Wang, X.J.; Zheng, C.M.; Wang, C.Y.; Xiao, K.; Wan,
L.; Wang, X.S.; Jiang, X.W, and .Guo, H.M., 2016. Estimation of
submarine groundwater discharge and associated nutrient fluxes in
eastern Laizhou Bay, China using Rn-222. Journal of Hydrology, 533,
103-113.
Zhu, A.P.; Saito, M.; Onodera, S.; Shimizu, Y.; Jin, G.Z.; Ohta, T., and
Chen, JY., 2019. Evaluation of the spatial distribution of submarine
groundwater discharge in a small island scale using the Rn-222 tracer
method and comparative modeling. Marine Chemistry, 209, 25-35.
Table. The representative studies on SGD in Huanghai and Bohai