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Abstract : The Blasius equation is a well recognized third-order nonlinear ordinary differential equation which arises in certain boundary layer problems in the fluid dynamics. This article presents a way of applying He’s variational iteration method to solve the Blasius equation. Approximate analytical solution is derived with help of Padde approximate method and compared to the numerical result obtained from Adomian decomposition method.. Comparisons show that the present technique is precise and the using of He’s method does accelerate the convergence of the power series. And finally to see the behavior of that solution a robust and efficient algorithm is also programmed using Mathematica based on the present approach which can be easily employed to solve Blasius equation problems. 
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1. Introduction
The theory of boundary layer constitutes one of the most important branch of fluid dynamics since external flows with high Reynolds’ numbers are common in both nature and many engineering applications. Solving these problems generally requires a challenging effort due to the non-linearity and multidimensional character of the governing equations. Although there is reasonable amount of exact solution found for the full Navier-Stokes equations in literature, they are only valid for some particular cases and geometries [1]. An effective approach to solve an external flow problem with high Reynolds number is known as boundary layer analysis technique which is first developed by Prandtl in 1904. One of his students Blasius in 1908 introduced a technique to transform the well known problem of laminar boundary layer flow over a flat plate into an ordinary differential equation (ODE). Blasius equation have great importance in many engineering applications since it provides very good approximations for boundary layer thickness and total drag force in laminar external flows [2]. For example, drag force acting on a thin airfoil in a laminar flow can be very well approximated by using Blasius equation. 
The equation is given as: 
[image: ]                                                                                                 (1) 
where relative boundary conditions are defined as: [image: ]                                                         (2) and[image: ]                                                                                                                                              (3) and where [image: ] is the first derivative off  with respect to [image: ] . [image: ] is the similarity variable of the problem and defined in the Cartesian coordinates as:
 [image: ]                                                                                                                                    (4) 
where U is free stream velocity and [image: ] is kinematic viscosity of the fluid. The relationship between f and stream function [image: ] is given by:
[image: ]                                                                                                                                        (5)
 and velocity components (u,v) can be derived from stream function by: 
[image: ]                                                                                                                               (6)
[image: ]                                                                                                                (7)
 The first term of (1) represents the viscos diffusion, so it becomes dominant as [image: ] approaches to zero. The second term, on the other hand, is due to convective acceleration and is dominant for high values of [image: ]. Even though the equation looks very simple at first glance, there haven’t been any exact analytical solution found for over 100 years, so all solutions suggested so far depend on some approximate techniques; some of them are very successful while some of them are not. In fact, the equation has been used as a tool to investigate the success of various approximate solution techniques.
The fluid problems governed by the Blasius equation have been solved by various numerical and analytical methods. Wang, Hashim and Abbasbandy [1,3] solved for the Blasius equation using the Adomian decomposition method and proved it to be accurate and reliable. Yu and Chen [4] employed the differential transformation method for solution and obtained not only the numerical values, but also the power series close-form solutions. Lin [5] used the parameter iteration method and compares the results with Howarth’s numerical solution to solve for the Blasius equation. Yao and Chen [6] have solved the shrinking plate with constant velocity problem by using homotopy analysis techniques. Lastly, Parand and Taghavi [7] used a collocation method based on a rational scaled generalized Laguerre function collocation method to solve this equation.
He’s variational iteration method (VIM) has been extensively applied as a powerful tool for solving various kinds of problems[8-23]. Liu and Gurram[12] have solved for free vibration problems involving an Euler-Bernoulli beam using this method and obtained accurate results which were the same as with the Adomian decomposition method. Słota[13] obtained results for the heat equation using this method and verifies the accuracy by obtaining the exact solution. This method can be used to solve nonlinear equations in heat transfer[14], nonlinear Jaulent-Miodek equations[15] the Fokker-Planck equation[16] nonlinear equations with Riemann-Liouville’s fractional derivatives[17] and the semi-linear inverse parabolic equation[18] etc. The advantages of using He’s VIM for numerical problems were also confirmed from the previous works.
Besides the He’s method VIM has been extended for applications to systems of nonlinear ordinary differential equations (ODE) and chaotic systems. Batiha et al.[19] implemented the multistage VIM to solve a class of nonlinear system of first-order ODEs. Through their study the domain of validity of the solutions via the standard VIM was extended by the simple multistage strategy. Goh et al.[20, 21] illustrated the strength of VIM in numerically solving the chaotic Rossler system a three-dimensional system of ODEs with quadratic nonlinearities by implementing the multistage VIM.
In this paper the authors will convert the Blasius equation into a linear and a non-linear term. A correction factor and a Lagrangian multiplier will be utilized in a Maclaurin series approximation. Stationary and boundary conditions define the parameters of each problem. Through this approximation technique a rapidly convergent series of solutions will be obtained and proven to be simple, accurate, and effective. 
The VIM is useful to obtain exact and approximate solutions of linear and nonlinear differential equations. In this method general Lagrange multipliers are introduced to construct correction functional for the problems. The multipliers can be identified optimally via the variational theory. There is no need of linearization or discretization and large computational work and round-off errors is avoided. It has been used to solve effectively, easily and accurately a large class of nonlinear problems with approximation. The main goal of the present study is to find the analytic solutions of the Blasies equation by the variational iteration method  with help of Padde approximate method and compared the numerical result with the paper [ 23] and finally to see the behavior of that solution .
2. Basic Concepts of Variational Iteration Method (VIM)
To illustrate the basic concepts of VIM consider the following general nonlinear partial differential equation:
[image: ]                                                                                                                                          (8)
where [image: ] is a linear operator , [image: ] is a nonlinear term and [image: ] is a known function. The variational iterational method was proposed by He where a correction functional for equation (8) can be written as
[image: ]                                                                             (9)
where [image: ] is a general Lagrange multiplier which can be identified optimally via variational theory  [image: ] is considered as restricted variations i.e. [image: ]. It is required first to determine the Lagrangian multiplier [image: ] that will be identified optimally via integration by parts. The successive approximation [image: ] of the solution [image: ]  will be readily obtained upon using the Lagrangian multiplier obtained and by using any selective function [image: ]. The initial values [image: ]and [image: ][image: ]are usually used for the selective zeroth approximation [image: ]. Having [image: ] determined then several approximation [image: ] can be determined. Consequently the solution is given by
[image: ].                                                                                                                                          (10)
Our main goal is to solve the a singular non-linear boundary value problem arising in viscous flow behind a shock wave. The approximate solution of the nonlinear problem is obtained by the Variational iteration method. Most of the phenomena that arise in mathematical physics and engineering fields can be described by partial differential equations. Recent advances of partial differential equations are stimulated by new examples of applications in fluid mechanics, viscous elasticity, mathematical biology, electrochemistry and physics. There are many traditional and recently developed methods to give numerical and analytical approximate solutions of nonlinear differential equations such as Euler method, Runge-Kutta method, Taylor series method, homotopy perturbation method, Variational iteration method, Adomian decomposition method, Hankel-Padé method, DTM-Padé method and Hamiltonian method. In this article we have used variational iteration method to solve Blasius equation. 
3.  Padé Approximation[24]
In solving equation (1) a well known approximation called  Padé Approximation is needed because polynomials are used to approximate truncated power series. Further the singularities of polynomials cannot be seen obviously in a finite plate. Padé approximants [24] are applied to manipulate the obtained series for numerical approximations to overcome this difficulty. Padé approximant is the best approximation of a polynomial approximation of a function into rational functions of polynomials of given order. Padé approximants are used widely in computer calculations due to the fact that a Padé approximant often gives better approximation of the function than truncating its power series and it may still work where the power series does not converge. Therefore Padé approximants can be easily computed by using symbolic programming languages such as Mathematica.
A Padé approximation to f(x) on [a, b] is the quotient of two polynomials, say [image: ]and [image: ] of degrees N and M respectively. The notation  [image: ] will be used to denote this quotient.
In order to obtain better numerical results, the combination of the Variational Iteration method and the diagonal approximants [N/N] will be used.
4. Solution of Blasius Equation by Variational Iteration Method 
To solve the Blasius equation (1) needs to be converted into the He’s VIM form equation(9) so that we have to construct the correction functional of (1) as follows.
                                                               (11)
[image: ]is the general Lagrange multiplier which can be identified optimally via the variational theory. And [image: ] is considered as a restricted variation that is [image: ].  We omit asterisks for simplicity. 
Making the correction functional (11) via variational theory  
[image: ]
[image: ][image: ]
               [image: ]                [image: ]
Using the optimality condition [image: ], we obtain the following stationary conditions:
[image: ],  	[image: ]  ,

[image: ]                                                                                           (12)
And    [image: ]                                                                                              (13)
 From these equations we have to find the form of the Lagrange multiplier [image: ].
Now let us  consider  [image: ] (14) as a trial solution to get the solution of (13) then the auxiliary equation will be   [image: ] that implies   [image: ]     (trice)
Then the trial solution (13) can be written as  [image: ]                                               (15)
To find the conditions in (12) let us take first and second derivatives of (15)
[image: ]                                                                                     (16)
[image: ]                                                                                              (17)
 Using (15)-(17) in (12) and taking  [image: ]     we get
[image: ] ,[image: ],[image: ]
The Lagrange multiplier (15) therefore can be written in the following form:
[image: ]    
   which implies      [image: ]                                                                              (18)
Substituting equation (18) into the correction functional equation (11)  the iteration formula then becomes
[image: ]         (19)
Now if we assume  an initial approximation as
[image: ]                                                                          (20)
where a, b and c are unknown constants which are to be further determined. Using the initial approximation (20) in the iteration formula (19)  we can  immediately obtain directly the first-order approximate solution  of (1) as follows.
[image: ][image: ]                                                       (21)
Making use of the initial condition [image: ]and [image: ], we obtain the value of a, b and c as follows:
[image: ], [image: ] and [image: ]                                                                 (22)
Let us consider [image: ]                                                                     (23)  
hence [image: ] . 
Using the values of a. b and c in equation (21) we get
[image: ]                                                                                             (24)
Similarly the second-order and third order approximate solutions can be obtained using (24) as
[image: ]
  [image: ]                                                                                                                                                          (25)
The third-order approximate solution can be obtained
[image: ]         (26) 
Proceeding in this way we can find all other higher order approximate solutions. However in other problems we have found that third order solution is sufficient for most accurate approximate solution. Because the contribution from further higher order approximations is negligible when we represent this solution graphically we can find the physical behavior of the solution.To get a finite result we have taken [image: ] in (23), when the initial condition was [image: ]. So before going to further discussion on the result (26) , we have to find the value of  [image: ].
To solve Blasius equation with no-slip condition Padé introduced an approximate condition to find the solution. Here also if we take first derivative of (26) and apply Padé approximation also using the condition [image: ]we arrived the following rational function.
Now for diagonal approximants [2/2]  we obtain
[image: ]        
And according to the infinite boundary condition [image: ]                                                  (27)
And for diagonal approximants [3/3] we obtain
[image: ]                                                 (28)
And for diagonal approximants [4/4] we obtain 

[image: ]
                                                                                                            (29)
Table1: comparison of the values of  [image: ]obtained by the variational iteration method when diagonal approximants [2/2] and ref. [23] 
	[image: ]
	[image: ]obtained by VIM
	[image: ]obtained by ref.[23]

	[image: ]
	-1.63299
	-1.643168

	[image: ]
	-3.4641
	-3.70328

	[image: ]
	-5.65685
	-6.123724

	[image: ]
	-8.16497
	-8.862587



Table 2: comparison of the values of  [image: ]obtained by the variational iteration method when diagonal approximants [3/3] and ref. [23 ] 
	[image: ]
	[image: ]obtained by VIM
	[image: ]obtained by ref.[23]

	[image: ]
	-1.62987
	-1.643168

	[image: ]
	-3.43132
	-3.70328

	[image: ]
	-5.58107
	-6.123724

	[image: ]
	-8.03983
	-8.862587


Table 3: comparison of the values of  [image: ]obtained by the variational iteration method when diagonal approximants [4/4] and ref. [23] 
	[image: ]
	[image: ]obtained by VIM
	[image: ]obtained by ref.[23]


	[image: ]
	-1.81994
	-1.643168

	[image: ]
	-3.7759
	-3.70328

	[image: ]
	-6.19574
	-6.123724

	[image: ]
	-9.05134
	-8.862587



5.  Physical Representation of the Solution of Equation (1) as obtained in (29)

	[image: ]
	[image: ]

	Figure 1: The figure shows the curve for   ,[image: ]and [image: ]
	Figure 2 : The figure shows the curve for   ,[image: ]and [image: ]

	[image: ]
	[image: ]

	Figure.3: The figure shows the curve for   ,[image: ]and [image: ]
	Figure.4 : The figure shows the curve for   ,[image: ]and [image: ]



	

[image: ][image: ]


	Figure 5: The figure shows the curve combined for different values of [image: ]and [image: ] respectively and for   




6. Result and Discussion
Analytically and numerically we have solved Blasius equation by assuming that the fluid is an ideal gas having the viscosity and the thermal conductivity both proportional to the temperature using Variational iteration method with the help of Padé approximations of diagonal approximants. Following this method we obtained different values of  [image: ]. For diagonal approximants [2/2] Table 1 shows  the values of  [image: ] obtained by variational iteration method and the result obtained by ref.[23]. It  is seen that both the results are very nearer to each other . The values of  [image: ]by VIM and ref.[23] for diagonal approximants [3/3]  and diagonal approximants [4/4] are displayed in Table-2 and table-3 respectively. We have seen that there is no significant difference. Finally we have seen the behavior of the solution of the Blasius equation from figure (1) to (4) for different values of [image: ] and [image: ] and . The figure  5  shows the curve combined for different values of [image: ] and [image: ] respectively and for .
7.Conclusion
The Blasius equation that we have solved  in this paper is extremely important in fluid dynamics and also very complicated in its form. Interestingly the variational iteration method has successfully applied to analyzed the approximate solutions of Blasius problem with boundary condition at infinity. A very crucial point we want to mention here that to satisfy the boundary condition at infinity [image: ] one has to apply the Padé approximation. We have shown that combination of VIM and Padé approximation gave us a most accurate analytical solution. We can conclude that the combined effect of VIM and Padé approximation is a powerful method to solve boundary value problems consisting of systems of non-linear differential equations.
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