REFERENCES
1. Hammersley JM & Morton KW(1954) Poor Man’s Monte Carlo. Journal of the Royal Statistical Society. Series B 16 , 23-38.
2. Rosenbluth MN & Rosenbluth AW (1955) Monte Carlo Calculation of the Average Extension of Molecular Chains. The Journal of Chemical Physics 23 , 356-59.
3. Robert C & Casella G(2010) Introducing Monte Carlo Methods with R : Springer-Verlag New York.
4. Armitage P, Berry G & Matthews JNS (2001) Statistical Methods in Medical Research . 4th Edition ed: Wiley-Blackwell.
5. T.J.Bailey N (1966)Elements of stochastic processes with applications to the Natural Sciences : Wiley.
6. Greenland S (2006) Bayesian perspectives for epidemiological research: I. Foundations and basic methods. International Journal of Epidemiology 35 , 765-75.
7. Greenland S, Mansournia MA & Altman DG (2016) Sparse data bias: a problem hiding in plain sight.BMJ 352 .
8. Greenland S & Christensen R (2001) Data augmentation priors for Bayesian and semi-Bayes analyses of conditional-logistic and proportional-hazards regression.Statistics in Medicine 20 , 2421-28.
9. Bedrick EJ, Christensen R & Johnson W (1996) A New Perspective on Priors for Generalized Linear Models. Journal of the American Statistical Association91 , 1450-60.
10. Bedrick EJ, Christensen R & Johnson W (1997) Bayesian Binomial Regression: Predicting Survival at a Trauma Center. The American Statistician 51 , 211-18.
11. Greenland S & Mansournia MA (2015) Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Statistics in medicine 34 , 3133-43.
12. Mansournia MA, Heinze G, Geroldinger A & Greenland S (2017) Separation in Logistic Regression: Causes, Consequences, and Control. American Journal of Epidemiology 187 , 864-70.
13. George EPB (1980) Sampling and Bayes’ Inference in Scientific Modelling and Robustness.Journal of the Royal Statistical Society. Series A (General)143 , 383-430.
14. Albert J (1997) Teaching Bayes’ Rule: A Data-Oriented Approach. The American Statistician51 , 247-53.
15. Turner BM & Van Zandt T(2012) A tutorial on approximate Bayesian computation. Journal of Mathematical Psychology 56 , 69-85.
16. Etz A & Vandekerckhove J (2018) Introduction to Bayesian Inference for Psychology.Psychonomic Bulletin & Review 25 , 5-34.
17. Matzke D, Boehm U & Vandekerckhove J (2018) Bayesian inference for psychology, part III: Parameter estimation in nonstandard models. Psychonomic Bulletin & Review 25 , 77-101.
18. Wagenmakers E-J, Love J, Marsman M, et al. (2018) Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review25 , 58-76.
19. Wagenmakers E-J, Marsman M, Jamil T, et al. (2018) Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review 25 , 35-57.
20. Zhang L, Pfister M & Meibohm B (2008) Concepts and challenges in quantitative pharmacology and model-based drug development. The AAPS journal 10 , 552-59.
21. Racine A, Grieve A, Fluhler H & Smith A (1986) Bayesian methods in practice: experiences in the pharmaceutical industry. Applied Statistics , 93-150.
22. Barrett JS, Fossler MJ, Cadieu KD & Gastonguay MR (2008) Pharmacometrics: a multidisciplinary field to facilitate critical thinking in drug development and translational research settings. The Journal of Clinical Pharmacology 48 , 632-49.
23. Grieve AP (2007) 25 years of Bayesian methods in the pharmaceutical industry: a personal, statistical bummel. Pharmaceutical Statistics 6 , 261-81.
24. Morgan D (2018) Bayesian applications in pharmaceutical statistics. Pharmaceutical Statistics 17 , 298-300.
25. Miočević M (2019) A Tutorial in Bayesian Mediation Analysis With Latent Variables.Methodology .
26. Natesan P (2019) Fitting Bayesian Models for Single-Case Experimental Designs.Methodology .
Table1. Estimation of a Two- State Transition Matrix for a discreet target and a uniform (0, 5) proposal distribution