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Abstract. This paper is concerned with a West Nile virus (WNv) model on a growing

domain, which accounts for habitat expansion of mosquitoes because of climate warming.

We aim to understand the relationship of the growing rate and the transmission risk of

WNv. The basic reproduction number, which is related to the growing rate and diffusion

rate, is introduced through spectral theory. The conditions to determine whether the

virus vanishes or spreads are deduced. The obtained results reveal that domain growth

leads to increased risk of infection, and is detrimental to the control and prevention of

WNv. To verify the feasibility of our analytical results on the long time behavior of WNv,

some numerical simulations are given.

MSC: 35K55; 35K57; 92D30

Keywords: West Nile virus; Growing domain; Spatial transmission; Basic reproduc-
tion number

1 Introduction

Infectious diseases, which caused by various pathogens, can spread from person to person,
animal to animal, or person to animal. Since ancient times, the prevalence of infectious diseases
has brought enormous damage to people, therefore, many countries around the world pay
more attention to the investigation of the infectious diseases. Various epidemic models have
been proposed and analyzed for prevention and control strategies, especially for vector borne
diseases [10, 15,30].

West Nile virus (WNv) is an emerging mosquito-borne virus that causes a severe, life-
threatening neurological disease in humans and horses, widely distributed throughout the world
and with considerable impact both on public health and on animal health [9].

Many species of birds act as primary hosts [22] and main source of transmission for WNv [29].
The virus exists in the form of a mosquito-bird cycle, that is, when mosquitoes carrying the
virus bite susceptible birds, they produce toxemia in the birds, and susceptible mosquitoes bite
host birds and then participate in the spread of the virus, thus circulating [1]. More than 300
avian species have been identified as being associated with transmission of the virus. In general,
the corvid and non-corvid families of birds have different responses to the virus, with corvids
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suffering a higher disease-induced mortality rate, such as crows, large ravens, magpies, blue
and grey birds [4, 16].

WNv was first identified in 1937 from the blood of a febrile woman in the west Nile region
of Uganda [6], hence its name. An outbreak in Israel in 1957, in which the virus was first
noted to be associated with central nervous system disease, was thought to be the cause of
severe meningitis in the elderly [25]. Since 1950, the virus has been circulating in Africa, the
Middle East, Asia and southern Europe, the first infected case was detected in 1999 during an
outbreak of encephalitis in New York city [6,19,23,30], and then propagated rapidly across the
US [12,19]. Fig. 1 shows the progress of human cases of WNv throughout the US, and indicate
the growth process of infected areas from 1999 to 2004. The states were colored according to
the percentage of all west Nile cases they represented in the US that year.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Figures show the progress of human cases of WNv throughout the US. 0%(no cases) is white; Less than 1% is blue;
Between 1% and 5% is green; Between 5% and 10% is yellow, and more than 10% is red. ( [2], minor modification). All the data
is based on the US Centers for Disease Control and Prevention [3].

For nearly two decades, many mathematical models for WNv have been proposed and
analyzed, however most of the models are focused on the non-spatial transmission dynamics
[8, 30, 31]. In order to analyze and evaluate two main anti-WNv preventive strategies, that is,
mosquito reduction strategies and personal protection, Bowman et al. [8] proposed a single-
season ordinary differential equation model for WNv in a mosquito-bird-human community,
and showed that if the mosquito reduction strategy is carried out, which guarantee a certain
threshold quantity less than 1, WNv can be eradicated from the mosquito-bird cycle, on the
contrary, WNv persists in the mosquito-bird population.

But what we should actually do is considering the spatial spreading, which is an important
factor to affect the persistence and eradication of WNv. For the sake of depicting the movement
of birds and mosquitoes, Lewis et al. [19] researched the spatial spread of WNv, which is
described by the reaction-diffusion model. The model was inspired and extended from Wonham
et al. in [30], whose paper proposed and developed the non-spatial model for cross-infection
between mosquitoes and birds.

To utilize the cooperative characteristic of cross-infection dynamics and estimate the spatial
spread rate of infection, Lewis et al. in [19] proposed the modified spatial-independent WNv
model {

∂Ib
∂t

= αbβb
(Nb−Ib)
Nb

Im − γbIb, t > 0,
∂Im
∂t

= αmβb
(Am−Im)

Nb
Ib − dmIm, t > 0,

(1.1)
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and spatial-dependent WNv model{
∂Ib
∂t

= D1∆Ib + αbβb
(Nb−Ib)
Nb

Im − γbIb, x ∈ Ω, t > 0,
∂Im
∂t

= D2∆Im + αmβb
(Am−Im)

Nb
Ib − dmIm, x ∈ Ω, t > 0,

(1.2)

where Nb and Am are the positive constants; Ib(x, t) and Im(x, t) represent the populations
of infected birds and mosquitos at the location x in the habitat Ω ⊂ RN and at time t ≥ 0,
respectively, and Ib(x, 0) + Im(x, 0) > 0. The parameters are described in Table 1.

Table 1: Parameters Epidemiological Interpretations.
Parameter Description

Nb The total population of birds
Am The total population of mosquitoes
αb WNv transmission probability per bite to birds
αm WNv transmission probability per bite to mosquitoes
βb Biting rate of mosquitoes on birds
dm Adult mosquitos death rate
γb Bird recovery rate from WNv
D1 Diffusion coefficients for birds
D2 Diffusion coefficients for mosquitoes

For model (1.1), the authors derived the basic reproduction number

R0 =

√
αbαmβ2

bAm
γbdmNb

(1.3)

by utilizing the next generation matrix method [28]. They pointed out that the virus vanishes
for R0 < 1, while for R0 > 1, the disease-endemic equilibrium stabilizes. Moreover, in terms of
(1.2), they considered the existence of traveling waves, and deduced that the spread rate, which
is determined by linearized system, is equivalent to the minimal wave speed of the non-linear
one.

In ecology, animals migrate over a certain distance for a variety of reasons. ones search
for food to keep themselves alive, for instance, the king penguins look for fish and shrimp
in nonfreezing seas; ones move for reproduction, such as Atlantic salmon and giant arapaima
fish, they have to spawn in the upstream of freshwater river every year; ones (migrant birds)
travel long distances in response to local climate change. In consideration of the mosquitos,
which are extremely temperature and moisture sensitive. Moreover, up to a point, higher
temperatures cause the mosquitoes to mature faster. Hence its habitat is incessantly expansive
due to climate warming. For instance, according to the report of future Ontario climate change
projections [33], the average temperature in Ontario is generally rising. It is estimated that by
2050, the average summer temperature (7-21◦C) in southern and Northern Ontario will increase
by 1.5-4◦C and 4-7◦C respectively in the 1980s; by 2050s, the average temperature in Ontario
is likely to increase by about 3.6◦C, and the number of warmer days will increase by 10-126
days. Therefore the range of mosquitoes to change and move northward beyond the current
boundary.

Now, we consider the WNv diffusive model on a growing domain through the following
discussion. As discussed in [11,27], we assume that Ω(t) ⊂ RN be a simply connected bounded
shifting domain at time t ≥ 0 and ∂Ω(t) be the surface boundary of changing domain Ω(t).
Let I = (Ib(x(t), t), Im(x(t), t))T be a vector of two infected species (birds and mosquitos) at
position x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Ω(t). From the principle of mass conservation and
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Reynolds transport theorem [26], we can derive the evolution equations for reaction-diffusion
on growing domain. The continuous variation of the domain and its boundary produces a flow
velocity a(x, t). And the advection terms and dilution terms are introduced in the growing
domain Ω(t), the former is the amount of elements that shift with the flow due to local changes
of domain, while the latter corresponds to changes of local volume. Consequently, the reaction-
diffusion system of two infected species Ib and Im with (1.2) on a continuously deforming domain
becomes

∂Ib
∂t︸︷︷︸

The rate of change of Ib

+ ∇Ib · a︸ ︷︷ ︸
advection term

+ Ib(∇ · a)︸ ︷︷ ︸
dilution term

= D1∆Ib︸ ︷︷ ︸
diffusion term

+αbβb
(Nb − Ib)

Nb
Im − γbIb︸ ︷︷ ︸

reaction term

,

∂Im
∂t︸︷︷︸

The rate of change of Im

+ ∇Im · a︸ ︷︷ ︸
advection term

+ Im(∇ · a)︸ ︷︷ ︸
dilution term

= D2∆Im︸ ︷︷ ︸
diffusion term

+αmβb
(Am − Im)

Nb
Ib − dmIm︸ ︷︷ ︸

reaction term

(1.4)

for x ∈ Ω(t), t ≥ 0, with the null Dirichlet boundary condition

Ib(x(t), t) = Im(x(t), t) = 0, x ∈ Ω(t), t ≥ 0, (1.5)

and the initial condition

Ib = Ib(x) ≤ Nb, Im = Im(x) ≤ Am, x ∈ Ω(0), t = 0. (1.6)

In order to circumvent the difficulty induced by the evolving domain, we want to transfor-
m problem (1.4)-(1.6) from a continuously changing domain to a fixed domain. To do this,
we use Lagrangian transformations, see [21] for details. Assume y1, y2, . . . , yn be fixed Carte-
sian coordinates in Ω(0) such that x1(t) = x̂1(y1, y2, . . . , yn, t), x2(t) = x̂2(y1, y2, . . . , yn, t), . . .
xn(t) = x̂n(y1, y2, . . . , yn, t). Then (Ib, Im) is mapped into the new function (u, v) defined as

Ib(x1(t), x2(t), . . . , xn(t), t) = u(y1, y2, . . . , yn, t),

Im(x1(t), x2(t), . . . , xn(t), t) = v(y1, y2, . . . , yn, t).
(1.7)

Although equations (1.4) can be translated to another form which are defined on the fixed do-
main Ω(0) with respect to y = (y1, y2, . . . , yn), it is still difficult to deal with the new equations.
To further simplify the model equations (1.4), we assume that domain evolution is uniform and
isotropic. That is to say, the boundary of the domain deforms continuously at the same rate
in all directions as time goes on. Mathematically, we let

(x1(t), x2(t), . . . , xn(t)) = ρ(t)(y1, y2, . . . , yn), y ∈ Ω(0), (1.8)

where ρ(t) is called growing ratio, which satisfies

ρ(t) ∈ C1[0,∞), ρ(0) = 1, ρ̇(t) ≥ 0, lim
t→∞

ρ(t) = ρ∞ ≥ 1 and lim
t→∞

ρ̇(t) = 0. (1.9)

If ρ(t) ≡ 1 for any t, then Ω(t) is just the fixed domain Ω(0). Furthermore, assume that the
flow velocity is identical to the evolving rate of domain and using (1.8) yields

a = ẋ(t) = ρ̇(t)y =
ρ̇(t)

ρ(t)
x(t),

then it follows from (1.7)-(1.8) that

ut = ∂Ib
∂t

+ a · ∇Ib, vt = ∂Im
∂t

+ a · ∇Im, ∇ · a = nρ̇
ρ
,

∆Ib = 1
ρ2(t)

∆u, ∆Im = 1
ρ2(t)

∆v.
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Therefore, problem (1.4)-(1.6) is translated into
ut − D1

ρ2(t)
∆u = αbβb

(Nb−u)
Nb

v − (γb + nρ̇(t)
ρ(t)

)u, y ∈ Ω(0), t > 0,

vt − D2

ρ2(t)
∆v = αmβb

(Am−v)
Nb

u− (dm + nρ̇(t)
ρ(t)

)v, y ∈ Ω(0), t > 0,

u(y, t) = v(y, t) = 0, y ∈ ∂Ω(0), t > 0,
u(y, 0) = Ib,0(y) ≤ Nb, v(y, 0) = Im,0(y) ≤ Am, y ∈ Ω(0).

(1.10)

As far as growth ratio ρ(t) is concerned, see for example, the exponential growth rate ρ(t) = ert

with r > 0 and the logistic growth rate ρ(t) = eKrt

1+ 1
K

(eKrt−1)
in [20], where K accounts for the

carrying capacity (final domain size).
The rest of our paper is organised as follows: in Section 2, we introduce the basic reproduc-

tion numbers and study related properties. The corresponding preliminaries and the derivation
of stability conditions for disease free equilibrium and the endemic equilibrium on a growing do-
main are presented in Section 3, while three examples are provided to illustrate our theoretical
findings in the last section.

2 Basic reproduction number

It is well-known [13] that the basic reproduction number is a threshold of epidemiology mod-
els to describe the average number of secondary infections produced when a typical infected
individual is introduced into a large susceptible population. In this section, the basic repro-
duction number is introduced and its related properties are given. For general ODE model,
basic reproduction number can be calculated by the next generation matrix method [28], and
subsequently developed by [32, 35], they presented by spectral radius of next infection opera-
tor for space-dependent models, it is also calculated by principal eigenvalue of a corresponding
eigenvalue problem. In the following, the basic reproduction number for problem (1.10) is given
by the eigenvalue method.

According to assumption lim
t→∞

ρ(t) = ρ∞, as a consequence, consider the auxiliary problem

of (1.10) 
−D1

ρ2
∞

∆U = αbβb
(Nb−U)
Nb

V − γbU, y ∈ Ω(0),

−D2

ρ2
∞

∆V = αmβb
(Am−V )

Nb
U − dmV, y ∈ Ω(0),

U(y) = V (y) = 0, y ∈ ∂Ω(0),

(2.1)

and its related eigenvalue problem
−D1

ρ2
∞

∆φ = 1
R
αbβbψ − γbφ+ λ(R)φ, y ∈ Ω(0),

−D2

ρ2
∞

∆ψ = 1
R
αmβb

Am
Nb
φ− dmψ + λ(R)ψ, y ∈ Ω(0),

φ(y) = ψ(y) = 0, y ∈ ∂Ω(0).

(2.2)

Note that problem (2.2) is strongly cooperative if R > 0, by virtue of Theorem 2.3 [7], it
exists a unique principal eigenvalue λ(R)(R > 0), and then the positive eigenfunction pair
(φ, ψ) corresponding to the principal eigenvalue λ(R) is unique (subject to a constant multiple)
for y ∈ Ω(0). Meanwhile, continuous function λ(R) is strictly increasing to R, and satisfies
lim
R→0+

λ(R) < 0, lim
R→∞

λ(R) > 0. Based on the above argument, we derive that there is a unique

value Rρ
0 such that λ(Rρ

0) = 0, which satisfies the following problem
−D1

ρ2
∞

∆Φ = 1
Rρ0
αbβbΨ− γbΦ, y ∈ Ω(0),

−D2

ρ2
∞

∆Ψ = 1
Rρ0
αmβb

Am
Nb

Φ− dmΨ, y ∈ Ω(0),

Φ(y) = Ψ(y) = 0, y ∈ ∂Ω(0),

(2.3)

5



where (Φ,Ψ) is the positive eigenfunction pair corresponding to the principal eigenvalue Rρ
0.

Clearly, the principal eigenvalue Rρ
0 of problem (2.3) can be explicitly written as

Rρ
0 =

√√√√ αbβb · αmβb AmNb
(D1λ∗

ρ2
∞

+ γb)(
D2λ∗

ρ2
∞

+ dm)
(2.4)

and the positive eigenfunction pair corresponding to Rρ
0

(Φ,Ψ) =


√√√√ αbβb(

D2λ∗

ρ2
∞

+ dm)

αmβb
Am
Nb

(D1λ∗

ρ2
∞

+ γb)
ϕ∗, ϕ∗

 , (2.5)

where (λ∗, ϕ∗) is the principal eigen-pair of the eigenvalue problem{
−∆ϕ = λϕ, y ∈ Ω(0),

ϕ(y) = 0, y ∈ ∂Ω(0).
(2.6)

Remark 2.1 Rρ
0 > R0, where R0 has been given in (1.3), which means the risk increases with

respect to the growth of habitat.

Remark 2.2 It follows from problem (2.3), equation (2.5) and problem (2.6) that

−∆Φ(y) ≥ 0, −∆Ψ(y) ≥ 0, y ∈ Ω(0), (2.7)

which will be used in the sequel.

3 Asymptotic profiles of solutions

In this section, to derive the property of disease free equilibrium and the endemic equilibrium
of problem (1.10) on a growing domain, we will construct the Lyapunov function and use a
super-subsolution technique. Before proceeding further, we here give the definition and relevant
lemma of the supersolution and subsolution, which will be used to study the asymptotic profile
behaviour of solutions.

3.1 Preliminaries

Throughout this paper, we denote the sector

〈(u1, v1), (u2, v2)〉 = {(u, v) : u1 ≤ u(y, t) ≤ u2, v1 ≤ v(y, t) ≤ v2, (y, t) ∈ Ω(0)× [0,∞)}.

Definition 3.1 A pair of functions (ũ, ṽ)(y, t) and (û, v̂)(y, t) in C2,1(Ω(0)×(0,∞))
⋂
C(Ω(0)×

[0,∞)) is called ordered upper and lower solutions to problem (1.10) if (0, 0) ≤ (û, v̂) ≤ (ũ, ṽ) ≤
(Nb, Am) and

ũt − D1

ρ2(t)
∆ũ ≥ αbβb

(Nb−ũ)
Nb

ṽ − (γb + nρ̇(t)
ρ(t)

)ũ, y ∈ Ω(0), t > 0,

ṽt − D2

ρ2(t)
∆ṽ ≥ αmβb

(Am−ṽ)
Nb

ũ− (dm + nρ̇(t)
ρ(t)

)ṽ, y ∈ Ω(0), t > 0,

ût − D1

ρ2(t)
∆û ≥ αbβb

(Nb−û)
Nb

v̂ − (γb + nρ̇(t)
ρ(t)

)û, y ∈ Ω(0), t > 0,

v̂t − D2

ρ2(t)
∆v̂ ≥ αmβb

(Am−v̂)
Nb

û− (dm + nρ̇(t)
ρ(t)

)v̂, y ∈ Ω(0), t > 0,

ũ(y, t) ≥ 0 = û(y, t), ṽ(y, t) ≥ 0 = v̂(y, t), y ∈ ∂Ω(0), t > 0,

ũ(y, 0) ≥ u(y, 0) ≥ û(y, 0), ṽ(y, 0) ≥ v(y, 0) ≥ v̂(y, 0), y ∈ Ω(0).

(3.1)
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Lemma 3.1 (Comparison principle) Let (u, v)(y, t), (ũ, ṽ)(y, t) and (û, v̂)(y, t) be a solution,
ordered upper and lower solutions to problem (1.10) respectively, then

(û, v̂)(y, t) ≤ (u, v)(y, t) ≤ (ũ, ṽ)(y, t), (y, t) ∈ Ω(0)× [0,∞).

Neglecting time variable t in Definition 3.1, we can get a straightforward definition of upper
and lower solutions to problem (2.1).

Definition 3.2 A pair of functions (Ũ , Ṽ )(y) and (Û , V̂ )(y) in C2(Ω(0))
⋂
C(Ω(0)) is called

ordered upper and lower solutions of problem (2.1) if it satisfies (0, 0) ≤ (Û , V̂ ) ≤ (Ũ , Ṽ ) ≤
(Nb, Am) and 

−D1

ρ2
∞

∆Ũ ≥ αbβb
(Nb−Ũ)
Nb

Ṽ − γbŨ , y ∈ Ω(0),

−D2

ρ2
∞

∆Ṽ ≥ αmβb
(Am−Ṽ )

Nb
Ũ − dmṼ , y ∈ Ω(0),

−D1

ρ2
∞

∆Û ≥ αbβb
(Nb−Û)
Nb

V̂ − γbÛ , y ∈ Ω(0),

−D2

ρ2
∞

∆V̂ ≥ αmβb
(Am−V̂ )

Nb
Û − dmV̂ , y ∈ Ω(0),

Ũ(y) ≥ 0 = Û(y), Ṽ (y) ≥ 0 = V̂ (y), y ∈ ∂Ω(0).

(3.2)

Let

K1 = αmβb
Am
Nb

+ γb, K2 = αbβb + dm.

Using (U
(0)
, V

(0)
) = (Ũ(y), Ṽ (y)), (U (0), V (0)) = (Û(y), V̂ (y)) as the initial values, iteration

sequences (U
(k)
, V

(k)
) and (U (k), V (k)) are obtained through the following iterative process

−D1
ρ2
∞

∆U
(k)

+K1U
(k)

= K1U
(k−1)

+ αbβb(
Nb−U

(k−1)

Nb
)V

(k−1) − γbU
(k−1)

, y ∈ Ω(0),

−D2
ρ2
∞

∆V
(k)

+K2U
(k)

= K2V
(k−1)

+ αmβb(
Am−V

(k−1)

Nb
)U

(k−1) − dmV
(k−1)

, y ∈ Ω(0),

−D1
ρ2
∞

∆U (k) +K1U
(k) = K1U

(k−1) + αbβb(
Nb−U(k−1)

Nb
)V (k−1) − γbU (k−1), y ∈ Ω(0),

−D2
ρ2
∞

∆V (k) +K2U
(k) = K2V

(k−1) + αmβb(
Am−V (k−1)

Nb
)U (k−1) − dmV (k−1), y ∈ Ω(0),

U
(k)

(y) = V
(k)

(y) = U (k)(y) = V (k)(y) = 0, y ∈ ∂Ω(0).

(3.3)

where k = 1, 2, · · · , (U
(k)
, V

(k)
) and (U (k), V (k)) are called the maximal and minimal se-

quences. From the comparison principle, it easily follows that the above sequences (U
(k)
, V

(k)
)

and (U (k), V (k)) admit the monotone property

(Û , V̂ ) ≤ (U (k−1), V (k−1)) ≤ (U (k), V (k)) ≤ (U
(k)
, V

(k)
) ≤ (U

(k−1)
, V

(k−1)
) ≤ (Ũ , Ṽ ), (3.4)

for y ∈ Ω(0) and therefore the limits exist, denoted by

lim
k→∞

(U
(k)
, V

(k)
) = (U, V ), lim

k→∞
(U (k), V (k)) = (U, V ),

which yields

(Û , V̂ ) ≤ (U (k−1), V (k−1)) ≤ (U (k), V (k)) ≤ (U, V )

≤ (U, V ) ≤ (U
(k)
, V

(k)
) ≤ (U

(k−1)
, V

(k−1)
) ≤ (Ũ , Ṽ ),
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Furthermore, uniform estimate of the elliptic problem and Sobolev imbedding theorem assert
that (U, V ) and (U, V ) meet with

−D1

ρ2
∞

∆U = αbβb(
Nb−U
Nb

)V − γbU, y ∈ Ω(0),

−D2

ρ2
∞

∆V = αmβb(
Am−V
Nb

)U − dmV , y ∈ Ω(0),

−D1

ρ2
∞

∆U = αbβb(
Nb−U
Nb

)V − γbU, y ∈ Ω(0),

−D2

ρ2
∞

∆V = αmβb(
Am−V
Nb

)U − dmV , y ∈ Ω(0),

U(y) = V (y) = U(y) = V (y) = 0, y ∈ ∂Ω(0).

Thus (U, V ) and (U, V ) are the solutions of problem (2.1) in the sector 〈(Û , V̂ ), (Ũ , Ṽ )〉. For
any solution (U1, V1) to problem (2.1) in the sector 〈(Û , V̂ ), (Ũ , Ṽ )〉, if (U1, V1) and (U, V ) are
a pair of super- and subsolutions of problem (2.1), we have (U1, V1) ≥ (U, V ), in a similar way,
we also have (U1, V1) ≤ (U, V ). Therefore,

(U, V ) ≤ (U1, V1) ≤ (U, V ) uniformly for y ∈ Ω(0).

(U, V ) and (U, V ) are called the maximal and minimal solutions of problem (2.1) in the sector
〈(Û , V̂ ), (Ũ , Ṽ )〉, respectively.

The following result is obvious, and is presented here for later application.

Lemma 3.2 (U
(k)
, V

(k)
) and (U (k), V (k)) generated by (3.3) converge monotonically to (U, V )

and (U, V ), respectively.

3.2 The stability of the disease free equilibrium

Theorem 3.3 If R0 < 1, then the disease free equilibrium (0, 0) of problem (1.10) is globally
asymptotically stable.

Proof: It follows from the assumption R0 < 1 that

αbβb · αmβb
Am
Nb

< γbdm, (3.5)

then there exits a small enough integer ε0 > 0 such that

αbβb · αmβb
Am
Nb

< (1− ε0)2γbdm. (3.6)

Moreover, the above inequality implies that for any t > 0∫
Ω(0)

αbβbuvdy + θ

∫
Ω(0)

αmβb
Am
Nb

uvdy ≤ (1− ε0)

∫
Ω(0)

γbu
2dy + (1− ε0)θ

∫
Ω(0)

dmv
2dy, (3.7)

where θ =
2(1−ε0)2γbdm−αbβb·αmβb AmNb

(αmβb
Am
Nb

)2
> 0, and (u, v)(y, t) is a solution of problem (1.10).

Construct the proper Lyapunov function

V (t) =
1

2

∫
Ω(0)

u2dy +
θ

2

∫
Ω(0)

v2dy.
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Calculating the derivative of V (t) with respect to t yields

V ′(t) =
∫

Ω(0)
u · utdy + θ

∫
Ω(0)

v · vtdy

=
∫

Ω(0)
u[ D1

ρ2(t)
∆u+ αbβb(

Nb−u
Nb

)v − (γb + nρ̇(t)
ρ(t)

)u]dy

+θ
∫

Ω(0)
v[ D2

ρ2(t)
∆v + αmβb(

Am−v
Nb

)u− (dm + nρ̇(t)
ρ(t)

)v]dy

= −
∫

Ω(0)
D1

ρ2(t)
|∇u|2dy − θ

∫
Ω(0)

D2

ρ2(t)
|∇v|2dy +

∫
Ω(0)

αbβbuvdy

+θ
∫

Ω(0)
αmβb

Am
Nb
uvdy −

∫
Ω(0)

αbβb
Nb

u2vdy −
∫

Ω(0)
(γb + nρ̇(t)

ρ(t)
)u2dy

−θ
∫

Ω(0)
αmβb
Nb

v2udy − θ
∫

Ω(0)
(dm + nρ̇(t)

ρ(t)
)v2dy

≤ −
∫

Ω(0)
D1

ρ2(t)
|∇u|2dy − θ

∫
Ω(0)

D2

ρ2(t)
|∇v|2dy −

∫
Ω(0)

αbβb
Nb

u2vdy

−θ
∫

Ω(0)
αmβb
Nb

v2udy −
∫

Ω(0)
nρ̇(t)
ρ(t)

u2dy − θ
∫

Ω(0)
nρ̇(t)
ρ(t)

v2dy

−ε0

∫
Ω(0)

γbu
2dy − ε0θ

∫
Ω(0)

dmv
2dy

≤ −ε0

∫
Ω(0)

γbu
2dy − ε0θ

∫
Ω(0)

dmv
2dy.

(3.8)

Thanks to the Lyapunov stability theory, we have the convergence of L1−norm. Further, using
the technique of Theorem 4.2 in [18], we deduce that the disease free equilibrium (0, 0) is
globally asymptotically stable when R0 < 1. �

Next, when Rρ
0 < 1, we exhibit another conclusion about the disease free equilibrium of

problem (1.10).
To simplify the statement, we let

M = min
{ Nb

maxy∈Ω(0) Φ(y)
,

Am
maxy∈Ω(0) Ψ(y)

}
, (3.9)

where (Φ,Ψ) is the eigenfunction pair in problem (2.3).

Theorem 3.4 Assume that Rρ
0 < 1, then any solution (u, v)(y, t) to problem (1.10) satisfies

lim
t→∞

u(y, t) = 0 and lim
t→∞

v(y, t) = 0 uniformly for y ∈ Ω(0) (3.10)

when the initial function meets with (u(y, 0), v(y, 0)) ≤ (MΦ(y),MΨ(y)) for y ∈ Ω(0). That
is to say, the sector 〈(0, 0), (MΦ,MΨ)〉 is the stability region (or domain of attraction) of the
disease free equilibrium (0, 0) to problem (1.10), where M is given by (3.9).

Proof: Let
u(y, t) = Me−δtΦ(y), v(y, t) = Me−δtΨ(y),

where δ > 0 is sufficiently small. Recalling Remark 2.2 and using (1.9) give

ut − D1

ρ2(t)
∆u− αbβbv+

(
γb + nρ̇(t)

ρ(t)

)
u

= Me−δt
[
− δΦ− D1

ρ2(t)
∆Φ− αbβbΨ+

(
γb + nρ̇(t)

ρ(t)

)
Φ]

≥ Me−δt
[
− δΦ− D1

ρ2
∞

∆Φ− αbβbΨ + γbΦ]

= Me−δt
[
− δΦ+

(
1
Rρ0
− 1
)
αbβbΨ

]
≥ 0
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and
vt − D2

ρ2(t)
∆v − αmβb AmNb u+

(
dm + nρ̇(t)

ρ(t)

)
v

= Me−δt
[
− δΨ− D2

ρ2(t)
∆Ψ− αmβb AmNb Φ+

(
dm + nρ̇(t)

ρ(t)

)
Ψ]

≥ Me−δt
[
− δΨ− D2

ρ2
∞

∆Ψ− αmβb AmNb Φ + dmΨ]

= Me−δt
[
− δΨ+

(
1
Rρ0
− 1
)
αmβb

Am
Nb

Φ
]

≥ 0

because of 1
Rρ0
− 1 > 0. Hence, (u, v)(y, t) is the supersolution of problem (1.10) if

(u(y, 0), v(y, 0)) ≤ (MΦ(y),MΨ(y)), y ∈ Ω(0).

Moreover, from Lemma 3.1, we deduces

u(y, t) ≤ u(y, t), v(y, t) ≤ v(y, t), (y, t) ∈ Ω(0)× (0,∞),

which easily assert that

lim
t→∞

u(y, t) = 0 and lim
t→∞

v(y, t) = 0 uniformly for y ∈ Ω(0).

Therefore, 〈(0, 0), (MΦ,MΨ)〉 is the stability region (or domain of attraction) of the disease
free equilibrium (0, 0).

�

3.3 The stability of the endemic equilibrium

In this section, we analyze the stability of endemic equilibrium to problem (1.10) under the
assumption Rρ

0 > 1. We first construct the super- and subsolutions of problem (2.1).
Let

Û(y) = δ0Φ(y), V̂ (y) = δ0Ψ(y), y ∈ Ω(0),

where 0 < δ0 � 1 is arbitrarily small, and (Rρ
0; Φ(y),Ψ(y)) is the eigen-pair in problem (2.3).

We have
−D1

ρ2
∞

∆Û − αbβb (Nb−Û)
Nb

V̂ + γbÛ

= δ0[−D1

ρ2
∞

∆Φ− αbβb
(Nb−δ)Φ)

Nb
Ψ + γbΦ]

= δ0[ 1
Rρ0
αbβbΨ− αbβbΨ + δ0

αbβb
Nb

ΦΨ]

= δ0αbβbΨ[( 1
Rρ0
− 1) + δ0

Nb
Φ]

(3.11)

and
−D2

ρ2
∞

∆V̂ − αmβb (Am−V̂ )
Nb

Û + dmV̂

= δ0[−D2

ρ2
∞

∆Ψ− αmβb (Am−δ0Ψ)
Nb

Φ + dmΨ]

= δ0[ 1
Rρ0
αmβb

Am
Nb

Φ− αmβb AmNb Φ + δ0
αmβb
Nb

ΨΦ]

= δ0αmβb
Am
Nb

Φ[( 1
Rρ0
− 1) + δ0

Am
Ψ].

(3.12)

It is easily showed that (3.11) and (3.12) are both negative for sufficiently small δ0 owing to
the precondition 1

Rρ0
< 1. Hence, the pair (Ũ(y), Ṽ (y)) :=

(
Nb, Am) and the pair (Û(y), V̂ (y)) =

(δ0Φ, δ0Ψ) are the super- and subsolutions of problem (2.1).
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In what follows, we would like to derive the stability region of the endemic equilibrium
of problem (1.10). We point out that, although we mainly follow the super- and subsolution
method, some modifications are required. The major improvements of the method have two
aspects, one is to circumvent the difficult that the super- and subsolution of the elliptic problem
are not those of the associated parabolic problem, and the other is to derive the convergence of
the sequence constructed by iteration for parabolic problem with specific initial value, which is
evident for normal systems owing to the monotonicity, but the corresponding sequence for our
system (1.10) is not monotone. In order to resolve these difficulties, we need the following two
lemmas, see also Lemmas 4.5 and 4.6 [34].

Lemma 3.5 If Rρ
0 > 1, there exist T0 > 0 and δ∗ such that (Nb, Am) and (δΦ(y), δΨ(y)) are a

pair of super- and subsolutions of problem (1.10) for t ≥ T0, provided δ < δ∗.

Proof: On account of assumption (1.9), for arbitrary ε0 (0 < ε0 < ρ∞), there exists a T0 > 0
such that

ρ∞ − ε0 ≤ ρ(t) ≤ ρ∞, 0 ≤ ρ̇(t)

ρ(t)
≤ ε0, t ≥ T0. (3.13)

Considering problem (2.3) and selecting σ = 1
2
(Rρ

0 − 1) yields
− D1

(ρ∞−ε)2 ∆Φ ≤ 1
Rρ0−σ

αbβbΨ− (γb + ε)Φ, y ∈ Ω(0),

− D2

(ρ∞−ε)2 ∆Ψ ≤ 1
Rρ0−σ

αmβb
Am
Nb

Φ− (dm + ε)Ψ, y ∈ Ω(0),

Φ(y) = Ψ(y) = 0, y ∈ ∂Ω(0)

(3.14)

for the above ε0.
Next, we pay attention to the auxiliary problem based on problem (1.10), what calls for

special attention is that time begins at T0, that is,
ut − D1

ρ2(t)
∆u = αbβb

(Nb−u)
Nb

v − (γb + nρ̇(t)
ρ(t)

)u, y ∈ Ω(0), t > T0,

vt − D2

ρ2(t)
∆v = αmβb

(Am−v)
Nb

u− (dm + nρ̇(t)
ρ(t)

)v, y ∈ Ω(0), t > T0,

u(y, t) = v(y, t) = 0, y ∈ ∂Ω(0), t > T0

(3.15)

associated with the initial condition

u(y, T0) = uT0(y) ≤ Nb, v(y, T0) = vT0(y) ≤ Am, y ∈ Ω(0). (3.16)

Apparently, for problem (3.15), (3.16), (ũ(y, t), ṽ(y, t)) := (Nb, Am) is still a supersolution for
(y, t) ∈ Ω(0)× [T0,∞). Let

û(y, t) = δΦ(y), v̂(y, t) = δΨ(y), y ∈ Ω(0), t ≥ T0,

where δ > 0 is to be determined later and (Φ,Ψ) is the eigenfunction pair of problem (2.3).
Apply Lemma 2.2, (3.13) and (3.14), we have

ût − D1

ρ2(t)
∆û− αbβb (Nb−û)

Nb
v̂ + (γb + nρ̇(t)

ρ(t)
)û

= −δ D1

ρ2(t)
∆Φ− αbβbδΨ + αbβb

Nb
δ2ΦΨ + (γb + nρ̇(t)

ρ(t)
)δΦ

≤ −δ D1

(ρ∞−ε)2 ∆Φ− αbβbδΨ + αbβb
Nb

δ2ΦΨ + (γb + nρ̇(t)
ρ(t)

)δΦ

≤ δ
[

1
Rρ0−σ

αbβbΨ− αbβbΨ + αbβb
Nb

δΦΨ
]

= αbβb
Nb

δΨ
[
( 1
Rρ0−σ

− 1)Nb + δΦ
]
.

(3.17)
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Similarly, we deduces

v̂t −
D2

ρ2(t)
∆v̂ − αmβb

(Am − v̂)

Nb
û+ (dm +

nρ̇(t)

ρ(t)
)v̂ ≤ αmβb

Nb
δΦ
[
(

1

Rρ0 − σ
− 1)Am + δΨ

]
. (3.18)

because of 1
Rρ0−σ

− 1 < 0, then there exists a sufficiently small δ1 > 0 such that inequalities

(3.17) and (3.18) are both negative when δ ≤ δ1.
Moveover, for the initial function (u(y, T0), v(y, T0)), then there exists a δ2 = δ2(u(y, T0),

v(y, T0), T0) > 0 such that

δ2Φ(y) ≤ u(y, T0), δ2Ψ(y) ≤ v(y, T0).

Letting δ∗ = min(δ1, δ2), it follows that (û(y, t), v̂(y, t)) is a subsolution to problem (3.15), and
then the proof is completed. �

Next, we consider problem (3.15) associated with the different initial conditions

u(y, T0) = δΦ(y), v(y, T0) = δΨ(y), y ∈ Ω(0), (3.19)

and
u(y, T0) = Nb, v(y, T0) = Am, y ∈ Ω(0), (3.20)

respectively, where T0 is given in (3.13). According to Lemma 3.5, we know that (Nb, Am)
and (δΦ(y), δΨ(y)) are a pair of super- and subsolutions of problem (1.10) for (y, t) ∈ Ω(0) ×
[T0,+∞). We denote by (u(y, t), v(y, t)) and (u(y, t), v(y, t)) the solutions to problem (3.15),
(3.19), and (3.15), (3.20), respectively. Therefore, it follows from Theorem 6.1 in [24, Chapter
9] that both (u(y, t), v(y, t)) and (u(y, t), v(y, t)) exist and are unique, and satisfy

(δΦ(y), δΨ(y)) ≤ (u(y, t), v(y, t)) ≤ (Nb, Am), (3.21)

and
(δΦ(y), δΨ(y)) ≤ (u(y, t), v(y, t)) ≤ (Nb, Am). (3.22)

Furthermore, we have the following conclusion.

Lemma 3.6 lim inf
t→∞

(u(y, t), v(y, t)) ≥ (u(y), v(y)), and lim sup
t→∞

(u(y, t), v(y, t)) ≤ (u(y), v(y)),

where both (u(y), v(y)) and (u(y), v(y)) are the solutions to problem (2.1).

Proof: First of all, recalling that if the coefficients of the diffusion term is independent of t,
then both (u(y), v(y)) and (u(y), v(y)) are monotonously convergent as t → +∞, whereas in
our problem (3.15), the coefficients are D1

ρ2(t)
and D2

ρ2(t)
, we here use a different technique.

Put

s =

∫ t

T0

1

ρ2(τ)
dτ, (3.23)

then s′(t) = 1
ρ2(t)

> 0, which means that there exists an inverse transformation t = h(s) and

lim
s→∞

t = lim
s→∞

h(s) = +∞. (3.24)

Furthermore, we let

u(y, t) = w(y, s), v(y, t) = z(y, s), y ∈ Ω(0), s > 0, (3.25)

12



then obtain
ut = ws · 1

ρ2(t)
, ∆u(y, t) = ∆w(y, s),

vt = zs · 1
ρ2(t)

, ∆v(y, t) = ∆z(y, s),

and
(δΦ(y), δΨ(y)) ≤ (w(y, 0), z(y, 0)) ≤ (Nb, Am) (3.26)

by (3.21). Subsequently, problem (3.15), (3.19) is translated into

ws −D1∆w = ρ2(h(s))αbβb
Nb−w
Nb

z − ρ2(h(s))
(
γb + nρ̇(h(s))

ρ(h(s))

)
w, y ∈ Ω(0), s > 0,

zs −D2∆z = ρ2(h(s))αmβb
Am−z
Nb

w − ρ2(h(s))
(
dm + nρ̇(h(s))

ρ(h(s))

)
z, y ∈ Ω(0), s > 0,

w(y, s) = z(y, s) = 0, y ∈ ∂Ω(0), s > 0,

w(y, 0) = δΦ(y), z(y, 0) = δΨ(y), y ∈ Ω(0).

(3.27)

On account of (1.9), (3.23) and (3.24), for arbitrary ε(0 < ε < ρ∞), there exists a T1ε > 0 such
that

ρ∞ − ε < ρ(t) < ρ∞, for t > T0 + T1ε,

take s1 =
∫ T0+T1ε

T0

1
ρ2(τ)

dτ , we then have

ρ∞ − ε ≤ ρ(h(s)) ≤ ρ∞ + ε, s > s1. (3.28)

Assume that (wε(y, s), zε(y, s)) is solution of the auxiliary problem as follows

Ws −D1∆W = (ρ∞ − ε)2αbβb
Nb−W
Nb

Z − (ρ∞ + ε)2(γb + ε)W, y ∈ Ω(0), s > s1,

Zs −D2∆Z = (ρ∞ − ε)2αmβb
Am−Z
Nb

W − (ρ∞ + ε)2(dm + ε)Z, y ∈ Ω(0), s > s1,

W (y, s) = Z(y, s) = 0, y ∈ ∂Ω(0), s > s1,

W (y, s1) = δΦ(y), Z(y, s1) = δΨ(y), y ∈ Ω(0).

(3.29)

It is easy to check that (wε(y, s), zε(y, s)) is the subsolution of problem (3.27). Recalling
that (δΦ(y), δΨ(y)) is subsolution of (3.29), utilizing the method of the proof to Lemma 11.2
in [24, Chapter 7], we claim that (wε(y, s), zε(y, s)) is monotonically increasing with respect to s
for y ∈ Ω(0). In fact, wε(y, s) ≥ δΦ(y) when s > s1, then wε(y, η) ≥ δΦ(y) for any η > s1. As a
result, wε(y, s+η) is the supersolution of (3.29). Moreover, wε(y, s) for (y, s) ∈ Ω(0)× [s1,+∞)
is the solution of (3.29), by comparison principle, this implies that wε(y, s + η) ≥ wε(y, s) for
(y, s) ∈ Ω(0) × [s1,+∞). In the same way, we deduce zε(y, s + η) ≥ zε(y, s) for (y, s) ∈
Ω(0) × [s1,+∞). By virtue of (3.26), one can derive that lim

s→∞
(wε(y, s), zε(y, s)) exists for

y ∈ Ω(0). Denote

lim
s→∞

(wε(y, s), zε(y, s)) = (wε(y), zε(y)), for y ∈ Ω(0).

Next, we will show that (wε(y), zε(y)) is the solution of the following problem
−D1∆wε(y) = (ρ∞ − ε)2αbβb

Nb−wε(y)
Nb

zε(y)− (ρ∞ + ε)2(γb + ε)wε(y), y ∈ Ω(0),

−D2∆zε(y) = (ρ∞ − ε)2αmβb
Am−zε(y)

Nb
wε(y)− (ρ∞ + ε)2(dm + ε)zε(y), y ∈ Ω(0),

wε(y) = zε(y) = 0, y ∈ ∂Ω(0).

(3.30)
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In fact, we consider the following auxiliary problem
−D1∆ξε = (ρ∞ − ε)2αbβb

Nb−wε
Nb

zε − (ρ∞ + ε)2(γb + ε)wε, y ∈ Ω(0),

−D2∆ηε = (ρ∞ − ε)2αmβb
Am−zε
Nb

wε − (ρ∞ + ε)2(dm + ε)zε, y ∈ Ω(0),

ξε(y) = ηε(y) = 0, y ∈ ∂Ω(0),

(3.31)

which exists a unique generalized solution (ξε, ηε), where ξε, ηε ∈ W 2,p(Ω(0)) for any p > 1.
Taking

W ε(y, s) = wε(y, s)− ξε(y), V ε(y, s) = zε(y, s)− ηε(y),

then W ε(y, s) meets with

W ε
s −D1∆W ε = (ρ∞ − ε)2αbβb

Nb−wε(y,s)
Nb

zε(y, s)− (ρ∞ + ε)2(γb + ε)wε(y, s)

− (ρ∞ − ε)2αbβb
Nb−wε(y)

Nb
zε(y) + (ρ∞ + ε)2(γb + ε)wε(y)

:= F ε(y, s), y ∈ Ω(0), s > s1,

W ε(y, s) = 0, y ∈ ∂Ω(0), s > s1,

W ε(y, s1) = δΦ(y)− ξε(y), y ∈ Ω(0).

Noting that
(wε(y, s), zε(y, s))→ (wε(y), zε(y)) as s→∞,

which implies that F ε(y, s) → 0, which leads to W ε(y, s) → 0 in L2(Ω(0)). Consequently,
ξε(y) = wε(y) in L2(Ω(0)), according to the LP−theory for elliptic equations, we deduce that
wε(y) ∈W2,p(Ω(0)) for p > 1. Analogously, ηε(y) = zε(y) in L2(Ω(0)) and wε(y) ∈ W 2,p(Ω(0))
for p > 1. Therefore, (wε(y), zε(y)) is a generalized solution to problem (3.30). By choosing an
appropriate p > n and applying Sobolev’s imbedding theorem, then there exists an α ∈ (0, 1)
such that wε(y), zε(y) ∈ C1+α(Ω(0)), which deduces that the right-hand sides of the first
two equations in problem (3.31) are in Cα(Ω(0)) further. In terms of the Schauder theory,
(wε(y), zε(y)) is the classical solution of problem (3.30).

Letting ε→ 0 in (3.30) yields
−D1
ρ2
∞

∆w = αbβb
Nb−w
Nb

z − γbw, y ∈ Ω(0),

−D2
ρ2
∞

∆z = αmβb
Am−z
Nb

w − dmz, y ∈ Ω(0),

w(y) = z(y) = 0, y ∈ ∂Ω(0),

(3.32)

which implies that (w(y), z(y)) is the solution of (2.1). Noting that (wε(y, s), zε(y, s)) is the
subsolution of problem (3.27) gives that

lim inf
s→∞

(w(y, s), z(y, s)) ≥ (w(y), z(y)), y ∈ Ω(0).

Then

lim inf
t→∞

(u(y, t), v(y, t)) = lim inf
s→∞

(w(y, s), z(y, s)) ≥ (w(y), z(y)) := (u(y), v(y)), y ∈ Ω(0).

Similarly to the above we can prove that

lim sup
t→∞

(u(y, t), v(y, t)) = lim sup
s→∞

(w(y, s), z(y, s)) ≤ (w(y), z(y)) := (u(y), v(y)), y ∈ Ω(0),

where (u(y), v(y)) and (u(y), v(y)) are all the solutions of the elliptic problem (2.1). �

The aforementioned conclusions present a new treatment skill to study the property of
the endemic equilibrium, which is different from the classical approach. Next, we give the
persistence of the reaction diffusion system.

14



Theorem 3.7 Suppose Rρ
0 > 1, for any solution (u(y, t), v(y, t)) to problem (1.10) satisfies

(U(y), V (y)) ≤ lim inf
t→∞

(u(y, t), v(y, t)) ≤ lim sup
t→∞

(u(y, t), v(y, t)) ≤ (U(y), V (y)), (3.33)

uniformly for y ∈ Ω(0), where (U, V ) and (U, V ) are the maximal and minimal solutions
of problem (2.1) in the sector 〈(Û , V̂ ), (Ũ , Ṽ )〉 obtained by the iteration sequences in (3.10).
Furthermore, the sector 〈(δΦ, δΨ), (Nb, Am)〉 is the stability region of problem (1.10), where
δ > 0 is small enough.

Proof: First, combining Lemma 3.5 and comparison principle, we derive that

(δΦ(y), δΨ(y)) ≤ (u(y, t), v(y, t)) ≤ (Nb, Am), (y, t) ∈ Ω(0)× [T0,+∞),

which shows that the sector 〈(δΦ, δΨ), (Nb, Am)〉 is the stability region of problem (1.10).
According to comparison principle yields

(u(y, t), v(y, t)) ≤ (u(y, t), v(y, t)) ≤ (u(y, t), v(y, t)), (y, t) ∈ Ω(0)× [T0,+∞), (3.34)

where (u(y, t), v(y, t)) and (u(y, t), v(y, t)) have been defined in Lemma 3.6. Meanwhile, it
follows from Lemma 3.6 that

lim inf
t→∞

(u(y, t), v(y, t)) ≥ (u(y), v(y)), lim sup
t→∞

(u(y, t), v(y, t)) ≤ (u(y), v(y))

as well as both (u(y), v(y)) and (u(y), v(y)) are the solutions to problem (2.1). Therefore,
letting t→∞ in (3.34) yields

(U(y), V (y)) ≤ (u(y), v(y)) ≤ lim inf
t→∞

(u(y, t), v(y, t))

≤ lim sup
t→∞

(u(y, t), v(y, t)) ≤ (u(y), v(y)) ≤ (U(y), V (y)).

Thus, we admit (3.33), and the proof of Theorem 3.7 is finished. �

Specifically, if either U(y) = U(y) or V (y) = V (y), then (U, V )(y) = (U, V )(y) :=
(U∗, V ∗)(y) is the unique solution to problem (2.1), we derive the following conclusion.

Theorem 3.8 Suppose Rρ
0 > 1, if either U(y) = U(y) or V (y) = V (y), for any initial val-

ue of problem (1.10), we have lim
t→∞

(u(y, t), v(y, t)) = (U∗, V ∗)(y), that is to say, the endemic

equilibrium (U∗, V ∗) is globally asymptotically stable.

4 Numerical simulation and discussion

In this section, in order to illustrate the impact of growing domain on the transmission of WNv,
let us carry out numerical simulations for problem (1.10) with coefficients and initial functions
as follows

D1 = 0.46, αb = 3, βb = 0.5, γb = 0.14, Nb = 20,

D2 = 0.2, αm = 2, dm = 0.07, Am = 30,

u(y, 0) = 0.5 sinπy, v(y, 0) = 0.75 sinπy, Ω(0) = (0, 1),

and subsequently λ∗ = π2, ϕ∗ = sinπy.
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In particular, Ω(t) is the fixed domain Ω(0) if ρ(t) = β∞ = 1, then problem (1.10) turns to
u∆
t −D1∆u∆ = αbβb

(Nb−u∆)
Nb

v∆ − γbu∆, y ∈ Ω(0), t > 0,

v∆
t −D2∆v∆ = αmβb

(Am−v∆)
Nb

u∆ − dmv∆, y ∈ Ω(0), t > 0,

u∆(y, t) = v∆(y, t) = 0, y ∈ ∂Ω(0), t > 0,
u∆(y, 0) = Ib,0(x(0)) ≤ Nb, v

∆(y, 0) = Im,0(x(0)) ≤ Am, y ∈ Ω(0),

(4.1)

whose basic reproduction number can be represented as

R
Ω(0)
0 =

√
αbαmβ2

bAm
Nb(D1λ∗ + γb)(D2λ∗ + dm)

, (4.2)

where λ∗ is defined by (2.6). It is evidently that R
Ω(0)
0 < Rρ

0. Moreover, it follows from Theorem

3.4 that if R
Ω(0)
0 < 1, for any solution (u∆, v∆)(y, t) satisfies

lim
t→∞

u∆(y, t) = 0, lim
t→∞

v∆(y, t) = 0 uniformly for y ∈ Ω(0). (4.3)

Example 4.1 According to the above parameter selection and (4.2), it follows that

R
Ω(0)
0 =

√
3× 0.76× 2× 0.76× 30

20× (0.46π2 + 0.14)(0.2π2 + 0.07)
≈
√

5.198

4.680× 2.044
≈ 0.737 < 1,

as a result, when t → ∞, the variable u∆(y, t) of problem (4.1) decays to zero quickly for
y ∈ [0, 1], see Fig. 2, which implies that WNv is vanishing on the fixed domain.
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Fig. 2: ρ(t) = 1. R
Ω(0)
0 < 1, which implies that WNv is vanishing in the fixed domain. Graph (a) shows that the variable Ib

decays to zero. Graphs (b) and (c) are the cross-sectional view and contour one, respectively.

Next, we choosing logistic growth function ρ(t) = eKrt

1+ 1
K

(eKrt−1)
, which satisfies the assumption

(1.9). In all our simulations we fix r = 1 and vary K to account for the long-time asymptotic
behavior of solutions and the evolution of domain Ω(t).

Example 4.2 Set K = 1.1, then ρ∞ = 1.1. One can easily compute from (2.4), (2.5) and
(3.9) that

Rρ
0 =

√
3× 0.76× 2× 0.76× 30

20

[0.46π2

1.12 + 0.14][0.2π2

1.12 + 0.07]
≈
√

5.198

3.892× 1.701
≈
√

0.785 ≈ 0.886 < 1,

Φ(y) ≈ 0.662 sinπy, Ψ(y) = sin πy,

and

M = min

(
Nb

maxy∈Ω(0) Φ(y)
,

Am
maxy∈Ω(0) Ψ(y)

)
= min

(
20

0.662
,
30

1

)
= 30.
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Obviously,
u(y, 0) ≤MΦ(y), v(y, 0) ≤MΨ(y).

It follows from Theorem 3.4 that u(y, t) → 0 uniformly for y ∈ [0, 1] when t → ∞, which
means that Ib(x, t)→ 0 uniformly on any compact subset of [0, 1.1) as t→∞. Fig. 3(a) shows
that the infectious bird density Ib decays to zero as time elapses, which implies that the virus
vanishes eventually. The corresponding cross-sectional view and contour one for Ib, see for Fig.
3(b) and (c), which illustrate the changing trends of the variable Ib, and that the domain Ω(t)
is growing gradually from the interval [0, 1) to [0, 1.1). A comparison of the above-mentioned
two examples reveal that the small growth rate makes the virus still vanishes.
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(b) (c)

Fig. 3: The small growing ratio ρ(t) guarantees Rρ0 < 1 and WNv is still vanishing. Graph (a) shows that the variable Ib decays
to zero. Graphs (b) and (c) are the cross-sectional view and contour one, respectively, from which we can clearly observe the change
of domain.

Example 4.3 Select K = 2, then ρ∞ = 2. It follows from (2.4) that

Rρ
0 =

√
5.198

1.275× 0.5635
≈ 2.690 > 1.

According to the outcome of Theorem 3.7, we can obtain that the virus is spreading as time
goes on. From Fig. 4, we can find that the variable Ib(x, t) tends to a positive steady state and
Ω(t) is growing from the interval [0, 1) to [0, 2). It’s worth noting that the big growing ratio
ρ(t) results in the spread of the virus.
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Fig. 4: For the big growing ratio ρ(t), we acquire Rρ0 > 1 and the virus is spreading. Graph (a) shows that the variable Ib
stabilizes to a steady state, and graphs (b) and (c) exhibit the enlargement of domain.

Comparing Example 4.1 with 4.2 shows that if R∆
0 < 1 on the fixed domain, we still have

Rρ
0 < 1 for the model on the growing domain with the small growth rate. However, the basic

reproduction number could be great than 1 if the growth rate is big, which can be seen by a
comparison of Examples 4.1 with 4.3. We can be fairly sure from the aforementioned examples
that domain growth is closely related to the transmission risk of WNv, and that the bigger the
growing ratio, the greater the risk.
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It is well-known that WNv is carried by mosquitoes, and mosquitoes replicate vigorously
in temperate climates (warm summer). Climate warming has led to the gradual expansion of
mosquitoes into new areas, which were previously cold and unsuitable for survival of mosquitoes,
but are now warming up, and leading to larger mosquito habitats. Similarly, birds, as hosts of
WNv, have strong reproductive capacity. They are moving around in search of food, breeding,
or responding to seasonal changes, which leads to the expansion of their habitat. In our paper,
habitat expansion of birds and mosquitoes is described as domain growth in mathematical mod-
els. It follows from our theoretical result and numerical simulation that when WNv vanishes on
a fixed domain, one still vanishes on the growing domain with the small growth rate, but WNv
can be spread on the growing domain with the large growth rate. Therefore, climate warming,
which results in habitat expansion of birds and mosquitoes, is harmful to the prevention and
control of WNv.
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[7] P. Álvarez-Caudevilla, Y. Du, R. Peng, Qualitative analysis of a cooperative reaction-diffusion
system in a spatiotemporally degenerate environment, SIAM J. Math. Anal., 46 (2014), 499-531.

[8] C. Bowman, A. Gumel, P. Driessche, et al., A mathematical model for assessing control strategies
against West Nile virus, Bull. Math. Biol., 67 (2005), 1107-1133.

[9] C. Beck, M. Jimenezclavero, A. Leblond, et al., Flaviviruses in Europe: complex circulation pat-
terns and their consequences for the diagnosis and control of West Nile disease, International Journal
of Environmental Research and Public Health, 10 (2013), 6049-6083.

[10] B. Buonomo, R. Marca, Optimal bed net use for a dengue disease model with mosquito seasonal
pattern, Math. Methods Appl. Sci., 41(2017) 573-592.

[11] E. Crampin, Reaction Diffusion Patterns on Growing Domains, PhD thesis, University of Oxford,
2000.

[12] G. Cruz-Pacheco, L. Esteva, C. Vargas, Seasonality and Outbreaks in West Nile Virus Infection,
Bull. Math. Biol., 71 (2009), 1378-1393.

[13] O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the basic
reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math.
Biol., 28 (1990), 365-382.

18



[14] Z. Du, R. Peng, A priori L∞ estimates for solutions of a class of reaction-diffusion systems, J.
Math. Biol., 72 (2016), 1429-1439.

[15] D. Jamieson, J. Ellis, D. Jernigan, et al., Emerging infectious disease outbreaks: Old lessons and
new challenges for obstetrician-gynecologists, Am. J. Obstet. Gynecol., 194 (2006), 1546-1555.

[16] D. Kurt, M. Reed, K. Jennifer, et al., Birds, migration and emerging zoonoses:West Nile virus,
Lyme disease, influenza A and enteropathogens, Clinical Medicine & Research, 1 (2003), 5-12.

[17] C. Lei, Z. Lin, Q. Zhang, The spreading front of invasive species in favorable habitat or unfavorable
habitat, J. Differential Equations, 257 (2014), 145-166.

[18] Z. Lin, M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional
response, Nonlinear Anal., 57 (2004), 421-433.

[19] M. Lewis, J. Renclawowicz, P. Driessche, Traveling waves and spread rates for a West Nile virus
model, Bull. Math. Biol., 68 (2006), 3-23.

[20] A. Madzvamuse, E. Gaffney, P. Maini, et al. Stability analysis of non-autonomous reaction-
diffusion systems: The effects of growing domains, J. Math. Biol., 2010, 61 (2010), 133-164.

[21] A. Madzvamuse, P. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on
continuously growing domains, J. Comput. Phys., 2007, 225, 100-119.

[22] R. McLean, S. Ubico, D. Bourne, et al., West Nile virus in livestock and wildlife, Curr. Top.
Microbiol. Immunol., 267 (2002), 271-308.

[23] D. Nash, F. Mostashari, A. Fine, et al., The Outbreak of West Nile Virus Infection in New York
city area in 1999, N. Engl. Med., 344 (2001), 1807-1814.

[24] C. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[25] I. Spigland, W. Jasinska-Klingberg, E. Hofshi, et al., Clinical and laboratory observations in an
outbreak of West Nile fever in Israel in 1957, Harefuah, 54 (1958), 275-281.

[26] Q. Tang, Z. Lin, The asymptotic analysis of an insect dispersal model on a growing domain, J.
Math. Anal. Appl., 378 (2011), 649-656.

[27] Q. Tang, L. Zhang, Z. Lin, Asymptotic profile of species migrating on a growing habitat, Acta
Appl. Math., 116 (2011), 227.

[28] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria
for compartmental models of disease transmission, Math Biosci., 180 (2002), 29-48.

[29] K. Van der Meulen, M. Pensaert, H. Nauwynck, West Nile virus in the vertebrate world, Arch.
Virol., 150 (2005), 637-657.

[30] M. Wonham, T. Beck, M. Lewis, An epidemiology model for West Nile virus: invansion analysis
and control applications, Proc. R. So. Lond, B 271 (2004), 501-507.

[31] H. Wan, H. Zhu, The backward bifurcation in compartmental models for West Nile virus, J.
Math. Bioscience , 272 (2010), 20-28.

[32] W. Wang, X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J.
Appl. Dyn. Syst. 11 (2012), 1652-1673.

[33] H. Zhu, Z. Deng, Lamps Ontario climate change portal. 2016. http://www.yorku.ca/OCCP

19



[34] M. Zhu, Z. Lin, L. Zhang, The asymptotic profile of a dengue model on a growing domain driven
by climate change, Appl. Math. Model., 83(2020) 470-486.

[35] X. Zhao, Dynamical systems in Population Biology. Second edition. CMS Books in Mathematic-
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