References
Amo, L., Dicke, M., & Visser, M.E. (2016). Are naïve birds attracted to herbivore-induced plant defences? Behav . 153, 353-366.
Amo, L., Jansen, J.J., Dam N.M., Dicke, M., & Visser, M.E. (2013a). Birds exploit herbivore‐induced plant volatiles to locate herbivorous prey. Ecol. Lett. 16, 1348-1355.
Amo, L., Rodríguez-Gironés, M.Á., & Barbosa, A. (2013b). Olfactory detection of dimethyl sulphide in a krill-eating Antarctic penguin.Mar. Ecol. Prog. Series 474, 277-285.
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A. et al.(2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R journal , 9, 378-400.
Bonadonna, F., Caro, S., Jouventin, P. & Nevitt, G. (2006). Evidence that blue petrel, Halobaena caerulea , fledglings can detect and orient to dimethyl sulfide. J. Exper. Biol. , 209, 2165-2169.
Cai, X.-M., Sun, X.-L., Dong, W.-X., Wang, G.-C. & Chen, Z.-M. (2014). Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology , 24, 1-14.
Caspers, B.A., Hoffman, J.I., Kohlmeier, P., Krüger, O. & Krause, E.T. (2013). Olfactory imprinting as a mechanism for nest odour recognition in zebra finches. Anim. Behav. , 86, 85-90.
Cunningham, G.B. & Nevitt, G.A. (2011). Evidence for olfactory learning in procellariiform seabird chicks. J. Avian Biol. , 42, 85-88.
Cunningham, G.B. & Nevitt, G.A. (2011). Evidence for olfactory learning in procellariiform seabird chicks. J. Avian Biol. , 42, 85-88.
De Moraes, C.M., Lewis, W.J., Pare, P.W., Alborn, H.T. & Tumlinson, J.H. (1998). Herbivore-infested plants selectively attract parasitoids. Nature , 393, 570-573.
Dicke, M. (2015). Herbivore-induced plant volatiles as a rich source of information for arthropod predators: fundamental and applied aspects. J. Indian Instit. Sci. , 95, 35-42.
Dicke, M., Sabelis, M.W., Takabayashi, J., Bruin, J. & Posthumus, M.A. (1990). Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control.J. Chem. Ecol. , 16, 3091-3118.
Dicke, M., Takabayashi, J., Posthumus, M.A., Schütte, C. & Krips, O.E. (1998). Plant—Phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Exper. Appl. Acarology , 22, 311-333.
Dicke, M., van Loon, J.J. & Soler, R. (2009). Chemical complexity of volatiles from plants induced by multiple attack. Nat. Chem. Biol. , 5, 317-324.
Dicke, M. & van Loon, J.J.A. (2000). Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exper. Appl. , 97, 237-249.
Fox, J. & Weisberg, S. (2018).An R companion to applied regression . Sage publications.
Girling, R.D., Stewart-Jones, A., Dherbecourt, J., Staley, J.T., Wright, D.J. & Poppy, G.M. (2011). Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. P. Roy. Soc.B-Biol. Sci. , rspb20102725.
Gwinner, H. & Berger, S. (2008). Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Anim. Behav. , 75, 971-976.
Hare, J.D. (2011). Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Ann. Rev. Entomol. , 56, 161-180.
Hoballah, M.E. & Turlings, T.C. (2005). The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J. Chem. Ecol. , 31, 2003-2018.
Kallenbach, M., Veit, D., Eilers, E.J. & Schuman, M.C. (2015). Application of silicone tubing for robust, simple, high-throughput, and time-resolved analysis of plant volatiles in field experiments. Bio-protocol , 5.
Klimm, F.S., Weinhold, A. & Volf, M. (2020). Volatile production differs between oak leaves infested by leaf-miner Phyllonorycter harrisella (Lepidoptera: Gracillariidae) and galler Neuroterus quercusbaccarum (Hymenoptera: Cynipidae). EJE , 117, 101-109.
Koski, T.M., Laaksonen, T., Mäntylä, E., Ruuskanen, S., Li, T., Girón‐Calva, P.S. et al. (2015). Do Insectivorous Birds use Volatile Organic Compounds from Plants as Olfactory Foraging Cues? Three Experimental Tests. Ethology , 121, 1131-1144.
Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T.R. & Neumann, S. (2012). CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. , 84, 283-289.
Lenth, R.V. (2007). Statistical power calculations. J. Anim. Sci. , 85, E24-E29.
Mäntylä, E., Alessio, G.A., Blande, J.D., Heijari, J., Holopainen, J.K., Laaksonen, T. et al. (2008). From Plants to Birds: Higher Avian Predation Rates in Trees Responding to Insect Herbivory. PLoS ONE , 3, e2832.
Mäntylä, E., Kleier, S., Kipper, S. & Hilker, M. (2016). The attraction of insectivorous tit species to herbivore-damaged Scots pines. J. Ornithol. , 1-13.
Mäntylä, E., Klemola, T. & Haukioja, E. (2004). Attraction of willow warblers to sawfly-damaged mountain birches: novel function of inducible plant defences? Ecol. Lett. , 7, 915-918.
Mäntylä, E., Kipper, S. & Hilker, M. (2020). Insectivorous birds can see and smell systemically herbivore‐induced pines. Ecol. Evol.(in early view - https://doi.org/10.1002/ece3.6622)
Mennerat, A., Bonadonna, F., Perret, P. & Lambrechts, M. (2005). Olfactory conditioning experiments in a food-searching passerine bird in semi-natural conditions. Behav. Proc. , 70, 264-270.
Mrazova, A., Sam, K. & Amo, L. (2019). What do we know about birds’ use of plant volatile cues in tritrophic interactions? Curr. Opinin. Insect Sci. , 32, 131-136.
Mumm, R. & Dicke, M. (2010). Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense.Canad. J. Zool. , 88, 628-667.
Murakami, M. (1998). Foraging habitat shift in the narcissus flycatcher, Ficedulanarcissina, due to the response of herbivorous insects to the strengthening defenses of canopy trees. Ecol. Res. , 13, 73-82.
Murakami, M. (2002). Foraging mode shifts of four insectivorous bird species under temporally varying resource distribution in a Japanese deciduous forest. Ornithol. Sci. , 1, 63-69.
Nevitt, G. & Dittman, A. (1998). A new model for olfactory imprinting in salmon. Integrative Biology: Issues, News, and Reviews: Published in Association with The Society for Integrative and Comparative Biology , 1, 215-223.
Pisani Gareau, T.L., Letourneau, D.K. & Shennan, C. (2013). Relative densities of natural enemy and pest insects within California hedgerows. Environ. Entomol. , 42, 688-702.
Royama, T. (1970). Factors governing the hunting behaviour and selection of food by the great tit (Parus major L.). J. Anim. Ecol. , 619-668.
Scascighini, N., Mattiacci, L., D’Alessandro, M., Hern, A., Rott, A.S. & Dorn, S. (2005). New insights in analysing parasitoid attracting synomones: early volatile emission and use of stir bar sorptive extraction. Chemoecology , 15, 97-104.
Semke, E., Distel, H. & Hudson, R. (1995). Specific enhancement of olfactory receptor sensitivity associated with foetal learning of food odors in the rabbit.Naturwissenschaften , 82, 148-149.
Sneddon, H., Hadden, R. & Hepper, P. (1998). Chemosensory learning in the chicken embryo. Phys. Behav. , 64, 133-139.
Steidle, J.L. & Van Loon, J.J. (2003). Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol. Exper. Appl. , 108, 133-148.
Takabayashi, J. & Dicke, M. (1996). Plant–carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. , 109-113.
Takabayashi, J., Takahashi, S., Dicke, M. & Posthumus, M. (1995). Developmental stage of herbivorePseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21, 273-287.
Vallat, A., Gu, H. & Dorn, S. (2005). How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry , 66, 1540-1550.
Vet, L.E., Lewis, W.J. & Carde, R.T. (1995). Parasitoid foraging and learning. In: Chemical ecology of insects 2 . Springer, pp. 65-101.
Vet, L.E.M. & Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Ann. Rev. Entomol. , 37, 141-172.
Table 1. Overview of the experimental design using three groups of birds and five combinations of saplings for 145 trials (20 mins each) that used 29 individual birds.