REFERENCES
1. Hammersley JM & Morton KW(1954) Poor Man’s Monte Carlo. Journal of the Royal Statistical
Society. Series B 16 , 23-38.
2. Rosenbluth MN & Rosenbluth
AW (1955) Monte Carlo Calculation of the Average Extension of Molecular
Chains. The Journal of Chemical Physics 23 , 356-59.
3. Robert C & Casella G(2010) Introducing Monte Carlo Methods with R : Springer-Verlag
New York.
4. Armitage P, Berry G &
Matthews JNS (2001) Statistical Methods in Medical Research . 4th
Edition ed: Wiley-Blackwell.
5. T.J.Bailey N (1966)Elements of stochastic processes with applications to the Natural
Sciences : Wiley.
6. Greenland S (2006)
Bayesian perspectives for epidemiological research: I. Foundations and
basic methods. International Journal of Epidemiology 35 ,
765-75.
7. Greenland S, Mansournia MA
& Altman DG (2016) Sparse data bias: a problem hiding in plain sight.BMJ 352 .
8. Greenland S & Christensen
R (2001) Data augmentation priors for Bayesian and semi-Bayes analyses
of conditional-logistic and proportional-hazards regression.Statistics in Medicine 20 , 2421-28.
9. Bedrick EJ, Christensen R
& Johnson W (1996) A New Perspective on Priors for Generalized Linear
Models. Journal of the American Statistical Association91 , 1450-60.
10. Bedrick EJ, Christensen R
& Johnson W (1997) Bayesian Binomial Regression: Predicting Survival
at a Trauma Center. The American Statistician 51 ,
211-18.
11. Greenland S & Mansournia
MA (2015) Penalization, bias reduction, and default priors in logistic
and related categorical and survival regressions. Statistics in
medicine 34 , 3133-43.
12. Mansournia MA, Heinze G,
Geroldinger A & Greenland S (2017) Separation in Logistic Regression:
Causes, Consequences, and Control. American Journal of
Epidemiology 187 , 864-70.
13. George EPB (1980)
Sampling and Bayes’ Inference in Scientific Modelling and Robustness.Journal of the Royal Statistical Society. Series A (General)143 , 383-430.
14. Albert J (1997) Teaching
Bayes’ Rule: A Data-Oriented Approach. The American Statistician51 , 247-53.
15. Turner BM & Van Zandt T(2012) A tutorial on approximate Bayesian computation. Journal of
Mathematical Psychology 56 , 69-85.
16. Etz A & Vandekerckhove
J (2018) Introduction to Bayesian Inference for Psychology.Psychonomic Bulletin & Review 25 , 5-34.
17. Matzke D, Boehm U &
Vandekerckhove J (2018) Bayesian inference for psychology, part III:
Parameter estimation in nonstandard models. Psychonomic Bulletin
& Review 25 , 77-101.
18. Wagenmakers E-J, Love J,
Marsman M, et al. (2018) Bayesian inference for psychology. Part II:
Example applications with JASP. Psychonomic Bulletin & Review25 , 58-76.
19. Wagenmakers E-J, Marsman
M, Jamil T, et al. (2018) Bayesian inference for psychology. Part I:
Theoretical advantages and practical ramifications. Psychonomic
Bulletin & Review 25 , 35-57.
20. Zhang L, Pfister M &
Meibohm B (2008) Concepts and challenges in quantitative pharmacology
and model-based drug development. The AAPS journal 10 ,
552-59.
21. Racine A, Grieve A,
Fluhler H & Smith A (1986) Bayesian methods in practice: experiences
in the pharmaceutical industry. Applied Statistics , 93-150.
22. Barrett JS, Fossler MJ,
Cadieu KD & Gastonguay MR (2008) Pharmacometrics: a multidisciplinary
field to facilitate critical thinking in drug development and
translational research settings. The Journal of Clinical
Pharmacology 48 , 632-49.
23. Grieve AP (2007) 25
years of Bayesian methods in the pharmaceutical industry: a personal,
statistical bummel. Pharmaceutical Statistics 6 , 261-81.
24. Morgan D (2018) Bayesian
applications in pharmaceutical statistics. Pharmaceutical
Statistics 17 , 298-300.
25. Miočević M (2019) A
Tutorial in Bayesian Mediation Analysis With Latent Variables.Methodology .
26. Natesan P (2019) Fitting
Bayesian Models for Single-Case Experimental Designs.Methodology .
Table1. Estimation of a Two- State Transition Matrix for a
discreet target and a uniform (0, 5) proposal distribution