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Abstract

In this paper, we structure a phytoplankton zooplankton interaction system with

two delays and Monod-Haldane type functional response, and mainly discuss the

affect of τ and τ1 to the dynamic behavior of system. Firstly, we give the existence

of equilibrium and property of solution. The sufficient conditions ensuring the glob-

ally asymptotical stability of the boundary equilibrium are given. The nonexistence

of the positive equilibrium ensures the global stability of the boundary equilibrium.

Secondly, let τ1 = 0 and dynamic behavior of system with one delay (τ) is investi-

gated. The stability switches phenomenon can occur as τ varying. Then fixed τ in

stable interval, using τ1 as parameter, it can investigate the effect of τ1 and find τ1

can also cause the oscillation of system. Specially, when τ = τ1, the system can also

occur the stable switching phenomenon, and, under certain conditions, the periodic

solution will exist with the wide range as delay away from critical value. Further-

more, using the crossing curve methods, it can obtain the stable changes of positive

equilibrium in (τ, τ1) plane. When choosing τ in the unstable interval, the system

still can occur Hopf bifurcation as delays varying. Some numerical simulations are

given to indicate the correction of the theoretical analyses. At last, some conclusions

are given.

Keywords: Double delays; Monod-Haldane type functional response; Stability;

Hopf bifurcation; Crossing curve;

1. Introduction

For decades, as plankton is the basis of all food chains and networks in the

aquatic system and plays an important role in the Marine ecology, the dynamics
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of marine plankton has become an important research field. Phytoplankton, also

known as microalgae, are similar to terrestrial plants because they contain chloro-

phyll and need sunlight to survive and grow. Most phytoplankton are buoyant,

floating on top of the ocean where sunlight penetrates the water.In a balanced

ecosystem, they feed a variety of Marine life, including whales, shrimp, snails and

jellyfish. A striking characteristic associated with many phytoplankton populations

is rapid and large-scale bloom formation. These events are characterized by a sharp

increase in number, by several orders of magnitude, followed by a sudden decline in

the phytoplankton population, which returns to its original low level as if nothing

had happened. Zooplankton are animals that live in communities of plankton, both

herbivores and carnivores, Herbivores feed on phytoplankton and are then eaten by

carnivorous zooplankton.

However, a special class of phytoplankton common to most aquatic ecosystems

has a special physiological characteristic of releasing ”toxic” or ”allelochemicals”

that are harmful to the growth of other algae. Algal toxicity has an important effect

on the distribution of phytoplankton and zooplankton populations. The human

consequences of harmful algal blooms are high costs for fisheries and tourism.High

mortality of fish and other Marine animals during the brown tide sometimes leads

to a ban on trade in fish and shellfish for a considerable period thereafter. Further

brown tides pose a problem for human health, as consumers may die from poisoning

after exposure to toxic algae shellfish.Although human deaths are rare, cases of

eye irritation, headaches or other diseases can be observed.The economic impact is

severe, especially for communities that rely almost entirely on fishing.Tourism has

also been affected, as tourists are not allowed to visit the affected areas. Zooplankton

population is completely dependent on phytoplankton as the most favorable food

source, and the change of phytoplankton density has a great influence on the growth

of zooplankton.The effects of harmful phytoplankton blooms on zooplankton are well

known.When these harmful species multiply in large Numbers, the cumulative effect

of all the toxins may lead to a decrease in grazing pressure on zooplankton.

In 2002, Chattopadhyay et al.[1] proposed a mathematical model of the interac-

tion between toxic phytoplankton (TPP) and zooplankton, and discussed the role

of TPP in harmful algal blooms. The general form of the mathematical model they

consider is the following nonlinear coupling of ordinary differential equations

{
dP(t)

dt
= rP(t)(1 − P(t)

L
) − αf(P(t))Z(t),

dZ(t)
dt

= βf(P(t))Z(t) − μZ(t) − θg(P(t))Z(t),
(1.1)
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where P(t) and Z(t) are the TPP population densities and zooplankton popula-

tion densities at time t, respectively. f(P(t)) indicates the functional response of

zooplankton to phytoplankton and g(P(t)) describes the distribution of toxic sub-

stance that eventually kill off zooplankton populations. Since the pioneering work

of Chattopadhyay et al, a growing number of biological papers have been published

on the TPP-zooplankton model, demonstrating the importance of this interaction

[2, 3, 4, 5, 6, 7, 8, 9, 10].

Some researchers have shown that toxic substances released by certain phyto-

plankton species repel zooplankton, which try to leave areas of high phytoplankton

density. This is similar to the phytoplankton group defense mechanism against

zooplankton.The main purpose of this paper is to consider a plankton-zooplankton

model that uses the monod-haldane type of functional response to simulate zoo-

plankton grazing. The zooplankton (Z(t)) can identify the TPP (P(t)) because the

latter consumes too much and thus kills too many zooplankton. The zooplankton

reduces their consumption through a change in chemotactic sensitivity in a direc-

tion opposite to the TPP gradient. This is modeled with a simplified non-monotonic

monod-haldane type of function response expressed by P/(m2 + P2) [4, 11, 12].

Hence, in this paper, we investigate the following system:⎧⎨
⎩

dP(t)
dt

= rP(t)
(
1 − P(t)

L

)
− αP(t)Z(t)

m2+P2(t)
,

dZ(t)
dt

= βe−μτP(t−τ)Z(t−τ)
m2+P2(t−τ)

− μZ(t) − ρP(t−τ1)Z(t)
m2+P2(t−τ1)

(1.2)

The function P(t−τ1)/(m2+P2(t−τ1)) represents the distribution of toxic substance

that eventually kill off zooplankton populations.

The biological senses and units of these parameters are shown in Table 1.

The initial conditions are chosen as

P(θ) = ϕ1(θ) ≥ 0,Z(θ) = ϕ2(θ) ≥ 0, ϕi(0) > 0, i = 0, 1, θ ∈ [−τmax, 0], (1.3)

where (ϕ1(θ), ϕ2(θ)) ∈ C([−τmax, 0],R2
+), τmax = max{τ, τ1}.

The paper is organized as follows. In Section 2, we give the existence of equi-

librium and property of solution for system (1.2). In this paper, we mainly discuss

the affect of τ and τ1 to the dynamic behavior of system (1.2). Firstly, we give the

sufficient conditions ensuring the globally asymptotical stability of the boundary

equilibrium. It can find that the delay of maturity of TPP does not effect the stabil-

ity of the boundary equilibrium while the delay of gestation of zooplankton can have

the key influence. The nonexistence of the positive equilibrium ensures the global
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Table 1: Descriptions and units of parameters of system (1.2)

Symbol Parameter Definition Unit

r Intrinsic growth rate of phytoplankton population day−1

L Environmental carrying capacity gCm−3

α Grazing efficiency of zooplankton population day−1gCm−3

β Growth efficiency of zooplankton population day−1gCm−3

μ Natural death rate of zooplankton population day−1

m The half-saturation constant [gCm−3]2

ρ Toxin-producing rate gCm−3 day−1

τ Gestation delay of the zooplankton day−1

τ1 Delay required for the maturity of TPP day−1

stability of the boundary equilibrium. Secondly, let τ1 = 0 and dynamic behavior

of system with one delay (τ) is investigated. The stability switches phenomenon

can occur as τ varying. Then fixed τ in stable interval, using τ1 as parameter, it

can investigate the effect of τ1 and find τ1 can also cause the oscillation of system,

that is, τ1 can lead to the existence of periodic solution. Specially, when τ = τ1, the

system can also occur the stable switching phenomenon, and, under certain condi-

tions, the periodic solution will exist with the wide range as delay away from critical

value. These results are shown in Section 4. In Section 5, using the crossing curve

methods, it can obtain the stable changes of positive equilibrium in (τ, τ1) plane.

When choosing τ in the unstable interval, the system still can occur Hopf bifurcation

as delays varying. Some numerical simulation examples are given to indicate the

correction of the theoretical analyses when the delays change in Section 6. At last,

some conclusions are given.

2. Equilibrium and Property of solutions

The system (1.2) always exists two boundary equilibira E0(0, 0) and E1(L, 0).

The positive equilibrium is E∗(P∗,Z∗), where P∗ satisfies the equation f(P∗) :=

μP∗2 − (βe−μτ − ρ)P∗ + μm2 = 0 and Z∗ = r
αL

(m2 + P∗2)(L −P∗).

Define Rτ = βe−μτ−ρ
2μm

, some conditions ensuring the existence of E∗ are given as

follows.

Lemma 2.1. The number of positive equilibrium for system (1.2) is given as fol-
lows.
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(i) If m ≥ L and Rτ > L2+m2

2mL
, then system (1.2) exists a uniquely positive equilib-

rium E∗
−(P∗

−,Z∗
−);

(ii) If m < L, then the following results hold.
(a) When Rτ ≥ L2+m2

2mL
, system (1.2) exists a uniquely positive equilibrium

E∗
−(P∗

−,Z∗
−);

(b) When 1 < Rτ < L2+m2

2mL
, system (1.2) exists two positive equilibria E∗

±(P∗
±,Z∗

±);
(c) When Rτ = 1, system (1.2) exists a uniquely positive equilibrium E∗(P∗

−,Z∗
−) =

E∗(P∗
+,Z∗

+);
(d) When Rτ < 1, system (1.2) does not exist any positive equilibrium, where{

P∗
± =

(βe−μτ−ρ)±
√

(βe−μτ−ρ)2−4μ2m2

2μ
= m

[
Rτ ±

√
R2

τ − 1
]
,

Z∗
± = r

αL
(m2 + P∗2

± )(L − P∗
±).

or

Lemma 2.2. The number of positive equilibrium for system (1.2) is given as fol-
lows.

(i) If Rτ > L2+m2

2mL
, then system (1.2) exists a uniquely positive equilibrium

E∗
−(P∗

−,Z∗
−);

(ii) When 1 < Rτ < L2+m2

2mL
and m < L, system (1.2) exists two positive equilibria

E∗
±(P∗

±,Z∗
±);

(iii) When Rτ = 1 and m < L, system (1.2) exists a uniquely positive equilibrium
E∗(P∗

−,Z∗
−) = E∗(P∗

+,Z∗
+);

(iv) When Rτ = L2+m2

2mL
and m < L, system (1.2) exists a uniquely positive

equilibrium E∗
−(P∗

−,Z∗
−);

(v) Under the other situations, system (1.2) does not exist any positive equilib-
rium, where{

P∗
± =

(βe−μτ−ρ)±
√

(βe−μτ−ρ)2−4μ2m2

2μ
= m

[
Rτ ±

√
R2

τ − 1
]
,

Z∗
± = r

αL
(m2 + P∗2

± )(L − P∗
±),

and P∗
+P∗

− = m.

For convenience, when the positive equilibrium exists, we always assume that

Lemma 2.1 (i) holds, that is, m ≥ L and Rτ > L2+m2

2mL
. Furthermore, when (β −

ρ)L > μ(L2 +m2) and τ ∈ [0, τ̄), system (1.2) exists a uniquely positive equilibrium

E∗(P∗,Z∗), where

P∗ = P∗
−, Z∗ = Z∗

−, τ̄ = 1
μ

ln βL
ρL+μ(L2+m2)

.

Lemma 2.3. Let ϕi(0) > 0 (i = 1, 2) and there exists some constant σ > 0, for
t ∈ [0, σ), then
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(a) all solutions of system (1.2) with initial conditions (1.3) uniquely exist and
are positive;

(b) lim
t→∞

supP(t) ≤ L and lim
t→∞

supZ(t) ≤ M , where M = L(r+μ)2

4rμ
;

(c) if r > αM
m2 , then lim

t→∞
inf P(t) ≥ m0, where m0 = L

r

(
r − αM

m2

)
.

Proof Theorems 2.1 and 2.3 in [13], solutions of system (1.2) with initial conditions

(1.3) exist on t ∈ [0, σ) for some σ > 0 and are unique. Suppose (P(t),Z(t)) is a

solution of system (1.2) for t ∈ [0, σ). Without loss of generality, it assumes that

t ∈ [0, σ) is the maximum internal of the solution and σ = ∞ if the solution exists

for any t > 0. Integrating the first equation of system (1.2) gives

P(t) = ϕ1(0)e
R t
0
[r(1−P(u)/L)− αZ(u)

m2+P2(u)
]du

> 0, t ∈ [0, σ).

To prove the Z(t) > 0 for any t ∈ [0, σ), it uses the method of contradiction.

Suppose that there exists a t∗ ∈ [0, σ) such that Z(t∗) = 0,Z ′(t∗) ≤ 0 and Z(t) > 0

for any t ∈ [0, t∗). From the second equation of system (1.2), we have

Ż(t∗) = βe−dτP(t∗−τ)Z(t∗−τ)
m2+P2(t∗−τ)

− μZ(t∗) − ρP(t∗−τ1)Z(t∗)
m2+P2(t∗−τ1)

= βe−dτP(t∗−τ)Z(t∗−τ)
m2+P2(t∗−τ)

> 0,
(2.1)

which is a contradiction with Z ′(t∗) ≤ 0. Hence Z(t) > 0 for all t ∈ [0, σ). This

completes the proof of (a).

It follows from the first equation of system (1.2) that P ′ ≤ rP(1 −P/L), which

implies that lim
t→∞

supP(t) ≤ L. Define

W (t) = P(t) + αedτ

β
Z(t + τ), t ≥ 0.

Then from system (1.2), we obtain

Ẇ (t) = rP(t)
(
1 − P(t)

L

)
− μαedτ

β
Z(t + τ) − ραedτ

β
P(t+τ−τ1)Z(t+τ)
m2+P2(t+τ−τ1)

≤ rP(t)
(
1 − P(t)

L

)
− μαedτ

β
Z(t + τ)

= −μW (t) + (r + μ)P(t) − r
L
P2(t)

≤ −μW (t) + L(r+μ)2

4r
.

Applying the theorem of differential inequality, we obtain that

0 < W (t) ≤ L(r+μ)2

4rμ
(1 − e−μt) + W (0)e−μt.

Therefore, lim
t→∞

supZ(t) ≤ L(r+μ)2

4rμ
= M . This completes the proof of (b).
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From the first equation of system (1.2), we get

Ṗ(t) = rP(t)
(
1 − P(t)

L

)
− αP(t)Z(t)

M2+P2(t)

≥ rP(t)
(
1 − P(t)

L

)
− αM

m2 P(t)

= P(t)
[
r − αM

m2 − r
L
P(t)

]
which implies that lim

t→∞
inf P(t) ≥ L

r
(r − αM

m2 ) = m0 if r > αM
m2 . This completes the

proof of (c).

Therefore, from the continuation theorem of solutions for functional differential

equations [13] and using the same methods as Lemma 2.2, it has the following

theorem.

Theorem 2.1. The solution of system (1.2) with the initial condition (1.3) is ex-
istent, unique, positive and bounded on [0, +∞) and Γ = {(ϕ1(θ), ϕ2(θ)) ∈ C|m0 ≤
ϕ1(θ) ≤ L, 0 ≤ ϕ2(θ) ≤ M} is positively invariant set for system (1.2).

3. Stability of boundary equilibrium

That’s clear that E0 is always an unstable saddle point. For E1, the following

global stability result holds.

Theorem 3.1. If 0 ≤ τ < τ̄ , then E1 is unstable; If τ > τ̂ := 1
μ

ln βL
μm2 , then E1 is

globally asymptotically stable (GAS), where τ̄ < τ̂ .

Proof The characteristic equation of system (1.2) at E1 is

(λ + r)
[
λ + μ + ρL

m2+L2 − e−(λ+μ)τ βL
m2+L2

]
= 0. (3.1)

Equation (3.1) has one root λ = −r < 0, and the other roots satisfy[
λ + μ + ρL

m2+L2

]
e(λ+μ)τ = βL

m2+L2 . (3.2)

Define H(λ) := [λ+μ+ ρL
m2+L2 ]e

(λ+μ)τ , we have H(0) = (μ+ ρL
m2+L2 )e

μτ > 0, H ′(λ) >

0, H(+∞) = +∞. Since τ < τ̄ , by intermediate value theorem, (4) has a unique

positive root λ(τ), then (3.1) has at least one positive root. Hence E1 is unstable

when τ < τ̄ .

Next, it will prove E1 is GAS. Let iω (ω > 0) be root of (3.2), then ω satisfies

ω2 =
[

(βe−μτ+ρ)L
m2+L2 + μ

][
(βe−μτ−ρ)L

m2+L2 − μ
]
.

If τ1 > τ̄1, then the above equation has no positive roots, i.e., (3.2) has no purely

imaginary roots. Hence E1 is LAS if τ1 > τ̄1.
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Furthermore, choosing

V (P,Z) = P − L − L ln P
L

+ α
βe−μτ Z + α

∫ t

t−τ
PZ

m2+P2 dt,

its derivative along solution of system (1.2) is

V̇ = P−L
P Ṗ + α

βe−μτ Ż + α PZ
m2+P2 − αP(t−τ)Z(t−τ)

m2+P2(t−τ)

= P−L
P

[
rP(1 − P

L
) − α PZ

m2+P2

]
+ α

βe−μτ

[
βe−μτP(t−τ)Z(t−τ)

m2+P2(t−τ)
− μZ(t)

− ρP(t−τ1)Z(t)
m2+P2(t−τ1)

]
+ α PZ

m2+P2 − αP(t−τ)Z(t−τ)
m2+P2(t−τ)

= − r
L
(P − L)2 + αLZ

m2+P2 − μαZ
βe−μτ − αP(t−τ)Z(t−τ)

m2+P2(t−τ)
− αρP(t−τ1)Z(t)

βe−μτ (m2+P2(t−τ1))

≤ − r
L
(P − L)2 + α

[
L

m2 − μ
βe−μτ

]
Z.

If τ1 > τ̂1, then L
m2 − μ

βe−μτ < 0 and V̇ ≤ 0. Furthermore, it has V̇ = 0 iff

P = L,Z = 0. Let Φ be largest invariant subset of V̇ = 0, then for each element

in Φ, it has P(t) = L and Z(t) = 0. By Lasalle invariance principle, E1 is globally

attractive. Adding to the local stability, E1 is GAS. This completes the proof.

Remark 3.1. From the above results, it has that the maturity delay of TPP has
no affect to the stability of E1. For the small gestation delay τ of zooplankton, E1

is unstable and the positive equilibrium exists. For the large gestation delay τ and
exceeding some value, E1 is globally asymptotically stable. That is, the large gestation
delay of zooplankton contributes zooplankton to die out and the small gestation delay
may contribute to persistent existence of two populations.

4. Stability of positive equilibrium

In this section, we always assume that m ≥ L and Rτ > m2+L2

2mL
. Let x(t) =

P (t) − P ∗, y(t) = Z(t) − Z∗, then system (1.2) becomes⎧⎪⎨
⎪⎩

dx(t)
dt

= A1x(t) − αA2y(t) + O(2),
dy(t)

dt
= βe−μτA3Z∗x(t − τ) + βe−μτA2y(t− τ)

−ρA3Z∗x(t − τ1) − (μ + ρA2)y(t) + O(2),

(4.1)

where

A1 = −rP∗
L

+ 2αA2
2Z∗, A2 = P∗

m2+P∗2 > 0, A3 = m2−P∗2
(m2+P∗2)2 > 0.

whose characteristic equation is

D(λ, τ, τ1) := λ2 + (μ + ρA2 − A1)λ − A1(μ + ρA2)

+[βe−μτA2(αA3Z∗ + A1 − λ)]e−λτ − αρA2A3Z∗e−λτ1 = 0.
(4.2)

D(λ, 0, 0) := λ2 + (μ + ρA2 − A1 − βA2)λ − A1(μ + ρA2 − βA2)

+α(β − ρ)A2A3Z∗ = 0.
(4.3)
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4.1. Case 1: τ1 = 0, τ > 0

Firstly, we let τ ≥ 0, τ1 = 0, then system (4.1) becomes⎧⎪⎨
⎪⎩

dx(t)
dt

= A1x(t) − αA2y(t) + O(2),
dy(t)

dt
= −ρA3Z∗x(t) − (μ + ρA2)y(t) + βe−μτA3Z∗x(t − τ)

+βe−μτA2y(t− τ) + O(2),

(4.4)

and (4.3) becomes

Δ(λ, τ, 0) = λ2 + (μ + ρA2 − A1)λ − A1(μ + ρA2) − αρA2A3Z∗

+[βe−μτA2(αA3Z∗ + A1 − λ)]e−λτ = 0.
(4.5)

Rewrite (4.5) as the following form

Δ1(λ, τ) + Δ2(λ, τ)e−λτ = 0, (4.6)

where

Δ1(λ, τ) = λ2 + pλ + q, Δ2(λ, τ) = r1 + sλ,

p = μ + ρA2 − A1, q = −A1(μ + ρA2) − αρA2A3Z∗,

r1 = −s(αA3Z∗ + A1), s = −βe−μτA2.

Next, it investigates the existence of purely imaginary roots λ = i� (� = �(τ) >

0). Equation (4.5) is exponential polynomial about λ with coefficients depending

on delay τ . Beretta and Kuang [14] established a geometrical method to decide the

existence of purely imaginary roots when the coefficients contained delay. It easily

can verify the following relations:

(i) Δ1(0, τ) + Δ2(0, τ) �= 0;

(ii) Δ1(i�, τ) + Δ2(i�, τ) �= 0;

(iii) lim sup
{∣∣∣Δ2(λ,τ1)

Δ1(λ,τ1)

∣∣∣ : |λ| → ∞,Reλ ≥ 0
}

< 1;

(iv) Let F(�, τ) = |Δ1(i�, τ)|2 − |Δ2(i�, τ)|2, then it has finite roots;

(v) If � > 0 exists satisfying F(�, τ) = 0, then it is continuous and differentiable

in τ .

Substitute λ = i� into (4.6), it can yield{
r1 cos �τ + s� sin �τ = �2 − q,

s� cos �τ − r1 sin �τ = −p�.
(4.7)

From (4.7), it has {
sin �τ = (�2−q)s�+�pr1

�2s2+r2
1

,

cos �τ = − (q−�2)r1+�2ps

�2s2+r2
1

.
(4.8)
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Using (4.6) and the property (i), (4.21) is equivalent to⎧⎨
⎩

sin �τ = Im
(

Δ1(i�,τ)
Δ2(i�,τ)

)
,

cos �τ = −Re
(

Δ1(i�,τ)
Δ2(i�,τ)

)
,

(4.9)

which yields

F(�, τ) = �4 + 	1(τ)�2 + 	2(τ) = 0, (4.10)

whose roots are given by

�2
± = 1

2

[
−	1(τ) ±√

Δ)
]
, (4.11)

where

	1(τ) = p2 − 2q − s2, 	2(τ) = q2 − r2
1, Δ = 	2

1(τ) − 4	2(τ).

Since 	1(τ) = 2αρA2A3Z∗ > 0 and q + r1 = μαA3Z∗ > 0, (4.10) has a uniquely

positive real root �+ iff q < r1.

Let

Iτ =
{
τ ∈ [0, τ̄) : q < r1

}
.

Then for all τ ∈ Iτ , � satisfies (4.11) and � is not definited if τ /∈ Iτ .

For τ ∈ Iτ , let θ+(τ) ∈ [0, 2π) be defined by⎧⎨
⎩

sin θ+(τ) =
(�2

+−q)s�++�+pr1

�2
+s2+r2

1
,

cos θ+(τ) = − (q−�2
+)r1+�2

+ps

�2
+s2+r2

1
,

and the maps τn(τ) : Iτ → R+ defined by

τn(τ) := θ+(τ)+2nπ
�+(τ)

, n ∈ N.

Furthermore, it can introduce the continuous and differentiable functions Sn(τ)

in τ :

Sn(τ) := τ − τn(τ), τ ∈ Iτ , n ∈ N.

Theorem 4.1. The equation (4.6) has a pair of simply imaginary roots λ = ±i�+,
�+ is real for τ ∈ Iτ , and at some τ ∗ ∈ Iτ ,

Sn(τ ∗) = 0 for some n ∈ N.

This pair roots cross the imaginary axis from left (right) to right (left) if δ+(τ ∗) >
0 (< 0), where

δ+(τ ∗) := Sign
{

dReλ
dτ

∣∣∣
λ=i�+

}
= Sign

{
dSn(τ)

dτ

∣∣∣
τ=τ∗

}
.
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Hence, the following theorem holds for system (4.4).

Theorem 4.2. Assume that 0 < τ < τ̄ . System (4.4), has the following dynamic
properties.
(i) If Iτ is empty or not empty set, but Sn(τ) = 0 has no positive root in Iτ , then
E∗ is LAS for all τ ∈ [0, τ̄);
(ii) If Iτ is non-empty, Sn(τ) = 0 has positive roots in Iτ and δ+(τ ∗) �= 0, for some
n ∈ N, let τ 0 = min{τ : Sn(τ) = 0} and τ 1 = max{τ : Sn(τ) = 0}, then E∗ is LAS
for τ ∈ [0, τ 0)

⋃
(τ 1, τ̄) and unstable for τ ∈ (τ 0, τ 1). Here τ 0 and τ 1 are the Hopf

bifurcation values.

4.2. Case 2: τ > 0, τ1 > 0

In the following, fixed τ = τ ∗ in its stable interval U and using τ1 as the bifur-

cation parameter. We rewrite (4.3) as

D(λ, τ ∗, τ1) = λ2 + (μ + ρA2 − A1)λ − A1(μ + ρA2)

+[βe−μτA2(αA3Z∗ + A1 − λ)]e−λτ∗ − αρA2A3Z∗e−λτ1

:= λ2 + pλ + q1 + (r1 + sλ)e−λτ∗
+ q2e

−λτ1 = 0,

(4.12)

where

q1 = −A1(μ + ρA2), q2 = −αρA2A3Z∗.

By computing, it has{
q1 − q2 + r1 = αA2A3Z∗(βe−μτ + ρ) > 0,

q1 + q2 + r1 = αA2A3Z∗(βe−μτ − ρ) > 0.

Let iw (w > 0) be the root of (4.12), separating the real part from the imaginary

part, it has {
q2 cos wτ1 = w2 − q1 − r1 cos wτ ∗ − ωs sinwτ ∗,

q2 sin wτ1 = wp + ωs coswτ ∗ − r1 sin wτ ∗.
(4.13)

Furthermore,

F̆ (w) := [w2 − q1 − r1 cos wτ ∗ − ws sinwτ ∗]2

+ [wp + ws coswτ ∗ − r1 sin wτ ∗]2 − q2
2 = 0,

(4.14)

with F̆ (0) = (q1 + r1)
2 − q2

2 > 0 and F̆ (+∞) = +∞. If (4.14) has roots, then (4.14)

has at most finite roots denoted by {wκ}n
κ=1. Substituting {wκ}n

κ=1 into (4.14), we

can get

τκ,j
1 = 1

wκ

{
arccos

(
1
q2

[
w2

κ − q1 − r1 cos wκτ
∗ − wκs sin wκτ

∗
])

+ 2jπ
}

, j = 0, 1, 2, ....

Let τ 0
1 = min{τκ,j

1 } and ±iw0 are the roots of (4.12) for τ1 = τ 0
1 .
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Lemma 4.1. If (4.14) has roots, for τ = τ ∗ ∈ U, then it has the following conclu-
sions.
(i) If (4.14) has no positively real roots, then all roots of (4.12) have negative real
parts for any τ1 ≥ 0;
(ii) If (4.14) has finite real roots denoted by {wκ}n

κ=1, then the roots of (4.12) have
negative real parts for τ1 ∈ [0, τ 0

1 ).

Let λ(τ1) = α1(τ1) + iα2(τ1) be the root of (4.12) satisfying α1(τ
0
1 ) = 0 and

α2(τ
0
1 ) = w0. Derivating to τ1 at τ 0

1 in two sides of (4.12), it has

Lemma 4.2. Sign{α′
1(τ

0
1 )} = Sign{Ă1Ă3 + Ă2Ă4}, where

Ă1 = q2w0 sin w0τ
0
1 , Ǎ2 = q2w0 cos w0τ

0
1 ,

Ă3 = p − τ ∗(sw0 sin w0τ
∗ + r1 cos w0τ

∗)
+s cos w0τ

∗ − τ 0
1 q2 cos w0τ

0
1 ,

Ă4 = 2w0 − τ ∗(sw0 cos w0τ
∗ − r1 sin w0τ

∗)
−s sin w0τ

∗ + τ 0
1 q2 sin w0τ

0
1 .

Theorem 4.3. Suppose that τ = τ ∗ ∈ U is satisfied.
(i) If (4.14) has no positive roots, then E∗ is LAS for any τ1 ≥ 0;
(ii) If (4.14) has positive roots denoted by {ωk}n

k=1 and Sign{α′
1(τ

0
1 )} �= 0, then E∗

is LAS for τ1 ∈ [0, τ 0
1 ). τ 0

1 are Hopf bifurcation values.

Remark 4.1. If (4.3) has two pairs of purely imaginary roots for some τ and τ1,
say ±iw1 and ±iw2, and all the other roots have non-zero real parts, then system
(1.2) undergoes a double-Hopf bifurcation with a ratio k1 : k2, where w1 : w2 =
k1 : k2. When k1, k2 ∈ Z+, it is called k1 : k2 resonant double-Hopf bifurcation,
otherwise, it is called a non-resonant double Hopf bifurcation. More specially, since
there are multiple parameters in system (1.2) except for τ and τ1, tne bifurcation
with codimension greater than 1 can be considered. The interesting researches on
this topic can be found in [15, 16, 17, 18], and so on.

4.3. Case 3: τ1 = τ := ν > 0

In this part, it will investigate local Hopf bifurcation when τ1 = τ = ν. In this

situation, system (4.1) becomes⎧⎪⎪⎨
⎪⎪⎩

dx(t)
dt

= A1x(t) − αA2y(t) + O(2),
dy(t)

dt
=

[
βe−μνA3Z∗ − ρA3Z∗

]
x(t − ν) + βe−μνA2y(t− ν)

−(μ + ρA2)y(t) + O(2),

(4.15)

The system (4.15) has the same equilibria as system (1.2) when τ1 = τ , E0(0, 0), E1(L, 0)

and E∗(P(ν),Z(ν)). E∗ exists when 0 ≤ ν < ν̄ := 1
μ

ln βL
ρL+μ(L2+m2)

.
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As for E1, the characteristic equation at E1 of system (4.1) is given by

(λ + r)
[
λ + μ + ρL

m2+L2 − e−(λ+μ)ν βL
m2+L2

]
= 0. (4.16)

Using the same method as Theorem 4.1, it has

Theorem 4.4. If 0 ≤ ν < ν̄, then E1 is unstable; If ν > ν̂ := 1
μ

ln βL
μm2 , then E1 is

GAS, where ν̄ < ν̂.

Equation (4.3) has one root λ = −r < 0, while the other roots satisfy the

following equation

P1(λ, ν) + Q1(λ, ν)e−λν = 0, (4.17)

where

P1(λ, ν) = λ + μ + ρL
m2+L2 , Q1(λ, ν) = −e−μν βL

m2+L2 .

It’s obvious that

P1(0, ν) + Q1(0, ν) �= 0, P1(iω, ν) + Q1(iω, ν) �= 0.

Let λ = ±iω0(ν) (ω0(ν) > 0) be the roots of (4.17), then stability switches may

occur at ν+
n (ν) values:

ν+
n (ν) =

θ0
+(ν)+2nπ

ω0
+(ν)

, n ∈ N,

where

ω0
+(ν) =

√
β2L2e−2μν

(m2+L2)2
− (μ + ρL

m2+L2 )2

and θ0
+(ν) ∈ [0, 2π) satisfies{

sin θ0
+(ν) = −ω0

+(ν)(m2+L2)eμν

βL
,

cos θ0
+(ν) = [μ(m2+L2)+ρL]eμν

βL
.

Hence,

ν+
n (ν) = 1

ω0
+(ν)

{
arcos [μ(m2+L2)+ρk]eμν

βL
+ 2nπ

}
.

Define

Zn(τ) := ν − ν+
n (ν), n ∈ N

and

J0 =
{

νj : νj ∈ [0, ν̄) and Zn(νj) = 0
}
.
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Theorem 4.5. If 0 ≤ ν < ν̄, then ±iω0
+(ν) are the roots of (4.4). For some

ν∗ ∈ [0, ν̄) and n ∈ N, Zn(ν∗) = 0. This pair of roots traverse the axis of imaginaries
from left (right) to right (left) if δ0

+(ν∗) > 0 (< 0), where

δ0
+(ν∗) := Sign

{
dReλ
dν

∣∣∣
λ=iω0

+(ν∗)

}
= Sign

{
dZn(ν)

dν

∣∣∣
ν=ν∗

}
.

If J0 is not empty. For all νj ∈ J0, if Z′
n(νj) �= 0 holds, then system (4.15) undergoes

Hopf bifurcations at E1 when ν = νj.

In the following, it investigates the existence of local Hopf bifurcation at E∗.

When τ1 = τ = ν, the characteristic equation (4.3) becomes

Δ1(λ, ν) + Δ2(λ, ν)e−λν = 0, (4.18)

where

Δ1(λ, ν) = λ2 + pλ + q1, Δ2(λ, ν) = r1 + q2 + sλ.

Let λ = iω (ω = ω(ν) > 0) be the root of (4.18) and use the same methods as

Section 3. The following relations hold.

(i) Δ1(0, ν) + Δ2(0, ν) �= 0;

(ii) Δ1(iω, ν) + Δ2(iω, ν) �= 0;

(iii) lim sup
{∣∣∣Δ2(λ,ν)

Δ1(λ,ν)

∣∣∣ : |λ| → ∞,Reλ ≥ 0
}

< 1;

(iv) Define F(ω, ν) = |Δ1(iω, ν)|2 − |Δ2(iω, ν)|2, then it has finite roots;

(v) If there exists ω > 0 satisfying F(ω, ν) = 0, then it is continuous and differen-

tiable in ν.

Substituting λ = iω (ω = ω(ν) > 0) into (4.18), it has{
ω2 − q1 = (r1 + q2) cos ων + sω sin ων,

pω = −sω cos ων + (r1 + q2) sin ων,

furthermore, {
sin ων = (ω2−q1)sω+ωp(r1+q2)

ω2s2+(r1+q2)2
,

cos ων = − (q1−ω2)(r1+q2)+ω2ps
ω2s2+(r1+q2)2

.
(4.19)

From the definitions of Δ1 and Δ2, (4.19) can be written:

sin ων = Im
(

Δ1(iω,ν)
Δ2(iω,ν)

)
, cos ων = −Re(Δ1(iω,ν)

Δ2(iω,ν)
),

which yields

F(ω, ν) := ω4 + Ξ1(ν)ω2 + Ξ2(ν) = 0, (4.20)
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and its roots are given by

ω2
± = 1

2

[
− Ξ1(ν) ±√

Δ
]
, (4.21)

where

Ξ1(ν) = p2 − 2q1 − s2, Ξ2(ν) = q2
1 − (r1 + q2)

2, Δ = Ξ2
1(τ) − 4Ξ2(τ).

We have Ξ1(ν) = A2
1 > 0 and q1 + r1 + q2 = μαA3Z∗ > 0, then (4.20) has a uniquely

positive real root ω+ iff q1 < r1 + q2.

Let

Iν = {τ ∈ [0, ν̄) : q1 < r1 + q2}.
Then, for ν ∈ Iν , Θ(ν) ∈ [0, 2π) satisfies{

sin Θ(ν) = (ω2−q1)sω+ωp(r1+q2)
ω2s2+(r1+q2)2

,

cos Θ(ν) = − (q1−ω2)(r1+q2)+ω2ps
ω2s2+(r1+q2)2

,

with F(ω, ν) = 0 for τ ∈ Iν . Hence, the maps νn(ν) : Iν → R+ are defined by

νn(ν) := Θ(ν)+2nπ
ω(ν)

, n ∈ N.

Furthermore, define the continuous and differentiable functions in ν:

Tn(ν) := ν − νn(ν), ν ∈ Iν , n ∈ N.

Theorem 4.6. The equation (4.18) has the roots λ = ±iω(ν∗), and at some ν∗ ∈
Iν,

Tn(ν∗) = 0 for some n ∈ N.

This pair of roots cross the imaginary axis from left (right) to right (left) if δ+(ν∗) >
0 (< 0), where

δ+(ν∗) := Sign
{

dReλ
dν

∣∣∣
λ=iω+

}
= Sign

{
dTn(ν)

dν

∣∣∣
ν=ν∗

}
.

Remark 4.2. For ν ∈ Iν, then it has the following one sequence of functions:

Tn(ν) = ν − θ+(ν)+2nπ
ω+(ν)

.

Theorem 4.7. For system (4.15), it assumes that 0 < ν < ν̄.
(i) If Iν is empty set or not empty set, but Tn(ν) = 0 has no positive root in Iν,
then E∗ is LAS for any τ ∈ [0, ν̄);
(ii) If Iν is non-empty set, Tn(ν) = 0 exists positive roots at Iν and δ+(ν∗) �= 0, for
n ∈ N, and rearrange these roots as the set J := {ν0, ν1, ..., νm} with νj < νj+1, j =
0, ...,m− 1. Then E∗ is LAS for ν ∈ [0, ν0)∪ (νm, ν̄) and unstable for ν ∈ (ν0, νm).
Hopf bifurcations occur at E∗ when ν = νj.
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4.4. Global Hopf bifurcation of system (4.15)

In Section 4.2, it has known that system (4.15) undergoes local Hopf bifurcations

at E∗ when ν near νj , νj ∈ J . In this section, using the methods in [19, 20, 21], it

investigates the existence of globally periodic solutions.

The following notations from [21] are given. Denote

J0 =
{
ν ∈ J : T0(ν) = 0

}
, J+ := J − J0,

Aj =

{
max{νj : νj ∈ J0, νj < νj}, J0 �= ∅,

0, else,

Bj =

{
min{νj : νj ∈ J0, νj > νj}, J0 �= ∅,

sup Iν , else,

Aj = max{νi : νi ∈ J+ ∪ J0, τ i < νj ∈ J+},
Bj = min{νi : νi ∈ J+ ∪ J0, νi > νj ∈ J+}.

Next, it assumes that J+ �= ∅, using global Hopf bifurcation theorem [19], it will

investigat the global existence of periodic solutions bifurcating from (E∗, νj , 2π

ωj
+

) for

system (4.15), where νj ∈ J+ and ωj
+ = ω+(νj), and ±iωj

+ is the roots of (4.18)

when ν = νj .

In this part, ν ∈ [0, ν̄) always holds. Setting zt = (Pt,Zt), it rewrites system

(4.15) as:

ż(t) = Υ(zt, ν, p), (4.22)

where zt(θ) = z(t + θ). System (4.22) has three equilibria z̄1 = (0, 0), z̄2 = (L, 0)

and z∗ = E∗.

Define

X = C([−ν, 0],R2
+),

Σ = Cl{(zt, ν, p) ∈ X ×R × R+ : zt+p = zt},
N = {(z̄, ν, p) : Υ(z̄, ν, p) = 0},

and let �(z∗,νj , 2π

ω
j
+

) which is nonempty be the connected component of (z∗, νj, 2π

ωj
+

) in

Σ, and Projν (z∗, νj , 2π

ωj
+

) be its projection on ν. By Theorem 3.1, it has the following

results.

Lemma 4.3. All periodic solutions of system (4.22) are uniformly bounded in R2
+.

Lemma 4.4. If m ≥ L, then system (4.22) does not exist nonconstant τ -periodic
solution.
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Proof Because the orbits of system (4.22) don’t intersect and P-Z axis are the

invariable manifold, which implies that, in the first quadrant, if there exists any pe-

riodic solutions, then there must be E∗ in its interior. It will prove by contradiction.

It assumes that system (4.22) has nonconstant τ -periodic solution, then it definitely

obtain that the following systems have nontrivial periodic solutions:{
dP(t)

dt
= rP(t)(1 − P(t)

L
) − αP(t)Z(t)

m2+P2(t)
:= M,

dZ(t)
dt

= βe−μτP(t)Z(t)
m2+P2(t)

− μZ(t) − ρP(t)Z(t)
m2+P2(t)

:= N,
(4.23)

Define Dulac function Q = m2+Z2

PZ , then

∂(MQ)
∂P + ∂(NQ)

∂Z = 1
Z

[
− r

L
(m2 + P2) + 2Pr(1 − P

L
)
]

= − r
LZ

[
m2 + 2P2 + (P − L)2 − L2

]
.

If m ≥ L, then ∂(MQ)
∂P + ∂(NQ)

∂Z < 0. By Dulac theorem, system (4.23) has no periodic

solution in the first quadrant, which is a contradiction. This completes the proof.

Theorem 4.8. Assume that the conditions J+ �= ∅, τ ∈ [0, ν̄) and (β − ρ)L >
μ(L2 + m2) hold. Then for any νj ∈ J+, there exists νi ∈ J0 ∪ J+ − {νj}, so that
system (4.22) has at least one positive periodic solution for ν varies between νi and
νj.

Proof The characteristic equation of system (4.22) at an equilibrium z̄ are expressed

as:

Δ(z̄, ν, p)(λ) = λId − DΥ(z̄, ν, p)(eλ.Id) = 0.

The system (4.22) has three equilibria z̄1, z̄2 and z∗. From Section 4, it knows

that (z̄1, ν, p) is not a center, while (z̄2, ν, p) and (z∗, ν, p) are isolated centers. By

Theorem 4.7 and Ṫn(νj) �= 0, there exist ε > 0, δ > 0 and λ : (νj − δ, νj + δ) → C,

such that det(�(λ(νj))) = 0, |λ(νj) − iωj
+| < ε for all ν ∈ [νj − δ, νj + δ] and

λ(νj) = iωj
+, dReλ(νj)/dν �= 0.

Let Ωε, 2π

ω
j
+

= {(η, p) : 0 < η < ε, |p − 2π

ωj
+

| < ε}. It can verify that on [νj − δ, νj +

δ] × ∂Ωε, 2π

ω
j
+

, Δ(z∗, ν, p)(η + 2π
p

i) = 0 iff η = 0, ν = νj , p = 2π

ωj
+

. Furthermore, define

R±
(
z∗, νj , 2π

ωj
+

)
(η, p) = Δ(z∗, νj ± δ, p)(η + 2π

p
i),

then the crossing number of (z∗, νj, 2π
ω+

j

) is given by

χ
(
z∗, νj , 2π

ωj
+

)
= degB

(
R−(z∗, νj , 2π

ωj
+

), Ωε, 2π

ω
j
+

)
− degB

(
R+(z∗, νj , 2π

ωj
+

), Ωε, 2π

ω
j
+

)

=

{
−1, Ṫn(νj) > 0,

1, Ṫn(νj) < 0.
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Furthermore,

Σ(z̄,ν,p)∈�
(z∗,νj , 2π

ω
j
+

)
χ(z̄, ν, p) �= 0,

where z̄ is either z∗ or z̄2. Hence, the connected component �(z∗,νj , 2π

ω
j
+

) through

(z∗, νj, 2π

ωj
+

) in Σ is unbounded.

By the definition of νj , there exists an integer j > 0 such that

2π < νjωj
+ < 2(j + 1)π, νj ∈ J+,

which implies that
νj

j+1
< 2π

ωj
+

< νj .

Therefore, ν
j+1

< T < ν if (z̄, ν, T ) ∈ �(z∗,νj , 2π

ω
j
+

). This fact combining with

Lemma 4.4 show that Projν �(z∗,νj , 2π

ω
j
+

) is bounded. In addition , Lemmas 4.3 and 4.4

imply that the projection of �(z∗,νj , 2π

ω
j
+

) onto the z-space is uniformly bounded for ν ∈
Projτ (z

∗, νj , 2π

ωj
+

) ∩ (Aj , Bj). Therefore, either [Aj, νj ] ⊂ Projτ (z
∗, νj , 2π

ωj
+

) ∩ (Aj , B
j)

or [νj , Bj] ⊂ Projν(z
∗, νj , 2π

ωj
+

) ∩ (Aj , Bj) holds. Otherwise, �(z∗,νj , 2π

ω
j
+

) is unbounded

and Projν(z
∗, νj , 2π

ωj
+

) ⊂ (Aj , Bj), which is a contradicts.This completes the proof.

5. Crossing curve methods

The result of theorem 4.3 clearly shows the stability of the equilibrium E∗when τ

and τ1 change. Clearly, there is a Hopf bifurcation at τ 0
1 and there may be multiple

stable switches. If you leave τ in an unstable region, τ 0
1 may not exist such that

E∗ is unstable in τ1 ∈ [0, τ 0
1 ), it is stable in τ1 > τ 0

1 . However, this is not entirely

satisfactory because it does not allow for a bifurcated analysis of (τ, τ1). That is, no

information is given about (τ, τ1) that generates stable or unstable stable states. For

this purpose, Gu et al. [22] provided crossing curve method which are defined as the

curves that separate the stable and unstable regions in the (τ, τ1) plane. However,

the system referenced in Gu2005 does not depend on the delay in the coefficients,

so these results cannot be used directly (4.1). Recently, An et al. [23] improve these

results in [22] to the system with the coefficients depending on the delay. In the

following, we will use the methods in [23] to give the couples (τ, τ1) that generate a

stable or an unstable equilbrium.
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We rewrite (4.1) as⎧⎪⎨
⎪⎩

dx(t)
dt

= A1x(t) − αA2y(t) + O(2),
dy(t)

dt
= βe−μτA3Z

∗x(t − τ) + βe−μτA2y(t− τ)

−ρA3Z
∗x(t − τ1) − (μ + ρA2)y(t) + O(2),

(5.1)

whose characteristic equation is

D(λ, τ, τ1) := Σ0(λ, τ) + Σ1(λ, τ)e−λτ + Σ2(λ, τ)e−λτ1 = 0, (5.2)

where

Σ0(λ, τ) = λ2 + (μ + ρA2 − A1)λ − A1(μ + ρA2),

Σ1(λ, τ) = βe−μτA2(αA3Z
∗ + A1 − λ), Σ2(λ, τ) = −αρA2A3Z

∗.

It is easily to verify Σs(λ, τ), s = 0, 1, 2 satisfying the following conditions [23]:

(C1) Σ0(0, τ) + Σ1(0, τ) + Σ2(0, τ) �= 0;

(C2) lim
Reλ≥0,|λ|→∞

sup
τ∈I

(∣∣∣Σ1(λ,τ)
Σ0(λ,τ)

∣∣∣ +
∣∣∣Σ2(λ,τ)
Σ0(λ,τ)

∣∣∣) < 1;

(C3) Σs(λ, τ) �= 0, s = 0, 1, 2, for any τ ∈ [0, τ̄) and ω ∈ R+;

(C4) For any ω ∈ R+, at least one of |Σs(iω, τ)| (s = 0, 1, 2) tends to infinity as τ

tending −∞.

5.1. Crossing curve

Next, we will determine the feasible values of (τ, τ1) ∈ [0, τ̄) × R+ so that λ =

iω (ω > 0) is a root of (6.2). The curve formed by all these points is called ”crossing

curve”. Let {
β1(ω, τ) = Σ1(iω,τ)

Σ0(iω,τ)
,

β2(ω, τ) = Σ2(iω,τ)
Σ0(iω,τ)

,
(5.3)

where

Σ0(iω, τ) = −ω2 − A1(μ + ρA2) + iω(μ + ρA2 − A1),

Σ1(iω, τ) = βe−μτA2(αA3Z
∗ + A1 − iω), Σ2(iω, τ) = −αρA2A3Z

∗.

Hence, (iω, τ, τ1) is the zeros of (6.2) iff

D(ω, τ, τ1) := 1 + β1(ω, τ)e−iωτ + β2(ω, τ)e−iωτ1 = 0. (5.4)

It assumes that (iω, τ, τ1) is the zero of (6.2), then the left side of (5.4) must

form a triangle on the complex plane. Since |Σ0(iω, τ)|+ |Σ1(iω, τ)| ≥ |Σ2(iω, τ)| is

always true, therefore, the feasible region Ω can be obtained.
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Lemma 5.1. τ ∈ [0, τ̄), the feasible region Ω for (ω, τ) satisfies

Ω =
{

(ω, τ) ∈ R+ × I : f1(ω, τ) ≥ 0, f2(ω, τ) ≥ 0
}
,

where f1(ω, τ) = |Σ1(iω, τ)| + |Σ2(iω, τ)| − |Σ0(iω, τ)| and f2(ω, τ) = |Σ0(iω, τ)| +
|Σ2(iω, τ)| − |Σ1(iω, τ)|.

Therefore, the feasible region is surrounded by the line τ = τ̄ , τ -axis and ω-axis,

the curves f1(ω, τ) = 0 and f2(ω, τ) = 0. For every connected region Ωk, the feasible

range for ω is denoted by Ik = [ωl
k, ω

r
k], k = 1, 2, ..., N . Furthermore, for each ω ∈ Ik,

there exists the intervals Ik
ω = [τk,l

ω , τk,r
ω ] ⊆ I, on which two inequalities hold in Ω.

Let the angles formed by 1 and β1(ω, τ)e−iωτ be θ1(ω, τ), and the angles formed

by 1 and β2(ω, τ)e−iωτ1 be θ2(ω, τ), by the law of cosine, it has⎧⎨
⎩

θ1(ω, τ) = arcos
[

1+|β1(ω,τ)|2−|β2(ω,τ)|2
2|β1(ω,τ)|

]
,

θ2(ω, τ) = arcos
[

1+|β2(ω,τ)|2−|β1(ω,τ)|2
2|β2(ω,τ)|

]
,

where

|β1(ω, τ)| =
∣∣∣Σ1(iω, τ)

Σ0(iω, τ)

∣∣∣ and |β2(ω, τ)| =
∣∣∣Σ2(iω, τ)

Σ0(iω, τ)

∣∣∣.
For each fixed ω ∈ Ik, it can note that Im(β1(ω, τ)e−iωτ ) = 0 iff θ1(ω, τ) = 0 or

π, which is equivalent to τ = τk,l
ω or τ = τk,r

ω . Therefore, Im(β1(ω, τ)e−iωτ ) cannot

change sign for τ ∈ IntIk
ω.

In the following, two feasible cases are considered:

(i) Im(β1(ω, τ)e−iωτ ) > 0:

From the triangle, it can obtain

arg(β1(ω, τ)e−iωτ ) = π − θ1(ω, τ), arg(β2(ω, τ1)e
−iωτ1) = θ2(ω, τ) − π.

Then there exists an n ∈ Z such that

arg(β1(ω, τ)) + θ1(ω, τ) + (2n − 1)π = ωτ, (5.5)

and

τ1 = 1
ω

[
arg(β2(ω, τ)) − θ2(ω, τ) + (2k + 1)π

]
, for some k ∈ Z, (5.6)

where k ≥ k+
0 and k+

0 is the smallest integer such that the right side of (5.6) is

positive.
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(ii) Im(β1(ω, τ)e−iωτ ) < 0:

In this case, the triangle formed is the mirror image of the case (i) about the real

axis. We have

arg(β1(ω, τ)) − θ1(ω, τ) + (2n − 1)π = ωτ, for some n ∈ Z, (5.7)

and

τ1 = 1
ω

[
arg(β2(ω, τ)) + θ2(ω, τ) + (2j + 1)π

]
, for some j ∈ Z, (5.8)

where j ≥ j−0 and j−0 is the smallest integer such that the right side of (5.8) is

positive.

Now it can define Iω as the interval of ω and Iω
τ the feasible values of τ for every

fixed ω ∈ Iω. Fixed ω ∈ Iω, it can define the following functions:

S±
n (ω, τ) = τ − 1

ω

[
arg(β1(ω, τ)) ± θ1(ω, τ) + (2n − 1)π

]
, fro some n ∈ Z.

(5.9)

If (5.9) has zeros written as τ̂ i±(ω), i = 1, 2, · · · . Furthermore, it can obtain τ1 values

as follows:

τ̂ i±,j±
1 (ω) = 1

ω

[
arg(β2(ω, τ̂ i±)) ∓ θ2(ω, τ̂ i±) + (2j± + 1)π

]
, (5.10)

where j± ≥ j±0 and j±0 is the smallest integer such that τ̂ i±,j±
1 (ω) > 0.

If ω takes all the values in the whole interval Iω, then it can obtain the following

curve on Ω

C :=
{

(ω, τ̂ i±(ω)) : ω ∈ Iω,Sn(ω, τ̂ i±(ω)) = 0
}
, (5.11)

and the crossing curves on (τ, τ1) plane

T := {(τ̂ i±(ω), τ̂ i±,j±
1 (ω)) ∈ [0, τ̄) ×R+ : ω ∈ Iω,Sn(ω, τ̂ i±(ω)) = 0}. (5.12)

Note that τω = τk,l
ω �= 0 or τω = τk,r

ω �= ∞ must satisfying one of the following

equations: ⎧⎪⎪⎨
⎪⎪⎩
|β1(ω, τω)| + |β2(ω, τω)| = 1,

|β1(ω, τω)| − |β2(ω, τω)| = 1,

|β1(ω, τω)| − |β2(ω, τω)| = −1.

(5.13a)

(5.13b)

(5.13c)

Lemma 5.2. (i) If (5.13a) or (5.13b) holds for τω = τk,l
ω �= 0 or τω = τk,r

ω �= +∞,
then θ1(ω, τω) = 0 and S+

n (ω, τω) = S−
n (ω, τω);

(ii) If (5.13c) holds for τω = τk,l
ω �= 0 or τω = τk,r

ω �= +∞, then θ1(ω, τω) = π and
S+

n (ω, τω) = S−
n+1(ω, τω).
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For each fixed ω ∈ Ik, it can classify the interval Ik
ω into 4 types: Type 1:

θ1(ω, τk,l
ω ) = θ1(ω, τk,r

ω ) ; Type 2: θ1(ω, τk,l
ω ) �= θ1(ω, τk,r

ω ) ; Type 3: τk,l
ω = 0 and

τk,r
ω �= +∞ ; Type 4: τk,r

ω = +∞. On each Type, the plots of S±
n (ω, τ) are different.

Furthermore, it assumes that

(C5) ∂S±
n (ω, τ)/∂τ �= 0 for any (ω, τ) ∈ C.

By (C5), the endpoints (ωe, τ̂
i±(ωe)) of every component of C must locate the

boundary of Ω and can be divided into 3 types:

Type A: (5.13a) holds for (ω, τω) = (ωe, τ̂
i±(ωe)).

Type B: (5.13b) holds for (ω, τω) = (ωe, τ̂
i±(ωe)).

Type C: (5.13c) holds for (ω, τω) = (ωe, τ̂
i±(ωe)).

For convenience, Type AA indicates that both end points of the component are

Type A. Depending on the type of endpoint, each component of the curve C falls

into the following six categories: AA, BB, CC, AB, AC, and BC.

Lemma 5.3. If the condition (C5) holds, then any two components of C will not
intersect in IntΩ.

Theorem 5.1. Under the conditions (C1)-(C5) the crossing curve on (τ, τ1)-plane
consists of one or several curves in the following types:
(a) A series of open-ended curves along τ1-axis;
(b) A series of closed curves along τ1-axis;
(c) A series of spiral-like curves along τ1-axis; and each of these curves approaching
∞ in the direction of τ1-axis;
(d) Truncated curves of one of the above 3 cases.

5.2. Crossing directions

Assume that (τ ∗, τ ∗
1 ) ∈ T, then there is an ω∗ > 0 such that (iω∗, τ ∗, τ ∗

1 ) is the

zero of (6.2). If ∂D/∂λ �= 0, then λ(τ, τ1) = γ1(τ, τ1) + iγ2(τ, τ1) is the simple root

of (6.2), which satisfies γ1(τ
∗, τ ∗

1 ) = 0 and γ2(τ
∗, τ ∗

1 ) = ω∗ in the neighborhood of

(τ ∗, τ ∗
1 ). In this section, we can calculate the crossing direction of the crossing curve

(5.12). Define

R(τ, τ1) = Re
{

∂D(λ,τ,τ1)
∂τ

}
, I(τ, τ1) = Im

{
∂D(λ,τ,τ1)

∂τ

}
,

R1(τ, τ1) = Re
{

∂D(λ,τ,τ1)
∂τ1

}
, I1(τ, τ1) = Im

{
∂D(λ,τ,τ1)

∂τ1

}
.

Furthermore, it can calculate RI1 − R1I = −Im{∂D
∂τ

· ∂D
∂τ1

}.
If RI1 − R1I > 0, then the pair characteristic roots γ1(τ, τ1) ± γ2(τ, τ1) of (6.2)

cross the imaginary axis to the right half plane when (τ, τ1) crosses the crossing curve
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to the right region. If the inequality is reversed, the crossing direction is opposite.

From (6.2), it has

∂D
∂τ

(iω∗, τ ∗, τ ∗
1 ) = Σ∗

0τ + Σ∗
1τe

−iω∗τ∗
+ Σ∗

2τe
−iω∗τ∗

1 + iω∗Σ∗
1e

−iω∗τ∗
,

∂D
∂τ1

(iω∗, τ ∗, τ ∗
1 ) = Σ∗

0τ1
− iω∗Σ∗

2e
−iω∗τ∗

1 ,

where Σ∗
s = Σs(ω

∗, τ ∗) and Σ∗
sτ = ∂Σs(ω

∗, τ ∗)/∂τ , s = 0, 1, 2.

Furthermore,

−Im
{

∂D
∂τ

· ∂D
∂τ1

}
= −ω∗Re

{[
Σ∗

0τe
iω∗τ∗

1 + (Σ∗
1τ − iω∗Σ∗

1)e
iω∗(τ∗

1 −τ∗) + Σ∗
2τ

]
Σ∗

2

}
.

Hence it has the following theorem.

Theorem 5.2. If δ(τ ∗, τ ∗
1 ) > 0 (< 0), then the pair imaginary roots crosses the

imaginary axis from left to right, as (τ, τ1) passes through the crossing curve to the
right (left) region , where

δ(τ ∗, τ ∗
1 ) = −Re

{[
Σ∗

0τe
iω∗τ∗

1 + (Σ∗
1τ − iω∗Σ∗

1)e
iω∗(τ∗

1 −τ∗) + Σ∗
2τ

]
Σ∗

2

}
.

6. Numerical simulations

In this part, firstly, choosing the following parameters in system (1.2):

r = 5, L = 8, m = 10, μ = 0.005, α = 0.8, β = 0.6, ρ = 0.02. (6.1)

When τ1 = 0, τ̄ can obtained as 317.7637. Under the parameters in (6.1), it can

obtain the plots of (τ,Sn(τ)) (see Figure 1). From the plots, it knows that Sn(τ) =

0 (n = 0, 1) has two roots τ 0 = 54.4 and τ 1 = 165.247. Therefore, choosing τ =

30 < τ 0, τ = 54.4
.
= τ 0, τ = 200 > τ 1, respectively, the results are shown in Figures

2-4 and it can verify the correction of theoretical analysis.

Furthermore, fixed τ = 30 ∈ [0, τ 0) and choosing τ1 as parameter, it can obtain

τ 0
1 = 100.29. Let τ1 = 5 < τ 0

1 , the results of the numerical simulations are sown in

Figure 5.

Specially, when τ = τ1 = ν, the following parameters are chosen

r = 5, L = 8, m = 6, μ = 0.005, α = 0.8, β = 0.7, ρ = 0.01. (6.2)

It can obtain ν̄ = 453.4988 under the parameters (6.2). The plots of (ν, Tn(ν)) can

be obtained (see Figure 6). From the plots, it knows that Tn(ν) = 0 (n = 0, 1, 2) has

four roots ν0 = 7.5, ν1 = 73.5, ν2 = 381.26 and ν3 = 425.266. Therefore, choosing
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Figure 1: (τ,Sn(τ)) (n = 0, 1) plots
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Figure 2: E∗ is stable when τ = 30.
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Figure 3: E∗ is unstable when τ = 54.4 and there exists a stable periodic solution.
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Figure 4: E∗ is still stable when τ = 200.
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Figure 5: E∗ is stable when τ = 30 and τ1 = 5.
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Figure 7: (A) When ν = 1, E∗ is stable. (B) When ν = 7.5, E∗ is unstable and the re exists a
stable periodic solution. (C) When ν = 430, E∗ is still stable.
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ν = 1 < ν0, τ = 7.5 = ν0, τ = 430 > ν3, respectively, the results are shown in Figure

7 and it is consistent with theoretical results.

In the following, it also obtain the crossing curves in (τ, τ1) plane using the

parameters in (6.1). Under the parameters (6.1), it can obtain I1 = [0.04, 0.044] and

I2 = [0, 0.04], furthermore, I1
ω = [0, 15.0495] and I2

ω = [0, 222.425]. It can know that

both I1
ω = [0, 15.0495] and I2

ω = [0, 222.425] belong to Type 1. The C curves and

crossing curves are shown in Figures 8-9. It can obtain the feasible region Ω that is

surrounded by τ -axis, ω-axis and the blue curves in Figure 8. The curve C, which is

composed by the feasible values of (τ, ω) (see the color loops between the two blue

curves in Figure 8). Furthermore, we can see that the two closed loop curves C on Ω

with Type AB lead to two series of spiral-like crossing curves on (τ, τ1) plane along

τ1-axis shown in Figure 9. Finally, according to theorem 5.2, the crossing direction

is calculated and the final result is given in Figure 9, that is, when (τ, τ1) changes

along the arrow direction, the feature root passes through the imaginary axis from

left to right. Fixed τ1 = 10 and choosing τ = 20, 80, 180, it can obtain the stable

switches phenomena (see Figures 10-12). It shows that Hopf bifurcation can still

occur when τ locates the unstable interval.

f   

f   

Figure 8: Feasible region and C curves, which composed by the admissible values (ω, τ).

7. Conclusion

In this paper, we study a planktonic ecosystem (1.2) with two delays and Monod-

Haldane type functional response. We focus on the effects of two delays on the

system. In Theorem 2.1, we obtain the positively invariant set for system (1.2).
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Figure 10: E∗ is stable when τ = 20 and τ1 = 10.
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Figure 11: E∗ is unstable and there exists a stable periodic solution when τ = 80 and τ1 = 10.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

P
(t

)

0 1000 2000 3000 4000 5000 6000 7000 8000
200

300

400

500

600

700

t

Z
(t

)

0 1 2 3 4 5

300

350

400

450

500

550

600

P(t)

Z
(t

)

(A) Wave plot. (B) Phase plot.

Figure 12: E∗ is still stable when τ = 180 and τ1 = 10.
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The system (1.2) always exists two boundary equilibria E0(0, 0) and E1(K, 0) while

E0(0, 0) is unstable and the stability of E1(K, 0) is shown in Theorem 3.1.

When the maturation rate τ of zooplankton is more than some value, zooplank-

ton population will dies out in the end. When the maturation rate of zooplankton

τ are restricted to a certain interval, the system (1.2) exists a uniquely positive

equilibrium E∗(P ∗, Z∗). When the toxin delay τ1 does not exist, Theorem 4.2 shows

the stability of E∗ and system (1.2) may occur the stability switches when the mat-

uration rate τ of zooplankton changes which depends on the set Iτ and the roots of

S+
n (τ) = 0. When τ1 > 0, it still can obtain the conditions which the system occurs

Hopf bifurcation. Furthermore, using the method in [23], the purpose is to find

stability crossing curve. When τ is chosen in unstable interval it also can obtain the

stability of E∗. By these researches, it can know the important effect of two delays

and the correction of theory analyses is verified in Section 6 for some numerical

examples.
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