References
Anderson, A. M., Friis, C., Gratto-Trevor, C. L., Morrison, R. G.,
Smith, P. A., & Nol, E. (2019). Consistent declines in wing lengths of
Calidridine sandpipers suggest a rapid morphometric response to
environmental change. PloS One, 14(4), e0213930.
doi:10.1371/journal.pone.0213930.
Anderson, M. J. (2001). A new method for non-parametric multivariate
analysis of variance. Austral Ecology, 26, 32–46.
doi:10.1111/j.1442-9993.2001.01070.pp.x.
Andrew, R. L., Albert, A. Y. K., Renaut, S., Rennison, D. J., Bock, D.
G., Vines, T. (2015). Assessing the reproducibility of discriminant
function analyses. PeerJ, 3:e1137. doi:10.7717/peerj.1137
Artistotle, 350. Historia Animalium, translated by Thompson, D.W.,
edited by Smith, J.A., Ross, W.D. London, Oxford University Press.
Baroni Urbani, C. (1998). The number of castes in ants, where major is
smaller than minor and queens wear the shield of the soldiers. Insectes
Sociaux, 45, 315–333. doi:10.1007/s000400050091.
Bartlett, J. W., Frost, C. (2008). Reliability, repeatability and
reproducibility: analysis of measurement errors in continuous variables.
Ultrasound in Obstetrics & Gynecology, 31, 466–475.
doi:10.1002/uog.5256.
Baur, H., Leuenberger, C. (2011). Analysis of ratios in multivariate
morphometry. Systematic Biology, 60, 813–825.
doi:10.1093/sysbio/syr061.
Bland, J. M., Altman, D. (1986). Statistical methods for assessing
agreement between two methods of clinical measurement. Lancet, 327,
307–310. doi:10.1016/S0140-6736(03)15270-1.
Bond, J. E., Beamer, D. A. (2006). A morphometric analysis of
mygalomorph spider carapace shape and its efficacy as a phylogenetic
character (Araneae). Invertebrate Systematics, 20, 1–7.
doi::10.1071/IS05041.
Boudinot, B. E. (2019). Toward phylomics in entomology: Current
systematic and evolutionary morphology. Insect Systematics and
Diversity, 3(6), 1–4. doi:10.1093/isd/ixz019.
Braga, J., Zimmer, V., Dumoncel, J., Samir, C., de Beer, F., Zanolli,
C., Pinto, D., Rohlf, F. J., Grine, F. E. (2019). Efficacy of
diffeomorphic surface matching and 3D geometric morphometrics for
taxonomic discrimination of Early Pleistocene hominin mandibular molars.
Journal of Human Evolution, 130, 21–35.
doi:10.1016/j.jhevol.2019.01.009.
Brian, M. V., Brian, A. D. (1949). Observations on the taxonomy of the
ants Myrmica rubra L. and M. laevinodis Nylander
(Hymenoptera: Formicidae). Transactions of the Entomological Society of
London, 100(14), 393–409.
Brown, W. L. Jr. (1943). A new metallic ant from the pine barrens of New
Jersey. Entomological News, 54, 243–248.
Chuanromanee, T. S., Cohen, J. I., Ryan, G. L. (2019). Morphological
Analysis of Size and Shape (MASS): An integrative software program for
morphometric analyses of leaves. Applications in Plant Science,
7(9):e11288. doi:10.1002/aps3.11288.
Corrucini, R. S. (1988). Morphometric replicability using chords and
cartesian coordinates of the same landmarks. Journal of Zoology, 215,
389–394. doi:10.1111/j.1469-7998.1988.tb02847.x.
Csősz, S., Heinze, J., Mikó, I. (2015). Taxonomic synopsis of the
Ponto-Mediterranean ants of Temnothorax nylanderi species-group.
PLoS One, 10(11), e0140000. doi:10.1371/journal.pone.0140000.
Csősz, S., Majoros, G. (2009). Ontogenetic origin of mermithogenicMyrmica phenotypes (Hymenoptera, Formicidae). Insectes Sociaux,
56, 70–76. doi:10.1007/s00040-008-1040-3.
DeBiasse, M. B., Ryan, J. F. (2019). Phylotocol: Promoting transparency
and overcoming bias in phylogenetics. Systematic Biology, 68, 672–678.
doi:10.7287/peerj.preprints.26585v4.
Esquerré, D., Donnellan, S., Brennan, I. G., Lemmon, A. R, Lemmon, E.
M., Zaher, H., Grazziotin, G. G., Keogh, J. S. (2020). Phylogenomics,
biogeography and morphometrics reveal rapid phenotypic evolution in
pythons after crossing Wallace’s line. Systematic Biology, syaa024.
doi:10.1093/sysbio/syaa024.
Fodor, E., Hâruţa, O., Milenković, I., Lyubenova, A., Tziros, G., Keča,
N., Slavov, S., Diamandis, S., Kostov, K. (2015). Geometric morphometry
of Phytophthora plurivora sporangia . Annals of Forest Research,
58, 275–294. doi:10.15287/afr.2015.411.
Fox, J., Weisberg, S. (2019). An R Companion to Applied
Regression, Third edition. Sage, Thousand Oaks CA.
https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
Fox, N. S., Veneracion, J. J., Blois, J. L. (2020). Are geometric
morphometric analyses replicable? Evaluating landmark measurement error
and its impact on extant and fossil Microtus classification.
Ecology and Evolution, 10, 3260–3275. doi:10.1002/ece3.6063.
Gotzek, D., Brady, S. G., Kallal, R. J., LaPolla, J. S. (2012). The
importance of using multiple approaches for identifying emerging
invasive species: the case of the rasberry crazy ant in the United
States. PLoS One, 7(9), e45314. doi:10.1371/journal.pone.0045314.
Helm, B., Albrecht, H. (2000). Human handedness causes directional
asymmetry in avian winglength. Animal Behaviour, 60, 899–902.
doi:10.1006/anbe.2000.1534c.
Hennig, W. (1950). Grundzüge einer Theorie der phylogenetischen
Systematil. Berlin, Deutscher Zentralverlag.
Hennig, W. (1966). Phylogenetic Systematics, translated by Davis, D.,
Zangerl, R. Urbana, University of Illinois Press.
Huelsenbeck J. P. (1998). Systematic bias in phylogenetic analysis: is
the Strepsiptera problem solved? Systematic Biology, 47, 519–537.
Hita-Garcia, F., Lieberman, Z., Audisio, T. L., Liu, C., Economo, E. P.
(2019). Revision of the highly-specialized ant genus Discothyrea(Hymenoptera: Formicidae) in the Afrotropics with x-ray microtomography
and 3D cybertaxonomy. Insect Systematics and Diversity, 3, 1–84.
http://www.antarcticglaciers.org/glacial-geology/dating-glacial-sediments-2/precision-and-accuracy-glacial-geology/accessed 2020-03-05.
https://www.nist.gov/pml/nist-technical-note-1297/nist-tn-1297-appendix-d1-terminology/accessed 2020-03-05.
Inäbnit, T., Jochum, A., Kampschulte, M., Martels, G., Ruthensteiner,
B., Slapnik, R., Nesselhauf, C., Neubert, E. (2019). An integrative
taxonomic study reveals carychiid microsnails of the troglobitic genusZospeum in the Eastern and Dinaric Alps (Gastropoda, Ellobioidea,
Carychiinae). Organisms Diversití and Evolution 19:135–177.
Johnson, L., Mantle, B.L., Gardner, J.L., Backwell, P.R.Y. (2013).
Morphometric measurements of dragonfly wings: the accuracy of pinned,
scanned and detached measurement methods. ZooKeys, 276:77–84.
Jones, C. J., Edwards, K. J., Castiglione, S., Winfield, M. O., Sala, F,
Van der Wiel, C, … Karp, A. (1998). Reproducibility testing of AFLPs
by a network of European laboratories. pp. 191–192 in Karp A., Isaac,
P.G. and Ingram D.S. (Eds) Molecular tools for screening biodiversity.
London, New York, Melbourne, Madras, Chapman & Hall.
Keklikoglou, K., Faulwetter, S., Chatzinikolaou, E., Wils, P., Brecko,
J., Kvaček, … Arvanitidis, C. (2019). Micro-computed tomography for
natural history specimens: a handbook for best practice protocols.
European Journal of Taxonomy, 522:1–55.
Klingenberg, C. P. (2011). MorphoJ: an integrated software package for
geometric morphometrics. Molecular Ecology Resources, 11:353–357.
Klingenberg, C. P. (2015). Analyzing fluctuating asymmetry with
geometric morphometrics: concepts, methods, and applications. Symmetry,
7:843–934.
Legendre, P., Gallagher, E. D. (2001). Ecologically meaningful
transformations for ordination of species data. Oecologia, 129:271–280.
Lessells, C. M., Boag, P. T. (1987). Unrepeatable repeatabilities, a
common mistake. Auk, 104:116–121.
Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from
discrete morphological character data. Systematic Biology, 50:913–925.
Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum
classes, ordines, genera, species, cum characteribus, differentiis,
synonymis, locis. Tomus I. Editio decima, reformata. Holmiae [=
Stockholm], Laurentii Salvii.
Lösel, P., Heuveline, V. (2016). Enhancing a diffusion algorithm for 4D
image segmentation using local information. Proceedings of International
Society for Optics and Photonics, 9784:1–11, doi: 10.1117/12.2216202.
Mahendiran, M., Parthiban, M., Azeez, P. A., Nagarajan, R. (2018). In
situ measurements of animal morphological features: A non-invasive
method. Methods in Ecology and Evolution, 9:613–623.
McMullin, R. T., Maloles, J. R., Selva, S. B., Newmaster, S. G. (2018).
A synopsis of Chaenotheca in North America, including a new
species from southern Ontario, C. selvae , supported by
morphometric analyses. Botany, 96:547–553.
Michener, C. D., Sokal, R. R. (1957). A quantitative approach to a
problem in classification. Evolution, 11:130–162.
Miller, M. I., Priebe, C. E., Qiu, A., Fischl, B., Kolasny, A., Brown,
T., … Buckner R. L. (2009). Collaborative computational anatomy: an
MRI morphometry study of the human brain via diffeomorphic metric
mapping. Human Brain Mapping, 30:2132–2141.
Mutanen, M., Pretorius, E. (2007). Subjective visual evaluation vs.
traditional and geometric morphometrics in species delimitation: a
comparison of moth genitalia. Systematic Entomology, 32:371–386.
Nakagawa, S., Schielzeth, H. (2010). Repeatability for Gaussian and
non-Gaussian data: a practical guide for biologists. Biological Reviews,
85:935–956.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., … Wagner, H. (2019). vegan: Community Ecology Package. R
package version 2.5–6. https://CRAN.R-project.org/package=vegan
Oxnard, C. E. (1983). Multivariate statistics in physical anthropology:
testing and interpretation. Zeitschrift für Morphologie und
Anthropologie, 73:237–278.
Parins-Fukuchi, C. (2017). Use of continuous traits can improve
morphological phylogenetics. Systematic Biology, 67:328–339.
Parins-Fukuchi, C. (2020). Mosaic evolution, preadaptation, and the
evolution of evolvability in apes. Evolution, 74:297–310.
Phexell, E., Åkesson, A., Söderberg, M., Bolejko, A. (2019). Intra-and
inter-rater reliability in a comparative study of cross-sectional and
spiral computed tomography pelvimetry methods. Acta Radiologica Open,
8:2058460119855187.
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Randers, J. (2012). 2052 – A Global Forecast for the Next Forty Years.
Chelsea Green Publishing, Vermont, 416 pp.
Remane, A. (1952). Die grundlagen des natürlichen Systems, der
vergleichenden Anatomie und der Phylogenetik. Akademische
Verlagsgesellschaft Geest und Portig, Leipzig.
Rensch, B. (1947). Neuere Probleme der Abstammunglehre die
Transspezifische Evolution. Ferdinand Enke, Stuttgart. Pp. 407.
Richter, A., Keller, R. A., Rosumet, F. B., Economo, E. P., Hita Garcia,
F., Beutel, R. G. (2019). The cephalic anatomy of the ant speciesWasmannia affinis (Formicidae, Hymenoptera, Insecta) and its
evolutionary implications. Arthropod Structure & Development,
49:26–49.
Ridgway, G. R., Henley, S. M. D., Rohrer, J. D., Scahill, R. I., Warren,
J. D., Fox, N. C. (2008). Ten simple rules for reporting voxel-based
morphometry studies. NeuroImage, 40:149–1435.
Salganik, M. J. Lundberg, I., Kindel, A. T., Ahearn, C. E., Al-Ghoneim,
K., Almaatouq, A., … Datta, D. et al. (2020). Measuring the
predictability of life outcomes with a scientific mass collaboration.
Proceedings of the National Academy of Sciences, 117:8398–8403.
Sarnat, E. M., Hita-Garcia, F., Dudley, K., Liu C., Fischer, G.,
Economo, E. P. (2019). Ready Species One: exploring the use of augmented
reality to enhance systematic biology with a revision of FijianStrumigenys (Hymneoptera: Formicidae). Insect Syst.
Diversity 3:1–43.
Savriama, Y. (2018). A step-by-step guide for geometric morphometrics of
floral symmetry. Frontiers in Plant Science, 9, 1433.
doi:10.3389/fpls.2018.01433
Schlick-Steiner, B. C., Seifert, B., Stauffer, C., Christian, E.,
Crozier, R. H., Steiner, F. M. (2007). Without morphology, cryptic
species stay in taxonomic crypsis following discovery. TREE,22:391–392.
Schlick-Steiner, B. C., Steiner, F. M., Moder, K., Seifert, B., Sanetra,
M., Dyreson, E., Stauffer, C., Christian, E. (2006). A multidisciplinary
approach reveals cryptic diversity in Western PalearcticTetramorium ants (Hymenoptera: Formicidae). Molecular
Phylogenetics and Evolution, 40:259–273.
Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C.,
Christian, E., Crozier R. H. (2010). Integrative taxonomy: a multisource
approach to exploring biodiversity. Annual Review of Entomology,
55:421–438.
Seifert, B. (1992). A taxonomic revision of the Palaearctic members of
the ant subgenus Lasius s.str. (Hymenoptera: Formicidae). -Abh. Ber. Naturkundemus. Görlitz. 66:1–67.
Seifert, B. (2002). How to distinguish most similar insect species -
improving the stereomicroscopic and mathematical evaluation of external
characters by example of ants. Journal of Applied Entomology,
126:445–454.
Seifert, B. (2003). The ant genus Cardiocondyla (Insecta:
Hymenoptera: Formicidae) - a taxonomic revision of the C.
elegans , C. bulgarica , C. batesii , C. nuda ,C. shuckardi , C. stambuloffii , C. wroughtonii ,C. emeryi , and C. minutior species groups. Ann.
Naturhist. Mus. Wien, B Bot. Zool. 104:203–338.
Seifert, B. (2009). Cryptic species in ants (Hymenoptera: Formicidae)
revisited: we need a change in the alpha-taxonomic approach.
Myrmecological News, 12:149–166.
Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., Emlen, D.
J. (2007). Size and shape: the developmental regulation of static
allometry in insects. BioEssays, 29(6):536–548.
Sokal, R. R., Sneath, P. H. N. A. (1963). Principles of Numerical
Taxonomy. San Francisco, W. H. Freeman.
Steiner, F.,M., Schlick-Steiner, B.,C., Moder, K. (2006).
Morphology-based cyber identification engine to identify ants of theTetramorium caespitum /impurum complex (Hymenoptera:
Formicidae). Myrmecologische Nachrichten, 8:175–180.
Takacs, P., Vital, Z., Ferincz, Á., Staszny, Á. (2016). Repeatability,
reproducibility, separative power and subjectivity of different fish
morphometric analysis methods. PLoS One, 11:e0157890.
Taylor, B. N, Kuyatt, C. E. (2001). Guidelines for Evaluating and
Expressing the Uncertainty of NIST Measurement Results, [Online].
Available: http://physics.nist.gov/TN1297 [2020, March 5]. National
Institute of Standards and Technology, Gaithersburg, MD. Originally
published as Guidelines for Evaluating and Expressing the Uncertainty of
NIST Measurement Results, Barry N. Taylor and Chris E. Kuyatt, NIST
Technical Note 1297 (1994 Edition).
Thompson, D. W. (1917). On Growth and Form. Cambridge University
Press, London.
Tomiya, S., Meachen, J. A. (2018). Postcranial diversity and recent
ecomorphic impoverishment of North American gray wolves. Biological
Letter, 14:20170613.
Venables, W. N., Ripley, B. D. (2002). Modern Applied Statistics
with S . Springer-Verlag.
Villemant, C., Simbolotti, G., Kenis, M. (2007). Discrimination ofEubazus (Hymenoptera, Braconidae) sibling species using geometric
morphometrics analysis of wing venation. Systematic Entomology,
32:625–634.
Yoder, M. J., Mikó, I., Seltmann, K. C., Bertone, M. A., Deans, A. R.
(2010). A gross anatomy ontology for Hymenoptera. PLoS ONE, 5:e15991.
Ward, P. S. (1999). Systematics, biogeography and host plant
associations of the Pseudomyrmex viduus group (Hymenoptera: Formicidae),
Triplaris-and Tachigali-inhabiting ants. Zoological Journal of the
Linnean Society, 126:451–540.
Wolak, M. E., Fairbairn, D. J., Paulsen, Y. R. (2012). Guidelines for
estimating repeatability. Methods in Ecology and Evolution, 3:129–137.
Wright, A. M. (2019). A systematist’s guide to estimating Bayesian
phylogenies from morphological data. Insect Systemaics and
Diversity, 3:1–14.
Yezerinac, S. M., Lougheed, S. C., Handford, P. (1992). Measurement
error and morphometric studies: statistical power and observer
experience. Systematic Biology, 41:471–482.
Table legends
Table 1.
Verbatim trait definitions for morphometric character recording.
Abbreviations, definitions and descriptions of morphometric characters
are given. This standard protocol was followed by each gauger.
Table 2.
Intraclass correlation coefficients (R), upper and lower bounds, number
of cases (n) and average trait sizes are given for each observed
characters. Descriptions for abbreviations of morphometric characters
are as follows: CL: Head capsule length, CW: Width of head including
eyes, CWb: Width of head capsule, FRS: Frontal carinae width ML:
Mesosoma length; MW: mesosoma width; NOH: Maximum height of the petiolar
node, NOL: Length of the petiolar node, PEH: Maximum petiole height,
PEL: Petiolar lenght, PEW: Petiole width, PoOC: Postocular distance,
PPH: Postpetiole height; PPL: Postpetiole length, PPW: Postpetiole
width, SL: Scape length, SPBA: Spine base width, SPST: Spine length,
SPTI: Propodeal spine tip distance, STPL: Propodeal spine tip erection.
Table 3.
Repeatability scores (R) calculated for gaugers. Gauger information in
the table follows this format: experience in an insect group, estimated
number of individuals measured in a career, maximum magnification of the
microscope used, separated by underscores. ICC: intraclass correlation
coefficient calculated from the repeated measurements. The gaugers are
aligned according to the sequence of their contribution. Gauger alphabet
codes in triad format: A: MYRM_9000_100x, B: DIPT_0_100x, C:
MYRM_5000_288x, D: MYRM_60000_360x, E: MYRM_500_50x, F:
MYRM_500_50x, G: MYRM_450_50x, H: WASP_1000_230x, I:
WASP_0_230x, J: MYRM_300_100x, K: MYRM_300_100x.
Figure captions
Fig. 1.
Precision versus accuracy. The bullseye represents the value of the
measurand. Accuracy is indicated by closeness to the
bullseye—measurements closer to the bullseye are more accurate.
Precise measurements are tightly clustered. Accurate and precise
measurements are tightly clustered in the bullseye. Graphics produced
and used with permission from Dr. Bethan Davies (antarcticglaciers.org).
Fig. 2.
Illustrations for morphometric characters. Head in dorsal view (a) with
measurement lines for CL: Head capsule length, CW: Width of head
including eyes, CWb: Width of head capsule, PoOC: Postocular distance
and SL: Scape length; frontal region of the head dorsum (b) with
measurement lines for FRS: Frontal carinae width (red accessory lines
and arrows identify the torular lamella); lateral view of mesosoma (c)
with measurement line for ML: Mesosoma length; lateral view of
propodeum, petiole, and postpetiole (d) with measurement lines for STPL:
Propodeal spine tip erection, NOH: Maximum height of the petiolar node,
NOL: Length of the petiolar node, PPL: Postpetiole length, and SPST:
Spine length; dorsal view of mesosoma (e) with measurement lines for MW:
mesosoma width; lateral view of propodeum, petiole, and postpetiole (f)
with measurement lines for PEH: Maximum petiole height, PEL: Petiolar
lenght, and PPH: Postpetiole height; dorsal view of propodeum, petiole,
and postpetiole (g) with measurement lines for SPBA: Spine base width,
SPTI: Propodeal spine tip distance, PEW: Petiole width, and PPW:
Postpetiole width. Detailed verbatim trait definitions for characters
are given in Table 1.
Fig. 3a,b.
Ordination biplot for Principal Component Analysis based on (a) species
identity and (b) the accuracy of the measurement. Black and red dots
represent repeated observations on the same objects, while black dots
represent Nesomyrmex devius , and red dots represent N.
hirtellus . Convex hulls for spatial distribution of observations within
morphospace represent (a) species and (b) gaugers. Descriptions for
abbreviations of morphometric characters (red letters) are as follows:
CL: Head capsule length, CW: Width of head including eyes, CWb: Width of
head capsule, FRS: Frontal carinae width ML: Mesosoma length; MW:
mesosoma width; NOH: Maximum height of the petiolar node, NOL: Length of
the petiolar node, PEH: Maximum petiole height, PEL: Petiolar lenght,
PEW: Petiole width, PoOC: Postocular distance, PPH: Postpetiole height;
PPL: Postpetiole length, PPW: Postpetiole width, SL: Scape length, SPBA:
Spine base width, SPST: Spine length, SPTI: Propodeal spine tip
distance, STPL: Propodeal spine tip erection. Gauger alphabet codes (B)
in triad format: A: MYRM_9000_100x, B: DIPT_0_100x, C:
MYRM_5000_288x, D: MYRM_60000_360x, E: MYRM_500_50x, F:
MYRM_500_50x, G: MYRM_450_50x, H: WASP_1000_230x, I:
WASP_0_230x, J: MYRM_300_100x, K: MYRM_300_100x. Compositional
differences between treatments expressed as the results of the PERMANOVA
(coefficient of determination, F and p values, details in the text).
Fig. 4.
The correlogram of the studied variables for testing repeatability by
the Spearman rank correlation test. The size of each bubble is
proportional to the estimated correlation value (r). The heat chart on
the right shows the color correspondence for r values.