References
Amo, L., Dicke, M., & Visser, M.E. (2016). Are naïve birds attracted to
herbivore-induced plant defences? Behav . 153, 353-366.
Amo, L., Jansen, J.J., Dam N.M., Dicke, M., & Visser, M.E. (2013a).
Birds exploit herbivore‐induced plant volatiles to locate herbivorous
prey. Ecol. Lett. 16, 1348-1355.
Amo, L., Rodríguez-Gironés, M.Á., & Barbosa, A. (2013b). Olfactory
detection of dimethyl sulphide in a krill-eating Antarctic penguin.Mar. Ecol. Prog. Series 474, 277-285.
Brooks, M.E., Kristensen, K., van
Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A. et al.(2017). glmmTMB balances speed and flexibility among packages for
zero-inflated generalized linear mixed modeling. The R journal ,
9, 378-400.
Bonadonna, F., Caro, S., Jouventin, P. & Nevitt, G. (2006). Evidence
that blue petrel, Halobaena caerulea , fledglings can detect and
orient to dimethyl sulfide. J. Exper. Biol. , 209, 2165-2169.
Cai, X.-M., Sun, X.-L., Dong, W.-X., Wang, G.-C. & Chen, Z.-M. (2014).
Herbivore species, infestation time, and herbivore density affect
induced volatiles in tea plants. Chemoecology , 24, 1-14.
Caspers, B.A., Hoffman, J.I., Kohlmeier, P., Krüger, O. & Krause, E.T.
(2013). Olfactory imprinting as a mechanism for nest odour recognition
in zebra finches. Anim. Behav. , 86, 85-90.
Cunningham, G.B. & Nevitt, G.A.
(2011). Evidence for olfactory learning in procellariiform seabird
chicks. J. Avian Biol. , 42, 85-88.
Cunningham, G.B. & Nevitt, G.A. (2011). Evidence for olfactory learning
in procellariiform seabird chicks. J. Avian Biol. , 42, 85-88.
De Moraes, C.M., Lewis, W.J., Pare,
P.W., Alborn, H.T. & Tumlinson, J.H. (1998). Herbivore-infested plants
selectively attract parasitoids. Nature , 393, 570-573.
Dicke, M. (2015). Herbivore-induced
plant volatiles as a rich source of information for arthropod predators:
fundamental and applied aspects. J. Indian Instit. Sci. , 95,
35-42.
Dicke, M., Sabelis, M.W., Takabayashi, J., Bruin, J. & Posthumus, M.A.
(1990). Plant strategies of manipulating predator-prey interactions
through allelochemicals: prospects for application in pest control.J. Chem. Ecol. , 16, 3091-3118.
Dicke, M., Takabayashi, J., Posthumus, M.A., Schütte, C. & Krips, O.E.
(1998). Plant—Phytoseiid interactions mediated by herbivore-induced
plant volatiles: variation in production of cues and in responses of
predatory mites. Exper. Appl. Acarology , 22, 311-333.
Dicke, M., van Loon, J.J. & Soler, R. (2009). Chemical complexity of
volatiles from plants induced by multiple attack. Nat. Chem.
Biol. , 5, 317-324.
Dicke, M. & van Loon, J.J.A. (2000).
Multitrophic effects of herbivore-induced plant volatiles in an
evolutionary context. Entomol. Exper. Appl. , 97, 237-249.
Fox, J. & Weisberg, S. (2018).An R companion to applied regression . Sage publications.
Girling, R.D., Stewart-Jones, A., Dherbecourt, J., Staley, J.T., Wright,
D.J. & Poppy, G.M. (2011). Parasitoids select plants more heavily
infested with their caterpillar hosts: a new approach to aid
interpretation of plant headspace volatiles. P. Roy. Soc.B-Biol.
Sci. , rspb20102725.
Gwinner, H. & Berger, S. (2008). Starling males select green nest
material by olfaction using experience-independent and
experience-dependent cues. Anim. Behav. , 75, 971-976.
Hare, J.D. (2011). Ecological role of
volatiles produced by plants in response to damage by herbivorous
insects. Ann. Rev. Entomol. , 56, 161-180.
Hoballah, M.E. & Turlings, T.C.
(2005). The role of fresh versus old leaf damage in the attraction of
parasitic wasps to herbivore-induced maize volatiles. J. Chem.
Ecol. , 31, 2003-2018.
Kallenbach, M., Veit, D., Eilers, E.J.
& Schuman, M.C. (2015). Application of silicone tubing for robust,
simple, high-throughput, and time-resolved analysis of plant volatiles
in field experiments. Bio-protocol , 5.
Klimm, F.S., Weinhold, A. & Volf, M.
(2020). Volatile production differs between oak leaves infested by
leaf-miner Phyllonorycter harrisella (Lepidoptera: Gracillariidae) and
galler Neuroterus quercusbaccarum (Hymenoptera: Cynipidae). EJE ,
117, 101-109.
Koski, T.M., Laaksonen, T., Mäntylä, E., Ruuskanen, S., Li, T.,
Girón‐Calva, P.S. et al. (2015). Do Insectivorous Birds use
Volatile Organic Compounds from Plants as Olfactory Foraging Cues? Three
Experimental Tests. Ethology , 121, 1131-1144.
Kuhl, C., Tautenhahn, R., Bottcher,
C., Larson, T.R. & Neumann, S. (2012). CAMERA: an integrated strategy
for compound spectra extraction and annotation of liquid
chromatography/mass spectrometry data sets. Anal. Chem. , 84,
283-289.
Lenth, R.V. (2007). Statistical power
calculations. J. Anim. Sci. , 85, E24-E29.
Mäntylä, E., Alessio, G.A., Blande, J.D., Heijari, J., Holopainen, J.K.,
Laaksonen, T. et al. (2008). From Plants to Birds: Higher Avian
Predation Rates in Trees Responding to Insect Herbivory. PLoS
ONE , 3, e2832.
Mäntylä, E., Kleier, S., Kipper, S. & Hilker, M. (2016). The attraction
of insectivorous tit species to herbivore-damaged Scots pines. J.
Ornithol. , 1-13.
Mäntylä, E., Klemola, T. & Haukioja,
E. (2004). Attraction of willow warblers to sawfly-damaged mountain
birches: novel function of inducible plant defences? Ecol. Lett. ,
7, 915-918.
Mäntylä, E., Kipper, S. & Hilker, M. (2020). Insectivorous birds can
see and smell systemically herbivore‐induced pines. Ecol. Evol.(in early view - https://doi.org/10.1002/ece3.6622)
Mennerat, A., Bonadonna, F., Perret,
P. & Lambrechts, M. (2005). Olfactory conditioning experiments in a
food-searching passerine bird in semi-natural conditions. Behav.
Proc. , 70, 264-270.
Mrazova, A., Sam, K. & Amo, L. (2019). What do we know about birds’ use
of plant volatile cues in tritrophic interactions? Curr. Opinin.
Insect Sci. , 32, 131-136.
Mumm, R. & Dicke, M. (2010). Variation in natural plant products and
the attraction of bodyguards involved in indirect plant defense.Canad. J. Zool. , 88, 628-667.
Murakami, M. (1998). Foraging habitat
shift in the narcissus flycatcher, Ficedulanarcissina, due to the
response of herbivorous insects to the strengthening defenses of canopy
trees. Ecol. Res. , 13, 73-82.
Murakami, M. (2002). Foraging mode
shifts of four insectivorous bird species under temporally varying
resource distribution in a Japanese deciduous forest. Ornithol.
Sci. , 1, 63-69.
Nevitt, G. & Dittman, A. (1998). A
new model for olfactory imprinting in salmon. Integrative Biology:
Issues, News, and Reviews: Published in Association with The Society for
Integrative and Comparative Biology , 1, 215-223.
Pisani Gareau, T.L., Letourneau, D.K.
& Shennan, C. (2013). Relative densities of natural enemy and pest
insects within California hedgerows. Environ. Entomol. , 42,
688-702.
Royama, T. (1970). Factors governing the hunting behaviour and selection
of food by the great tit (Parus major L.). J. Anim. Ecol. ,
619-668.
Scascighini, N., Mattiacci, L.,
D’Alessandro, M., Hern, A., Rott, A.S. & Dorn, S. (2005). New insights
in analysing parasitoid attracting synomones: early volatile emission
and use of stir bar sorptive extraction. Chemoecology , 15,
97-104.
Semke, E., Distel, H. & Hudson, R.
(1995). Specific enhancement of olfactory receptor sensitivity
associated with foetal learning of food odors in the rabbit.Naturwissenschaften , 82, 148-149.
Sneddon, H., Hadden, R. & Hepper, P.
(1998). Chemosensory learning in the chicken embryo. Phys.
Behav. , 64, 133-139.
Steidle, J.L. & Van Loon, J.J.
(2003). Dietary specialization and infochemical use in carnivorous
arthropods: testing a concept. Entomol. Exper. Appl. , 108,
133-148.
Takabayashi, J. & Dicke, M. (1996).
Plant–carnivore mutualism through herbivore-induced carnivore
attractants. Trends Plant Sci. , 109-113.
Takabayashi, J., Takahashi, S.,
Dicke, M. & Posthumus, M. (1995). Developmental stage of
herbivorePseudaletia separata affects production of herbivore-induced
synomone by corn plants. J. Chem. Ecol. 21, 273-287.
Vallat, A., Gu, H. & Dorn, S.
(2005). How rainfall, relative humidity and temperature influence
volatile emissions from apple trees in situ. Phytochemistry , 66,
1540-1550.
Vet, L.E., Lewis, W.J. & Carde, R.T.
(1995). Parasitoid foraging and learning. In: Chemical ecology of
insects 2 . Springer, pp. 65-101.
Vet, L.E.M. & Dicke, M. (1992). Ecology of infochemical use by natural
enemies in a tritrophic context. Ann. Rev. Entomol. , 37, 141-172.
Table 1. Overview of the experimental design using three groups
of birds and five combinations of saplings for 145 trials (20 mins each)
that used 29 individual birds.