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Abstract16

Genotyping novel complex multigene families is particularly challenging in non-model organ-17

isms. Target primers frequently amplify simultaneously multiple loci leading to high PCR18

and sequencing artefacts such as chimeras and allele amplification bias. Most genotyping19

pipelines have been validated in non-model systems whereby the real genotype is unknown20

and the generation of artefacts may be highly repeatable. Further hindering accurate geno-21

typing, the relationship between artefacts and genotype complexity (i.e. number of alleles22

per genotype) within a PCR remains poorly described. Here we investigated the latter by23

experimentally combining multiple known major histocompatibility complex (MHC) haplo-24

types of a model organism (chicken, Gallus gallus, 43 artificial genotypes with 2-13 alleles25

per amplicon). In addition to well defined “optimal” primers, we simulated a non-model26

species situation by designing “cross-species” primers, with sequence data from closely re-27

lated Galliforme species. We applied a novel open-source genotyping pipeline (ACACIA; https:28

//gitlab.com/psc_santos/ACACIA), and compared its performance with another, previously29

published pipeline (AmpliSAS). Allele calling accuracywas higherwhenusing ACACIA (98.5% vs30

97% and 77.8% vs 75.2% for the “optimal” and “cross-species” datasets respectively). System-31

atic allele dropout of three alleles owing to primer mismatch in the “cross-species” dataset32

explained high allele calling repeatability (100% when using ACACIA) despite low accuracy,33

demonstrating that repeatability can be misleading when evaluating genotyping workflows.34

Genotype complexity was positively associated with non-chimeric artefacts, chimeric arte-35

facts (nonlinearly by leveling when amplifying more than 4-6 alleles) and allele amplification36

bias. Our study exemplifies and demonstrates pitfalls researchers should avoid to reliably37

genotype complex multigene families.38

Introduction39

A key challenge for molecular ecologists is that they frequently work on systems with limited40

to no knowledge of their genomes. Multigene complexes, such as resistance genes (R-genes)41

and self-incompatibility genes (SI-genes) in plants, immunoglobulin superfamily and major42

histocompatibility genes (MHC) in vertebrates, and homeobox genes in animals, plants and43

fungi, among many others, are particularly challenging to genotype in non-model organisms.44

Whilst a large number of de novo genomes has been published using short-sequencing tech-45

nology, thus far traditional genomeassembly of nonmodel organismshas not been able to as-46

semble the highly repetitive genomic regions of multigene families [46]. Recent long-read sin-47

gle molecule sequencing technologies offers a very promising avenue to characterise multi-48

gene families in the future [15, 19, 32, 66], but the high sequencing errors and the high cost49

associated with required sequencing depth continues to constrain characterisation of non50

model organisms, particularly if genotyping of a large number of individuals with highly com-51

plex multigene systems is required. Therefore, the development of a genotyping approach52
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for specific multigene families (i.e. amplicon-based genotyping) typically continues to rely on53

information from closely related species available in genetic databases which may have very54

different gene duplication and deletion events. As a result of high sequence similarity from55

recent gene duplication events, polymerase chain reaction (PCR) primers will frequently bind56

across multiple loci leading to the amplification of multiple allelic variants [3, 5, 6, 35, 36, 57,57

61]. Assessing and validating genotyping methods can be particularly challenging when the58

number of loci targeted is unknown.59

60

Unspecific locus amplification may lead to several biases during PCR since 1) chimeric61

sequences (hereafter “chimeras”; which may arise because of incomplete extension of se-62

quences during a PCR cycle which are subsequently completed with a different allele tem-63

plate) are likely to become more frequent as more loci are amplified within an amplicon sim-64

ply because there will be more gene variants from which chimeras can be generated [34];65

2) amplification bias of some gene variants relative to others may occur because primers66

preferentially bind to some alleles/loci (hereafter referred to as “PCR competition”) [38, 61].67

Creative solutions in primer design and in PCR conditions, such as using pooled primers in-68

stead of degenerate primers [38], reducing the number of cycles and modifying elongation69

steps of PCRs [25, 34, 60], can significantly reduce amplification bias. However, even after the70

application of such methods, PCR biases will nonetheless persist and may lead to genotyp-71

ing errors because: 1) chimerias may be difficult to distinguish from valid recombinant gene72

variants (frequent in multigene complexes [11]), resulting in either PCR artefacts being falsely73

validated as a true allelic variants (type I errors, hereafter referred to as “false positives”) or in74

true allelic variants being falsely rejected as an artefact (type II errors, hereafter referred to75

as “allele dropout”) and 2) poorly amplified allelic variants may not be sequenced resulting in76

allele dropout, particularly when the number of sequences per amplicon (a set of sequences77

of a target region generated within a PCR) is low [5, 16, 35, 36, 61].78

79

The rapid dissemination of high-throughput DNA sequencing (HTS) platforms has provided80

molecular ecologists with an exciting opportunity to tackle the parallelised genotyping ofmul-81

tiple markers in numerous species, since it has allowed the generation of thousands of se-82

quences (termed “reads”) per amplicon, at a fraction of the cost and time needed by previous83

methods, which typically involved laboriously isolating individual sequences via a cloning vec-84

tor followed by Sanger sequencing [3, 36, 61]. However, HTS platforms have their own limita-85

tions, the most relevant being the relatively high amount of sequencing errors generated in86

a typical sequencing run [18, 23, 39, 55, 61]. For instance, Illumina, currently the mainstream87

technology for HTS amplicon sequencing, report an error rate (primarily substitutions of base88

pairs) of ≤ 0.1% per base for ≥ 75-85% of bases (see Glenn [18] for details), although final89

error rates are likely to be much higher and can reach up to 6% [39]. Indeed, previous geno-90

typing studies in multi-locus-systems (>10) reported average amplification and sequencing91

artefact rates of 1.5% to 2.5% per amplicon [49, 52, 58]. Therefore, PCR competition when92
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amplifying multiple loci per amplicon means that sequences from some genuine allelic vari-93

ants occur at a similar frequency to PCR artefacts or sequencing errors [5, 16, 35, 61]. In this94

scenario, poorly amplified alleles cannot be easily distinguished from artefacts during allele95

validation, leading to further false positives and allele dropout during genotyping.96

97

The need to distinguish PCR and sequencing artefacts from valid allelic variants has led to98

the development of multiple bioinformatic workflows (i.e. a set of bioinformatic steps during99

processing of sequencing data which eventually leads to genotyping, hereafter referred to as100

a “genotyping pipeline”). While all genotyping pipelines rely to some degree on the assump-101

tion that artefacts are less frequent than genuine allelic variants, they vary in the approach102

used to discriminate poorly amplified allelic variants from artefacts. Genotyping pipelines for103

complex gene families have been extensively reviewed in Biedrzycka et al [5]. Recently devel-104

oped pipelines cluster artefacts to their putative parental sequences thereby increasing the105

read depths of true variants [36, 48, 57, 63]. Currently, the most commonly used pipeline for106

MHC studies is the AmpliSAS web server pipeline [57]. After chimera removal, AmpliSAS uses107

a clustering algorithm to discriminate between artefacts and allelic variants, which take into108

account the error rate of a particular HTS technology and the expected lengths of the ampli-109

fied sequences. This is achieved in a stepwise manner, whereby it first clusters themost com-110

mon variant (according to specified error rates) and thenmoves on to the nextmost common111

variant, until no variant remains to be clustered. Microbiome studies, which typically amplify112

hypervariable regions of the 16S rRNA gene from very diverse bacterial communities within113

a single amplicon, have used a similar strategy to AmpliSAS, whereby potential artefactual114

variants are clustered to suspected parental sequences using Shannon entropy (referred to115

as “Oligotyping” [14]) or other similar clustering methods [2, 10].116

117

Most of the amplicon genotyping pipelines for multigene families available to molecular118

ecologists have only been tested on non-model organisms for which the real genotype is un-119

known (but see Sebastian et al [57]). As a consequence, studies have frequently depended on120

repeatability of duplicated samples to justify genotyping pipeline reliability [5, 16, 36, 52, 57,121

61]. However for a given set of PCR primers and sequencing technology, PCR and sequenc-122

ing bias, and thus in turn the rate of false positives and allele dropout, will be consistently123

repeatable [5]. For instance, the high rate of Illumina substitution errors are known to be124

not random (see references within Sebastian et al [57]) and therefore variants which result125

from substitution errors are highly repeatable between amplicons [5]. Furthermore, while126

the generation of PCR and sequencing artefacts is well known, the precise relationship be-127

tween artefacts and the number of alleles amplified within an amplicon for a given set of128

primers and sequencing technology has never been described. Yet, having a clear indication129

of this relationship is an important step in predicting what are the optimal pipelines settings130

(e.g. predicting error rates) for a given number of loci amplified within an amplicon. The lat-131

ter can only be achieved by experimentally manipulating the number of loci of a priori known132
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genotypes before PCR amplification and HTS sequencing.133

134

In this study, we artificially generated genotypes of known combinations of MHC alleles of135

a model organism (the chicken, Gallus gallus) by mixing DNA samples from 7 haplotypes as136

an example of a target multigene region of interest to molecular ecologists and to assess the137

accuracy of amplicon-based genotyping. While we focus on the MHC hereafter, all methods138

and results are applicable to any multigene family. Like many multigene complexes, MHC139

genes are subject to multiple gene conversion, duplication and deletion [44, 45, 47] and MHC140

gene copies vary considerably across and even within a species (reviewed in [30]). There-141

fore, the number of MHC loci present in a non-model study system often remains unknown.142

For instance, MHC class IIB copy number variation (CNV) was found to be as high as 21 in143

some passerine species, resulting in up to 42 allelic variants amplified within an amplicon144

and strong CNV between individuals [5]. In contrast, the chicken MHC B complex is unusu-145

ally simple, leading it to be coined as a “minimal essential” system, with only two MHC class146

I loci and two MHC class IIB loci [27–29]. The latter is therefore an ideal system to validate147

MHC genotyping pipelines for the following reasons: 1.) the structure of the B complex is148

well known with well-defined primers in conserved regions; 2.) the well characterised B com-149

plex haplotype lineages can be used so that the expected MHC genotyping results are known150

prior to sequencing and genotyping and 3.) The number of alleles amplified within an am-151

plicon can be experimentally engineered by combining DNA samples from multiple MHC B152

complex haplotypes.153

154

To perform the genotyping of known chickenMHC haplotypes and extract data concerning155

PCR and sequencing artefacts at each step of the genotypingworkflow, we developed and cali-156

brated our own genotyping pipeline (named ACACIA for Allele CAlling proCedure for Illumina157

Amplicon sequencing data). ACACIA is written in Python and it takes advantage of several158

previously published software dedicated to genomics (detailed in the methods), as well as159

the widely used Biopython library [12] to handle genomic data. We experimentally gener-160

ated a MHC dataset with a range of CNVs by combining DNA samples from multiple chicken161

MHC B complex haplotypes. Since MHC B complex in chickens is well characterised, optimal162

primers to amplify the entire exons which code for the antigen binding regions have been163

developed [20, 59]. However in most wildlife species, such extensive genomic information164

around the region of interest is unavailable. To avoid the problems associated with overfit-165

ting ACACIA to one specific dataset and to replicate the challenge of designing primers for166

a non-model species, we additionally designed primers within the exons coding for antigen-167

binding regions using sequence data from closely related Galliforme species that were not168

chickens (hereafter referred to as “cross-species" primers). The latter enabled us to gain in-169

sight into the relative amount of artefacts generated by an intentionally sub-optimal set of170

primers, for which we expected allele dropout.171

172
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Specifically, this study aimed to:173

1. validate ACACIA using experimentally manipulated genotypes with different CNV that174

are known a priori;175

2. to investigate the relationship betweenmultigene complexity (i.e. number of alleles am-176

plifiedwithin an amplicon) and artefacts generatedby PCRand sequencing (i.e. chimeras177

and insertions/deletions)178

179

Materials and Methods180

Samples and DNA extraction181

Chicken blood samples originated from experimental inbred lines kept at the Institute for An-182

imal Health at Compton UK (lines 72, C, WL and N) and the Basel Institute for Immunology in183

Basel Switzerland (lines H.B15 and H.B19+), as detailed in Jacob et al [24], Shaw et al [59] and184

Wallny et al [65]. These lines carry seven common B haplotypes: B2 (line 72), B4 and B12 (line185

C), B14 (line WL, sometimes referred as W), B15 (H.B15), B19 (H.B19) and B21 (line N). All the186

lines used in this study are homozygotes (NCBI accession numbers: AJ248572 to AJ248586).187

In each haplotype are two class IIB loci: BLB1 (previously known as BLBI or BLBminor) and188

BLB2 (BLBII or BLBmajor), with alleles now designated as BLB1*02 and BLB2*02 from the B2189

haplotype, etc. All alleles have different nucleotide sequences, except BLB1*12 and BLB1*19.190

DNA was isolated from blood cells by a salting out procedure [42].191

192

Generating 43 artificial MHC genotypes193

We artificially generated 43 genotypes of varying CNV by combining equimolar amounts of194

DNA samples from the sevenMHC haplotypesmentioned above (Table 1; created genotypes195

listed in Supplementary Table S1).196

197
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Table 1. In this study we generated 43 genotypes that were amplified twice (duplicated). The
number of alleles per genotype and the number of genotypes with that number of all alleles
are shown. The list of haplotypes used to artificially create the genotypes are listed in the
Supplementary Table S1.

Number of alleles per genotype Number of genotypes
2 7
4 7
6 7
8 7
10 7
11 5
12 2
13 1

Total 43

Optimal primers for chicken MHC class IIB198

We targeted 241 bp of the 270 bp exon 2 of MHC class IIB, the polymorphic region known199

to code for antigen binding sites, using the primers OL284BL (5'-GTGCCCGCAGCGTTCTTC-3')200

and RV280BL (5'-TCCTCTGCACCGTGAAGG-3') [20]. The primers are not locus specific and bind201

to both loci of the chicken B complex.202

203

Cross-species primer design for chicken MHC class IIB204

To replicate designing primers without any a priori knowledge of the species MHC Class IIB205

structure or sequences, we downloaded 61 exon 2 MHC class IIB sequences from seven Gal-206

liform species (Coturnix japonica, Crossoptilon crossoptilon, Meleagris gallopavo, Numida me-207

leagris, Pavo cristatus, Perdix perdix and Phasianus colchicus, all accession numbers are listed208

in the Supplementary Table S2) from GenBank (https://www.ncbi.nlm.nih.gov/genbank/). We209

thenusedPrimer3 [56, 64] to design the forwardprimerGagaF1 (5'-WTCTACAACCGGCAGCAGT-210

3') and the reverse primer GagaR2 (5'- TCCTCTGCACCGTGAWGGAC-3') aiming at amplifying211

151 bp of exon 2. No species were given more weight than others during primer design, and212

all default parameters of Primer3 (concerning melting temperatures and structural settings)213

were kept. The only exception is that we allowed up to two degenerate positions in the primer214

sequence.215

216
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PCR amplification, library preparation, and high-throughput sequencing217

For both datasets we replicated all individuals to estimate repeatability (nindividuals = 43 and218

namplicons = 86). Individual PCR reactions were tagged with a 10-base pair identifier, using219

a standardised Fluidigm protocol (Access Array™ System for Illumina Sequencing Systems,220

©Fluidigm Corporation). We first performed a target specific PCR with the CS1 adapter and221

the CS2 adapter appended. To enrich base pair diversity of our libraries during sequencing,222

we added four random bases to our forward primer. The CS1 and CS2 adapters were then223

used in a second PCR to add a 10bp barcode sequence and the adapter sequences used by224

the Illumina instrument during sequencing.225

226

The first PCR consisted of 3–5 ng of extracted DNA, 0.5 units FastStart Taq DNA Polymerase227

(Roche Applied Science, Mannheim, Germany), 1x PCR buffer, 4.5 mMMgCl2, 250 µM of each228

dNTP, 0.5 µM primers, and 5% dimethylsulfoxide (DMSO). The PCR was carried out with an229

initial denaturation step at 95°C for 4 min followed by 30 cycles at 95°C for 30 s, 60°C for 30 s,230

72°C for 45 s, and a final extension step at 72°C for 10 min. The second PCR contained 2 µl of231

the product generated by the initial PCR, 80 nM per barcode primer, 0.5 units FastStart Taq232

DNA Polymerase, 1x PCR buffer, 4.5 mM MgCl2, 250µM of each dNTP, and 5% dimethylsul-233

foxide (DMSO) in a final volume of 20µl. Cycling conditions were the same as those outlined234

above but the number of cycles was reduced to ten. Reducing the number of PCR cycles, the235

elongation time within PCR cycles and omitting the final extension step is recommended to236

reduce the number of chimeras when co-amplifying multiple loci, because most incomplete237

primer extensions which generate chimeras are thought to be formed in the final cycles of238

PCRs and during the final extension step (see discussion) [25, 34, 60]. However we chose to239

process samples using conventional PCR conditions, because a high number of cyclesmay be240

necessary in some study systems and we wanted to replicate conditions used in most MHC241

wildlife studies. Thus, we purposefully wanted to evaluate the robustness of our pipeline in242

the more challenging setting where a high number of artefacts might be generated due to243

sub-optimal PCR conditions.244

245

PCR products were purified using an Agilent AMPure XP (Beckman Coulter) bead cleanup246

kit. The fragment size and DNA concentration of the cleaned PCR products were estimated247

with the QIAxcel Advanced System (Qiagen) and by UV/VIS spectroscopy on an Xpose instru-248

ment (Trinean, Gentbrugge, Belgium). Samples were then pooled to equimolar amounts of249

DNA. The library was prepared as recommended by Illumina (Miseq System Denature and250

Dilute Libraries Guide 15039740 v05) and was loaded at 7.5 pM on a MiSeq flow cell with a251

10% PhiX spike. Paired-end sequencing was performed over 2 × 251 cycles.252

253
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Data analysis with the ACACIA pipeline254

ACACIA consists of 11 consecutive steps of data processing. The software requires two non-255

standard python libraries (Pandas [40] and Biopython [12]) as well as six third-party soft-256

ware (FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/), FLASh [37], VSEARCH257

[54], BLAST [1], MAFFT [26] and Oligotyping [14]), which can all be installed with one com-258

mand. The input files are any number of FASTq files, which are the current canonical output259

of the Illumina platform. The step-by-step workflow is described below:260

1. GeneratingQuality Reports. Sequencing quality is assessed for each FASTq file yielded261

by the sequencing platform, with the FastQC tool. Reports for each file are produced262

in HTML format for visual inspection.263

2. Trimming low quality ends of forward and reverse reads (optional). The informa-264

tion generated in step #1 is crucial for an informed decision about how many (if any)265

bases should be trimmed out of each read. If trimming is performed here, step #1 is266

repeated. Shorter FASTq files are generated as output of this step.267

3. Mergingpaired-end reads (optional). This concerns projectswith paired-end sequenc-268

ing only and should be skipped if using data from single-end sequencing (note: the269

names of the paired forward and reverse FASTq files should be identical prior to the first270

"_" character, e.g.: ID1S1L001_R1_001.fastq and ID1S1L001_R2_001.fastq). The reads of271

file pairs are merged using FLASh [37]. The minimum and maximum lengths of over-272

lap during merging can be adjusted by the user to improve performance (defaults are273

zero and read length, respectively). New FASTq files with merged sequences are gen-274

erated as output, as well as a series of .log files which allow users to monitor merging275

performance.276

4. Trimming primers. After prompting users to enter the sequences of the primers used277

for target amplification, ACACIA trims primer sequences from both ends of the merged278

sequences (IUPAC nucleotide ambiguity codes are allowed). Primerless sequences are279

written into FASTq files which are the output of this step. The Python functions for280

trimming primers and low-quality ends (step #2) are part of the core ACACIA pipeline.281

External tools were avoided here to decrease dependency on further software.282

5. Quality-control. Users are then prompted to enter the values of two parameters (q283

and p) to filter sequences based on their mean phred-scores. First, q stands for qual-284

ity and denotes a phred-score threshold that can take values from 0 to 40. Second,285

p stands for percentage and denotes the proportion of bases, in any given sequence,286

that have to achieve at least the quality threshold q for that sequence to pass the qual-287

ity filter. ACACIA uses the default values q = 30 and p = 90 if users do not explicitly288

change them. In practical terms, these thresholds correspond to an error probability289

lower than 10-3 in at least 90% of bases for each sequence. All information on quality290
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data of sequences passing this filter is then removed and FASTA files with high-quality291

sequences are given as the output of this step.292

6. Removing singletons. A large proportion of sequences contain random errors inher-293

ent to the sequencing technology [50]. To decrease file sizes without risking loss of294

relevant allele information, ACACIA removes all singletons (sequences that appear one295

single time) in an individual amplicon.296

7. Removing chimeras. The chimera identification tool VSEARCH [54] is employed here,297

with slightly altered settings (alignwidth = 0 and mindiffs = 1) aiming at increasing sen-298

sitivity to chimeras that diverge very little from one of the “parent” sequences. FASTA299

files with non-chimeric sequences, along with log files for each individual amplicon, are300

given as output.301

8. Removing unrelated sequences. All remaining sequences are then compared with302

a set of reference sequences chosen by users. This step aims at removing sequences303

that passed all filters so far but are products of unspecific priming during PCR. Typically,304

sequences phylogenetically related to those being analyzed can be downloaded from305

the GenBank (www.ncbi.nlm.nih.gov/genbank/). Users are prompted to provide one306

FASTA file with reference sequences, which is converted by ACACIA to a local BLAST307

database [1] and used for BLAST. Only sequences yielding high-scoring hits to the local308

database (E≤ 10-10) are written into new FASTA files as an output of this step, which is309

the workflow’s last filtering procedure.310

9. Aligning. The MAFFT aligner [26] is used to perform global alignments of sequences311

that have passed filters. Since all sequences are pooled into one single alignment out-312

put file, the individual IDs are now transferred from file names into the FASTA sequence313

headers. We have successfully aligned up to 603,513 sequences in a desktop computer314

with four CPUs and 32GBof RAM.Userswith a significantly higher number of sequences315

might find it useful to increase the computational parallelization of the aligner as de-316

scribed recently [43].317

10. Calling candidate alleles. The Oligotyping tool [14] is used to call candidate alleles.318

Although originally conceived as a tool for identifying variants from microbiome 16S319

rRNA amplicon sequencing projects, we recognisedOligotyping as ideal for other forms320

of highly variable amplicon sequencing projects. This step consists of concatenating321

high-information nucleotide positions (defined by entropy analysis of the alignment322

produced in the previous step) and subsequently using entropy information to cluster323

divergent variants, while grouping redundant information and filtering out artefacts.324

Although Oligotyping was conceived as a supervised tool, we automated the selection325

of parameter values aiming at high tolerance. This has the advantage of running an326

unsupervised instance of Oligotype as a pipeline step, at the cost of keeping potential327
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false positives among the results. Report files with a list of candidate alleles grouped328

by individual amplicons are the output of this step.329

11. Allele calling and final reporting. A Python script is used to perform the final allele330

calling by filtering out Oligotyping results according to the following criteria:331

• Removal of unique allele variants (Y/N). Setting Y (yes) removes all alleles identified332

in one single individual amplicon.333

• Absolute number of reads (abs_nor): minimumnumber of sequences that need to334

support an allele, otherwise the allele is considered an artefact. Ranges between335

0 and 1000, with default = 10.336

• Lowest proportion of reads (low_por): to be called in an individual amplicon, an337

allele needs to be supported by at least the proportion of reads, within that in-338

dividual amplicon, that is declared here. Ranges between 0 and 1, with default339

= 0, while a value greater than 0 is recommended for data sets with ultra deep340

sequencing depth, which can suffer more from false positives [5].341

Subsequently, putative alleles with very low frequency (both at the individual and popu-342

lation level) are scrutinised again. If the proportion of reads of a putative allele within an343

individual amplicon is less than 10 times lower than the next higher ranking allele, and if it is344

very similar (one single different base) to another, more frequent allele present in the same345

individual amplicon, that putative allele is considered an artefact and removed. Finally, if an346

individual amplicon has fewer than 50 sequences following all of the allele calling validation347

steps, it is eliminated. Users are able to change all parameter values, but ACACIA recom-348

mends settings based on our benchmarking. The output of this step consists of four files:349

• allelereport.csv: a brief allele report listing genotypes of all individual amplicons as350

well as frequencies and abundances of all alleles found in the run;351

• allelereport_XL.csv: a detailed allele report including the number of reads supporting352

each allele both within individuals and in the population;353

• pipelinereport.csv: a pipeline report quantifying read counts and sequences failing or354

passing each pipeline step described above;355

• alleles.fasta: a FASTA sequence file of all alleles identified in the run.356

To evaluate the pipeline, we calculated both allele calling accuracy and allele calling re-357

peatability. Allele calling accuracy was calculated as the percentage of alleles that have been358

correctly called across replicates. This was done by comparing the predicted genotype to359

the genotype generated by ACACIA. All alleles that were dropped out or false positives were360

marked as inaccurately called alleles. Allele calling repeatability on the other hand was cal-361

culated as the percentage of alleles called in both replicates (including false positives). Note362
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here that allele calling accuracy and repeatability are not necessarily correlated if allele calling363

errors are highly repeatable, i.e. either false positives or allele dropout are consistent across364

replicates. However, allele calling accuracy can only be calculated if the genotype is known a365

priori which will not be available to most wildlife studies. We have therefore calculated both366

measures to investigate the pitfalls of relying on allele repeatability to validate a genotyping367

pipeline.368

369

We investigated the best abs_nor and low_por settings for our datasets by first looking370

at the allele calling accuracy and repeatability at varying abs_nor values (range: 0-40, with371

low_por set at 0) first, and at varying low_por values (range: 0-0.02, with the optimal abs_nor,372

in our case 10) second. The latter is how we recommend users to find their optimal settings,373

although the range of abs_nor and low_por values to be investigated may vary across differ-374

ent datasets, depending on where the “peak” optimal setting lies.375

376

The pipeline is supervised by a configuration text file (config.ini) which is appended ev-377

ery time users enter one of the settings mentioned above. Users can avoid running ACACIA378

interactively (and run the whole workflow in a “hands-free” mode) by providing a complete379

config.ini file at the beginning of the workflow. A template of a config.ini file is given in ACA-380

CIA’s repository (https://gitlab.com/psc_santos/ACACIA/blob/master/config.ini).381

382

Data analysis with the AmpliSAS pipeline383

To compare how ACACIA performed relative to an existing relevant pipeline, we applied the384

web server AmpliSAS pipeline to our chicken datasets [57]. The default AmpliSAS parameters385

of a substitution error rate of 1% and an indel error rate of 0.001% for Illumina data was386

used. We then tested for the optimal ‘minimum dominant frequency’ clustering threshold387

for a given filtering threshold (i.e. 0.5% for the ‘minimum amplicon frequency’), by testing a388

set of thresholds of 10%, 15%, 20% and 25%. All clustering parameters tested gave an allele389

calling accuracy of 97%, but we chose the 25% clustering threshold because it was the only390

parameter which resulted in no false positives.391

392

Subsequently, AmpliSAS filters for clusters that are likely to be artefacts, including chimeras393

and other low frequency artefacts that have filtered through the clustering step [57]. The de-394

fault setting for the filtering of low frequency variants (i.e. ‘minimum amplicon frequency’) is395

3%. However this value was far too high for our datasets, and we tested a range of filtering396

threshold between 0% and 1% at 0.1% intervals (i.e. 0%, 0.1%, 0.2% etc.). We assessed the397

optimal filtering threshold using both allele calling accuracy and repeatability.398

399
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Statistical analyses400

To analyse the relationship between thenumber of alleles amplified and amplificationbias/artefacts,401

we used generalized additive mixed models using the "mgcv" package [68] in R version 3.6.3402

[51]. The three response variables that were explored using a binomial error distributions403

corrected for over-dispersion (aka quasibinomial) were: proportion of reads assigned to an404

allele, proportion of reads that were non-chimeric artifacts, proportion of reads that were405

chimeras. The response variables number of chimeric variant and number of parental vari-406

ants that were generating chimeric variants were analysed using a Poisson error distribution,407

with the latter corrected for over-dispersion (aka quasipoission). The fixed term number of408

alleles amplified was entered as a smoother and was limited to 6 estimated degrees of free-409

dom. To control for pseudo-replication, sample ID was entered as a random factor.410

Results411

Sequencing depth for each dataset and proportion of artefacts detected using ACACIA412

A total of 530,101 paired-end reads were generated for the optimal primers dataset, which413

amounted to an average of 6,164 reads per amplicon (n = 86). For the cross-species primers414

dataset, 994,338 paired-end reads were generated, amounting to an average of 11,562 reads415

per amplicon (n = 86). The proportion of artefacts identified at each step of the ACACIA416

pipeline for the chicken datasets combined is illustrated in Figure 1. Workflow filtering re-417

moved the highest proportion of reads when filtering for singletons (13.6%) and chimeras418

(14.2%). After all filters, 66.4% of the original raw reads were used for allele calling.419

420

Optimal settings of different workflows421

We compared allele calling repeatability across a range of different abs_nor and low_por set-422

tings when using the ACACIA workflow to identify the optimal settings according to genotyp-423

ing accuracy for our datasets. We first fixed the abs_nor setting at 10 and tested different424

low_por values and found that the optimal setting (i.e. the highest accuracy values) was 0425

across both datasets (Figure 2a.). Setting higher low_por values resulted in a higher allele426

dropout rate, which led to lower accuracy and repeatability scores. We then tested the opti-427

mal abs_nor setting for a fixed low_por value of 0 and found that the optimal setting was 10428

across both datasets (Figure 2b.). An abs_nor value of 0 increased the rate of false positives,429

whilst a value above 10 increased the rate of allele dropout.430

431

For the AmpliSAS workflow, we investigated the optimal filtering threshold and found dif-432

fering optimal values between datasets. For the optimal primer dataset, we found that the433

optimal filtering threshold was 0.3, whilst 0.5 was found to be optimal for the cross-species434
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Figure 1. Flow diagram of reads and sequences from the two Illumina runs ( a first run for
the optimal primer dataset and the second for the cross-species dataset) analysed with

ACACIA. Black bars denote the number of initial, raw reads (i.e. 100% of the reads generated
by the Illumina runs). Blue bars correspond to filtering steps, and the percentages given
correspond to the proportion of sequences from the previous step that were kept for the
next stage of the workflow. The percentage given at the bottom right (Artefacts) refers to
the total percentage of reads that were filtered from the total initial reads generated by

Illumina, prior to any filtering steps. (Fwd & Rev) raw forward and reverse reads; (Merging)
paired-end read merger, which includes a first quality filter; (Primers) primer trimming step,

which also removes sequences lacking full primers; (QC) quality control; (Singletons)
Singleton removal; (Chimeras) chimera removal; (BLAST) BLAST filter.

primer dataset (Figure 2c).435

436

AmpliSAS vs ACACIA: optimal primers dataset437

Whenusing the optimal settings of the ACACIAworkflow, comparison of results with expected438

genotypes revealed that nine alleles dropped out, no false positives were found (Table 2) and439

as a result allele calling accuracy was 98.5% (Figure 2a. and b.). All instances of allele dropout440

derived from the B21 haplotype. For two genotypes, both BLB1*21 andBLB2*21 dropped out.441

For four genotypes, only BLB2*21 dropped out and for one genotype only BLB1*21 dropped442

out (Table 2). Allele calling repeatability was 97.7%.443

444
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Figure 2. Allele calling accuracy and repeatability for the two datasets of this study (optimal
primers or cross-species primers) at different low_por threshold settings with abs_nor set at
0 within the ACACIA pipeline (a.); at different low_por threshold settings with abs_nor set at

0 within the ACACIA pipeline (b.); and, at different filtering thresholds (i.e. ‘minimum
amplicon frequency’) within the AmpliSAS pipeline (c.).
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Table 2. Specific genotypes within replicates which had a genotyping error using ACACIA
and AmpliSAS genotyping workflows (excluding allele dropout due to primer mismatch in the
cross-species primers dataset). Genotypes, replicates (Rep.), predicted number of alleles (#
Pred.All.), allele dropouts (Dropout) and false positives (F.P.) using ACACIA and AmpliSAS are
shown.

Genotype Rep. # Pred.All.
Dropout
ACACIA

Dropout
AmpliSAS

F.P.
AmpliSAS

a. Optimal primers dataset (BLB MHC class IIB)
B2-B4-B12-B14-B19-B21 1 11 BLB2*21 BLB2*21

BLB1*21
B4-B14-B15-B19-B21 1 10 BLB2*21 BLB1*21

2 10 BLB2*21 BLB2*21
B4-B15-B19-B21 1 8 BLB2*21 BLB1*21
B2-B4-B12-B14-B15-B19-
B21

1 13 BLB2*21
BLB1*21

BLB2*21
BLB1*21

B2-B4-B12-B14-B15-B21 1 12 BLB2*21
BLB1*21

BLB2*21
BLB1*21

B2-B12-B14-B15-B19-B21 1 11 BLB1*21
B2-B4-B12-B15-B19-B21 1 11 BLB1*21
B2-B4-B12-B15-B21 1 10 BLB1*21
B2-B4-B14-B15-B19-B21 1 12 BLB1*21
B2-B4-B14-B15-B21 1 10 BLB1*21
B2-B4-B15-B19-B21 1 10 BLB1*21

2 10 BLB1*21
B4-B12-B21 1 6 BLB1*04 1
B4-B14-B15-B19-B21 2 10 BLB1*21

b. Cross-species primers dataset (BLB MHC class IIB)
B12-B14-B15-B21 1 5 BLB1*12 or *19

2 5 BLB1*12 or *19
B14-B15-B19-B21 1 8 BLB1*12 or *19
B2-B12-B14-B15 1 6 BLB1*12 or *19

2 6 BLB1*12 or *19
B2-B12-B14-B15-B19-B21 1 11 BLB2*14
B2-B14-B15-B19-B21 1 10 BLB1*12 or *19
B2-B4-B12-B14-B15 1 10 BLB1*12 or *19

2 10 BLB1*12 or *19
B2-B4-B12-B14-B15-B19 1 11 BLB2*14
B2-B4-B12-B14-B15-B19-
B21

1 13 BLB2*14
B2-B4-B12-B14-B15-B21 1 12 BLB1*12 or *19
B2-B4-B12-B14-B19-B21 1 11 BLB2*14
B2-B4-B14-B15-B19-B21 1 12 BLB1*12 or *19
B4-B12-B14-B15 1 8 BLB1*12 or *19

Peer Community In Evolutionary Biology 16 of 39



2 8 BLB1*12 or *19
B4-B14-B15-B19-B21 1 10 BLB1*12 or *19

Using the optimal settings in AmpliSAS, across 86 genotypes, a total of 17 alleles dropped445

out, one false positive was found (Table 2) which resulted in an allele calling accuracy of 97%446

(Figure 2c.). As with ACACIA, most allele dropouts (16 of 17) derived from the B21 haplotype.447

For three genotypes, both BLB1*21 and BLB2*21 dropped out. For nine genotypes, only448

BLB1*21 alleles dropped out and for one genotype only BLB2*21 allele dropped out. Finally449

for one genotype the allele dropout was BLB1*04 and the same genotype had a false pos-450

itive allele (Table 2). Allele calling repeatability was 95.3%. Therefore,the ACACIA workflow451

resulted in higher allele calling accuracy and repeatability than the AmpliSAS workflow.452

453

AmpliSAS vs ACACIA: chicken cross-species primers dataset454

Using the optimal settings of ACACIA, we found a total of 134 allele dropouts across the 86455

genotypes and allele calling accuracy was 77.8% (Figure 2a. and b.). However, all dropouts456

were from the alleles BLB1*04, BLB1*15 or BLB1*21 which were never called in the genoyt-457

pes they were predicted to occur. Further comparison between the allelic reads and the458

primers revealed twomismatches at the 1st bp and 16th bpwithin the forward primer. Across459

the whole dataset, only 13 (0.001%), 114 (0.01%) and 11 (0.001%) reads prior to applying460

any downstream quality filtering steps after merging corresponded to BLB1*04, BLB1*15461

or BLB1*21 respectively. By comparison, the range for all other alleles was between 25,812462

(2.79%) and 115,489 (12.49%) and the range for all artifact reads were between one (0.0001%)463

and 5,535 (0.60%). Therefore all allele dropouts in the cross-species dataset when using the464

ACACIA workflow are explained by primer mismatch leading to very poor amplification and465

sequencing of these alleles which were well within the lower range of artefact reads. Since466

BLB1*04, BLB1*15 and BLB1*21 dropped out in all genotypes, allele calling repeatability be-467

tween both replicates was 100% when using the ACACIA workflow, which highlights that rely-468

ing on allele calling repeatability when validating a genotyping workflow can be misleading.469

470

Using the optimal settings of AmpliSAS, we found 152 allele dropouts across all genotypes471

and allele calling accuracy was 75.2% (Figure 2c.). As above, 134 dropouts were due to a472

mismatch with the forward primer. The remaining 17 alleles that dropped out were BLB1*12473

or *19 (13 alleles) and BLB2*14 (4 alleles) (Table 2). Allele calling repeatability between both474

replicates was 96.1%. Therefore, as with the optimal primer dataset the ACACIA workflow475

resulted in higher allele calling accuracy and repeatability than the AmpliSAS workflow.476

477
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Figure 3. The relationship between the number of alleles amplified within a PCR and the
proportion of reads assigned to alleles for each haplotype and locus. *Note that haplotype
B12 and B19 have the same BLB01 allele, therefore for presentation purposes only, when

both haplotypes were within the same genotype, BLB01*12 or *19 was assigned to
haplotype B12 to avoid pseudo-replication. BLB1*04, BLB1*15 and BLB1*21 failed to

amplify due to primer mismatch

Relationship between number of alleles amplified and artefacts478

In the optimal primer dataset, when amplifying within haplotype, all alleles amplified and479

the proportion of reads assigned to alleles ranged from 0.24 to 0.36 (Figure 3). The latter480

confirms the suitability of the primer set design for this model system. In contrast, in the481

cross-species dataset, primermismatch and systematic allele dropout for the alleles BLB1*04,482

BLB1*15 or BLB1*21 meant that three haplotypes had a single allele instead of two (Figure483

3). In both datasets, the contribution of allelic variants to the proportion of reads decreased484

sharply with increasing number of alleles when amplifying less than 4-6 alleles, but starts to485

level when amplifyingmore than 4-6 alleles (Figure 3, optimal dataset GAMM: F3.477, 542=237.3;486

p-value <0.001; cross-species dataset GAMM: F4.779, 420=99.73; p-value <0.001). Amplification487

efficiency was significantly different between alleles in both datasets (optimal dataset GAMM:488

F12, 542=10.63; p-value <0.001; cross-species datasetGAMM: F9, 420=35.53; p-value <0.001). Both489

alleles from the B4 and B21 haplotypes in the optimal dataset and the BLB2*04 allele in the490

cross-species primers dataset consistently amplified poorly when co-amplifying with alleles491

from other haplotypes (Figure 3; see Supplementary Figure S1 for multiple-comparison post-492

hoc of allele amplification). In the optimal primer dataset, the low amplification efficiency of493

the B21 haplotype when co-amplifying with other haploytpes explains the high allele dropout494

of alleles from this haplotype inmore complex genotpyes (i.e. when co-amplifying 10 ormore495
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Figure 4. The relationship between the number of alleles amplified and: the proportion of
reads that are non-chimeric artifacts (a.); the proportion of chimeric reads (b.); the absolute
number of chimeric variants (c.); and, the absolute number of parental variants generating

chimeric reads (d.).

alleles) (Figure 3).In contrast, the higher sequencing depth of the cross-species datasetmeant496

that BLB2*04 allele did not dropout. However, we identified a primer mismatch between497

BLB2*04 allele and the second base pair of the reverse primer, explaining the lower amplifi-498

cation efficiency of this allele when co-amplified with other alleles.499

500

The proportion of sequences classified as artefacts was much higher for PCRs using the501

optimal primer set than when using the cross-species primer set (Figure 4a. and 4b.; non-502

chimeric artefacts GAMM: F1, 74=2669.1; p-value <0.001; chimera: F1, 74=180.4; p-value <0.001),503

which is likely due to the fact that the fragment length of the optimal primer dataset was504
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longer relative to the cross-species primers dataset (241 bp vs 151 bp, respectively; see dis-505

cussion). For both datasets in this study, when considering non-chimeric artefacts, there was506

a positive relationship between the proportion of artefacts and the number of alleles am-507

plified (Figure 4a.; GAMM: F1, 74=207.3; p-value <0.001). There is a logarithmic relationship508

between the proportion of chimeric artefacts and the number of alleles amplified whereby509

the proportion of chimeric reads no longer increased with number of alleles amplified when510

amplifyingmore than 4-6 alleles (Figure 4b.; GAMM: F4.857, 74=35.77; p-value <0.001). The total511

number of unique chimeric reads also tended to follow a logarithmic relationship, whereby512

the number of unique chimeric variants seemed to no longer increase with the number of513

alleles amplified when amplifying more than 10 alleles (Figure 3c.; GAMM: F4.06, 74=117.5; p-514

value <0.001). The relationship between the total number of parental variants generating515

chimeras and the number of alleles amplified also levelled when amplifying more than six516

alleles (Figure 4d.; GAMM: F4.06, 74=117.5; p-value <0.001).517

518

Discussion519

Using known MHC genotypes for two datasets (chicken MHC Class IIB complex), we achieved520

higher allele calling accuracy (≥98.5%) and repeatability (≥97.7%) using ACACIA for the op-521

timal primer dataset. With fewer allele dropouts and false positives, the ACACIA pipeline522

performed better than AmpliSAS. We demonstrated the “costs” of designing primers within523

MHC exon 2 in terms of allele dropout, with three common alleles failing to amplify when524

using primers designed from sequences of related Galliforme species. We also explored the525

relationship between artefacts and the number of alleles amplified per amplicon, and, as526

expected, found heterogeneous amplification efficiency of allelic variants when amplifying527

multiple loci within a PCR. Surprisingly, the relationship between the proportion of chimeric528

artefacts and number of alleles amplified was not linear but rather leveled when amplifying529

more than 4-6 alleles. However, non-chimeric artefacts did increase linearly with increasing530

number of alleles amplified. Below we discuss in further detail ACACIA, AmpliSAS and other531

genotyping pipelines, primer design for non-model organisms, the relationship between the532

number of alleles amplified and artefacts, the effect of chimera formation on genotyping533

pipelines and, finally, we conclude by advising users on important points to consider when534

genotyping complex multigene families in non-model organisms.535

536

AmpliSAS vs ACACIA537

Experimentally generating CNV of known chicken MHC class IIB genotypes allowed us to vali-538

date our ACACIA pipeline to genotype systemswith high CNV complexity at high accuracy and539

repeatability across replicates in the optimal primer dataset. While we achieved higher allele540
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calling accuracy and repeatability using ACACIA than the AmpliSAS web server pipeline, we541

do not claim that ACACIA will necessarily perform better than AmpliSAS with all datasets. To542

demonstrate the latter we would need to test both pipelines on a larger number of datasets543

and/or on simulated datasets. In addition, while our pipeline should suit data generated with544

any high-throughput sequencing technologies, we have only tested ACACIA with paired-end545

Illumina sequencing technology.546

547

The most apparent benefit of using the AmpliSAS web server is that it is relatively easy to548

use for users with limited knowledge of scripting languages (such as PYTHON, PERL, C++ or549

R). However, we have noticed that a number of studies report results using default settings550

when applying the AmpliSAS pipeline to their dataset. We find this concerning since, as our551

study demonstrates, the default clustering and filtering parameters are unlikely to be opti-552

mal for most datasets. Indeed, allele calling accuracy wasmuch lower when using the default553

settings (81.8%) as compared to the optimal settings (97%) in the optimal primer dataset in554

our study, due to high allele dropout when using the default settings. We therefore strongly555

discourage users from using default settings and advise to permutate between different fil-556

tering and clustering parameters to find the best settings for their dataset when using the557

AmpliSAS pipeline. As most wildlife studies cannot assess allele calling accuracies, duplicat-558

ing samples and relying on repeatability is the only feasible method for most research to559

optimise their amplicon-based genotyping workflow. However, authors should bear in mind560

that due to the high recurrence of amplification and sequencing errors, high repeatability in561

allele calling between replicates does not necessarily entail an error free workflow and may562

be misleading. Therefore, careful design of primers and PCR conditions to reduce artefacts563

during amplification are crucial to maximise amplicon-based genotyping accuracy regardless564

of the bioinfomartic tools used (see further discussion on this below).565

566

An important disadvantage of the AmpliSAS web server is that at the time of writing, se-567

quencing depth per ampliconwas limited to 5,000 reads. The latter is particularly problematic568

when wishing to genotype systems with complex CNV, which require high sequencing depth569

to genotypewith high repeatability [5]. For datasets with sequencing depth above 5000 reads,570

AmpliSAS can be run locally but we found that, unlike the web server, the local version of Am-571

pliSAS had limited documentation and troubleshooting was time consuming.572

573

Once installed, ACACIA does not require users to have experience with scripting languages,574

allows genotyping with virtually unlimited sequencing depth and provides output data report-575

ing the number of reads kept at each step of the pipeline. The latter should aid users when576

deciding upon optimal parameters and thresholds. As for the AmpliSAS pipeline, we advise577

to not use default parameters of ACACIA without critically assessing different parameters for578

each dataset. In particular, we urge users to permutate between different settings of abs_nor579

and low_por parameters. We advise to first search for the optimal abs_nor setting with a fixed580
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low_por parameter of 0 because it is likely that it is only necessary to change the low_por pa-581

rameter setting from 0 in datasets with ultra deep sequencing depth. If it is subsequently582

found that the optimal low_por setting is greater than 0, users should repeat the permut-583

ing step of abs_nor until the optimal settings are found. Of course finding optimal settings584

requires the inclusion of replicates for at least a subset of the dataset. We therefore recom-585

mend that a sufficient number of replicates are always included in genotyping runs to obtain586

sufficiently accurate repeatability values.587

588

Comparing ACACIA to other pipelines589

Prior to the development of AmpliSAS and ACACIA, researchers whowished to genotype com-590

plex multigene families generally relied on either earlier software such as SESAME [41] or591

jMHC [62] or their own customised scripts (e.g. [31, 70]). However while both SESAME and592

jMHC aided allele calling workflows by allowing users to demultiplex sequences and to gen-593

erate tables which contains sequence variants and the number of reads, they do not allow594

users to apply an automated workflow to distinguish artefacts from real allelic variants.595

596

Genotyping pipelines have evolved andmatured in the last decade, however all genotyping597

pipelines rely to some degree on the assumption that artefacts are in general less frequent598

than genuine allelic variants. Genotyping pipelines vary in the methods used to discriminate599

poorly amplified allelic variants from artefacts. An early pipeline suggested by Radwan et600

al [52], which expanded from initial pipelines suggested by Kloch et al [31] and Zagalska-601

Neubauer et al [70], set a threshold below which all variants are considered artefacts (e.g.602

<1.5% per amplicon in Radwan et al [52]). This threshold is set by comparing rare variants603

to more common variants within an amplicon to determine whether the rare variant can604

be explained as an artefact (i.e. 1 to 2 bp mismatch compared to a common variant within605

an amplicon or a PCR chimera from two common parental variants within an amplicon). The606

weakness of this genotyping pipeline is that it relies on a single threshold below which all vari-607

ants are considered artefacts, potentially making it particularly vulnerable to allele dropout608

[61]. A second method was suggested by Sommer, Courtiol, & Mazzoni [61], which relied609

on comparisons between duplicated amplicons and a series of decision making trees to dis-610

criminate between allelic variants and artefacts. While the pipeline of Sommer, Courtiol, &611

Mazzoni [61] also assumes that artefacts are less frequent than most allelic variants, it does612

not rely on a single threshold below which all sequences are considered artefacts. However,613

one potential weakness of this method is that it may be more vulnerable to repeatable arte-614

facts and thus to false positives, particularly in systems highly diverse in terms of high copy615

number variation (CNV>10 [5]).616

617

A further disadvantage of all the above early genotyping pipelines is that much of the se-618
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quencing depth data is wasted by simply discarding low threshold sequences. To maximise619

the available sequencing depth, recent genotyping methods have clustered artefactual (non-620

chimeric) sequences to their suspected parental variant to increase genotyping confidence.621

This trend has been particularly strong in the 16S rRNA microbiome community, which have622

traditionally clustered sequence variants to so called operational taxonomic units (OTUs) us-623

ing a fixed similarity threshold (usually 97% similarity). More recent 16S rRNA clusteringmeth-624

ods such as the entropy based Oligotyping tool used within ACACIA [14], as well as model625

based methods such as DADA2 [10] and Deblur [2], have used alternative and more sophisti-626

cated statistical methods to simple similarity thresholds to distinguish sequence variants that627

differ by as little as one base pair. The clear benefit of clustering is that it significantly reduces628

the number of reads with low abundances, while increasing the read counts from poorly am-629

plified allelic variants. However even the most sophisticated clustering methods will retain630

some artefacts within datasets [2, 9, 14], hence the need for additional filtering steps follow-631

ing clustering. Downstream filtering strategies can also resemble the pre-clustering pipelines632

strategies mentioned above as was applied by Biedrzycka et al [5] using AmpliSAS in a highly633

complex system (19 to 42 allelic variants per amplicon). Biedrzycka et al [5] found a high634

agreement between genotyping methods as long as sequencing depth was sufficiently high.635

This will also likely be the case when applying ACACIA instead of AmpliSAS to such datasets.636

Biedrzycka et al [5] had a <90% allele calling repeatability when coverage <5,000 sequences637

regardless of the genotyping workflow used and reached 99% with a sequencing depth of638

20,000. While our study does not allow to extensively assess the relationship between CNV639

and sequencing depth using ACACIA, our results were consistent with [5] since allele calling640

repeatability was 97.7% for the optimal primer dataset and 100% for the cross-species primer641

dataset, which had an average sequencing depth of 6,164 and 11,562 reads per amplicon re-642

spectively. For the optimal primer dataset, regardless of the genotyping pipeline used, allele643

dropout occurred in genotypes with high CNV (for ACACIA 8 out of 9 and for AmpliSAS 12 out644

of 14 genotypes with allele dropouts had 10 alleles or more). Our optimal primers amplified645

all alleles at a similar efficiency when amplified within single haplotypes suggesting that the646

primers are indeed optimally designed. For all instances, allele dropout were alleles from the647

B4 and B21 haplotypewhich amplified poorly when coamplified with alleles fromother haplo-648

types. Higher sequencing depth will reduce or even remove such allele dropout instances [5].649

Indeed for the cross-species primer dataset, sequencing depth was nearly twice as high, and650

there were no instances of allele dropout due to the ACACIA pipeline (all allele dropouts were651

due to primer mismatch, see subsequent sub-section of the discussion) and allele calling re-652

peatability was 100%. Therefore, in order to reach allele calling repeatiabilty values <99%, we653

advise researchers to aim for a sequencing depth of at least 10,000 reads per amplicon when654

amplyfing more than 4 alleles per amplicon and of 20,000 reads when amplifying more than655

15 alleles regardless of the bioinformatic workflow used [5].656

657

An important benefit of the Oligotyping tool in ACACIA is that unlike other clustering meth-658
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ods which use the entire sequence, it only uses the base pairs with the most discriminant659

information based on entropy analyses [14]. In the context of MHC genotyping in particular,660

such a strategy makes much intuitive sense, since most functional differences between MHC661

alleles will be within specific regions of the sequences which will contain the antigen-binding662

sites that are highly polymorphic as a result of strong positive selection.663

664

The challenge of designing primers for non-model organisms665

A common approach for primer design in complex genomic regions of non-model organisms666

includes aligning multiple sequences of phylogenetically related species. By building primers667

on consensus sequences, researchers assume that oligos will also amplify the target region in668

the species of interest. However, knowledge about related species is often limited to very few669

individuals. This means that primers can be designed in regions that are polymorphic in the670

target species. As a consequence, certain allelic variants are not amplified and homozygosity671

is overestimated. Indeed, this proved to be the case in our cross-species primers dataset,672

whereby two mismatches (1st bp and 16th bp) within the forward primer (19 bp long) were673

sufficient to prevent the amplification of three alleles (out of 13). Interestingly, a single base674

pair mismatch between the second base pair of the reverse primer and the BLB2*04 allele675

did not prevent the amplification of this allele, although it did suffer severely from low ampli-676

fication efficiency when in competition with other alleles. However, high sequencing depth677

for the cross-species primer dataset prevented this allele from dropping out, regardless of678

the genotyping pipeline used. Our study therefore highlights the importance of carefully de-679

signed primers for amplicon based genotyping.680

681

Twonon-mutually exclusive strategies canbeused to decrease allele dropout in non-model682

organism with no a priori information on the target region. First, designing multiple primers683

and combining them within a PCR reaction is known to reduce allele dropout due to primer684

mismatch and allele amplification bias [38]. In addition combining multiple primers within685

PCR reactions reduces the need to sequencemultiple primer sets separately, considerably re-686

ducing the cost of using multiple primer sets to genotype a novel target region. Second, the687

recent development of long-read HTS of single molecules, such as Pacific Bioseciences Sin-688

gle Molecules Treal-Time sequencing or Oxford Nanopore sequencing, offers much promise689

in characterising the structure of novel target regions and consequently to enable more in-690

formed primer design [46]. For instance Fuselli et al [15] were recently able to develop an691

assembly pipeline that combined long-read HTS from a single sample with de novo short-692

read HTS assembly of six samples to characterise a 9Kb region of the MHC Class II (DRB)693

locus in Alpine chamois Rupicapra rupicapra. This approach allowed the authors to conclude694

with some degree of confidence that there is a single copy of the DRD locus within the six695

individuals sampled in their study and provides a reference template for future genotyping696
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strategies for a larger number of individuals [15]. More complex multi-gene families have697

also been characterised in primate species [32], including the MHC [19, 66] using long-read698

HTS. An important benefit of long-read HTS is that they may allow the design of locus specific699

primer design, which would reduce allele dropout due primer mismatch and allow assigning700

alleles to loci which could provide complete genotype information. Indeed, an important set-701

back of solely relying on short-read HTS is that assigning alleles to loci in complex systems702

is frequently impossible, even when using recent phasing algorithms [22], limiting the use703

of many population genetic analyses for these loci. In addition, CNV is currently likely to be704

underestimated inmany species since recent gene duplicationmeans that different genes of-705

ten carry identical alleles [69]. An important set-back with long-read HTS technologies, is that706

they have higher sequencing error rates than short read HTS (the reported error rates is 16%707

per base compared to 0.1% for Illumina HTS) and lower sequencing output (5-20 Gb/run com-708

pared to 200-600 for Illumina HTS) [4, 53]. Therefore, whilst long read HTS will undoubtedly709

improve our understanding of MHC and other mulitigene complexes structure and conse-710

quently non-model species primer design, population studies genotyping a large number of711

individuals are likely to continue to rely on amplicon-based genotyping from short read HTS712

for the foreseeable future.713

714

Relationship between number of alleles amplified and artefacts715

By knowing the exact alleles to expect for the chicken genotypes, we were able to quantify716

chimeric artefacts precisely (Figure 1). There was a higher proportion of chimeric and non-717

chimeric artefacts in the optimal primer dataset than in the cross-species primer dataset. The718

most likely explanation for the latter is the shorter sequence for the cross-species primer719

dataset (151 bp) compared to the optimal primer dataset (241 bp). A shorter fragment re-720

duces the number of base pairs that can be erroneously substituted/deleted and the number721

of breaking points for chimera formation. In addition, it is likely that the probability of incom-722

plete elongation is inversely related to fragment length. Thus, fragment length appears to be723

the dominant factor predicting the proportion of artefactual reads.724

725

As expected, the proportion of reads that were non-chimeric artefacts increased linearly726

as the number of alleles amplified with an amplicon increased, which can be explained simply727

by the fact that there is an increasing number of possible artefacts that can be generated as728

the number of initial template variants increases. Thus, reads that failed to be completely729

elongated within the PCR cycles are more likely to be erroneously elongated during the final730

extension step.731

732

An unexpected result was that the proportions of chimeras did not increase with increas-733

ing number of alleles amplified with an amplicon, when amplifying more than 4-6 alleles.734
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Similarly, when amplifying more than 10 alleles, the number of chimeric variants no longer735

increased with increasing number of alleles amplified within an amplicon. Such saturation736

in chimera generation beyond a threshold of alleles amplified is likely to be a by-product of737

allele PCR competition. Indeed, as demonstrated by our own data, there is amplification bias738

whereby some gene variants are amplified preferentially relative to others [38, 61]. There-739

fore, a few gene variants (~3-6 gene variants) are preferentially amplified and most chimeras740

originate from these dominantly amplified variants and few chimeras are generated from the741

poorly amplified variants. Indeed, we found that the number of parental variants generating742

chimeras in our dataset did not increase with increasing number of alleles amplified when743

amplifying more than 4-6 alleles. The non-linear relationship between chimera generation744

and number of alleles amplified have important implications when considering sequencing745

depth needed to accurately genotype complex multigene families, since it suggests that lin-746

early increasing sequencing depth for increasing CNV is not necessarily the optimal strategy.747

The challenges of dealing with chimeras in genotyping pipelines is discussed below in detail.748

749

Chimeras in genotyping pipelines750

The formation of artificial chimeras during amplification is an important source of artefacts751

in amplicon sequencing projects [34, 60], including those with newer sequencing technolo-752

gies [33]. Chimeras are challenging to identify as artefacts because they resemble real alleles753

generated by recombination, particularly in multigene families under high rates of interlocus754

genetic exchange (“concerted evolution”), which is common in many MHC systems [7, 8, 13,755

17, 21, 67]. Our results suggest that chimeras are more prevalent, harder to identify and po-756

tentially more reproducible across technical replicates than previously assumed. We expect757

the same to be true for similar projects with conserved, yet variable amplification targets such758

as the MHC.759

760

One allele erroneously called as a real variant (i.e. a false positive) by the AmpliSAS pipeline761

in the optimal primer dataset was actually a chimera between the BLB1*21 and BLB2*21 alle-762

les. Furthermore, when using the AmpliSAS pipeline, 15 allele dropouts in the cross-species763

primers dataset were due to erroneous assignment of real allelic variants as chimera arte-764

facts. Indeed, the BLB1*12 or *19 allele was identical to potential chimeric artefact sequences765

betweenBLB2*14 (85 possible breakpoints) and any of the following alleles: BLB1*04, BLB2*15,766

BLB2*19, BLB2*21 or BLB1*21 (Figure 5a.). In addition, BLB2*14 dropped out because it is767

identical to a chimera formed between the BLB1*02 and BLB1*12 or *19 alleles (33 break-768

points; Figure 5b.).769

770

Wehave identified two factors which seemed to enhance chimera formation and challenge771

the distinction between artefact and real allelic variants. First, the combination of multiple772
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Figure 5. Three alignments with examples of sequences which can be classified as chimeras.
The points denote identity to the first sequence in each alignment, while the differences to it
are highlighted. The shaded areas indicate possible chimera-yielding breakpoints. (a) The
allele BLB1*12 or *19 could be a chimera of BLB2*14 with any of the four other allele
sequences depicted, in a case of multiple potential parent pairs. (b) BLB2*14 can be

interpreted as a chimera between BLB1*12 or *19 minor and BLB1*02. (c) Actual chimera
with multiple potential parents and a peripheral breakpoint, and therefore very similar to

one of its parents.

real “parent” sequences can yield the same chimeras, as illustrated in our examples in Figure773

5a. and Figure 5b., whereby any breakpoint in the shaded areas leads to the same chimeras.774

Second, peripheral breakpoints (Figure 5c.) can generate chimeras that differ to parental775

sequences by as little as a single base pair. For instance, a chimera could be a product of776

the allele BLB2*21 combined with any of the other alleles shown in the alignment, with a777

breakpoint within the shaded area (Figure 5c.). Since the potential breakpoints are at the778

very end of the sequence, the chimera is very similar to one of its parents (in this example, it779

is different from BLB2*21 by only one base). In an attempt to deal with this issue as much as780

possible, we changed the default settings of VSEARCH so that chimeras can be detected even781

if they differ from one parent by one single base. Both the “multiple parents” and the “pe-782

ripheral breakpoints” issues are likely to contribute to making chimeras reproducible across783

replicates.784

785

Our study highlights the challenges of chimeras for amplicon-based genotyping. In our786

study, we purposefully used conventional PCR conditions to replicate methods used by most787

wildlife MHC studies. However, the formation of most chimeras is known to occur during the788

final cycles of PCR amplification when dNTP and primer concentrations are low and when789

incompletely elongated sequences are high [25, 34, 60]. When target primers and dTNPs con-790

centration are low during the latter stages of PCR cycles, incompletely elongated sequences791

act as primers and bind with the wrong sequences generating chimeras. Chimera forma-792
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tion during amplification can be simply reduced by adjusting the ratio of DNA template to793

dNTP and primer concentrations, reducing the number of cycles, increasing the extension794

step within PCR cycles and omitting the final extension step (which elongates high concentra-795

tions of incomplete chimeric sequences) [25, 34, 60]. Therefore, prior to any amplicon based796

genotyping study, we advise researchers to reduce artefacts, including chimeras, during the797

wet lab stage of their workflow by applying carefully designed and optimal PCR conditions.798

Practices during the wet lab that reduce artefacts generation in the first place is likely to be799

the most effective way of reducing genotyping errors regardless of the bioinformatic allele800

calling workflow used.801

802

Conclusion803

Genotyping accuracy and artefacts are intrinsically linked. We have demonstrated that the804

ACACIA genotyping pipeline provides high allele calling accuracy and repeatability. Regard-805

less of the pipeline used, however, users should critically assess the optimal parameters to806

be used concerning both the wet lab and bioinformatic pipelines. We are convinced that807

universal default settings for optimal genotyping accuracy cannot be achieved, since optimal808

parameters will depend on dataset-specific generation of artefacts. The latter, in turn, varies809

according to species-specific CNV, DNA quality, and the conditions of PCR (e.g. extension time,810

number of cycles and the polymerase used) and sequencing (e.g. quality and depth). High se-811

quencing depth allows detecting alleles that amplify poorly in complex (multigene) systems.812

Furthermore simple steps prior to sequencing can greatly reduce the number of artefacts813

generated and improve genotyping accuracy: designing more than one PCR primer pair, re-814

ducing the number of PCR cycles, increasing PCR in-cycle extension time, and omitting the815

final extension step. Reducing chimera formation during PCRs is particularly critical, because816

they are difficult to distinguish from real alleles generated by inter-locus recombination.817

Data accessibility818

Raw sequences of all datasets, example input files, suggested settings and the source code at819

the time of this publication are available at FigShare (https://figshare.com/projects/ACACIA/820

66485 and doi.org/10.6084/m9.figshare.9952520). ACACIA is freely available on the GitLab at821

https://gitlab.com/psc_santos/ACACIA (this paper’s code is available as a snapshot tagged as822

V1.0, https://gitlab.com/psc_santos/ACACIA/-/tags/V1.0), under an MIT license.823
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Supplementary material830

Supplementary Table S1 The chickenMHC B complex haplotypes and combined haplotypes
which formed experimental genotypes with varying number of alleles.

Combined haplotypes Number of alleles
B2 2
B4 2
B12 2
B14 2
B15 2
B19 2
B21 2
B2-B4 4
B2-B12 4
B4-B12 4
B12-B14 4
B12-B21 4
B14-B15 4
B19-B21 4
B2-B4-B19 6
B2-B14-B19 6
B2-B15-B19 6
B4-B12-B21 6
B4-B14-B19 6
B12-B14-B21 6
B15-B19-B21 6
B2-B4-B12-B14 8
B2-B12-B14-B15 8
B2-B14-B19-B21 8
B4-B12-B14-B15 8
B4-B15-B19-B21 8
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B12-B14-B15-B21 8
B14-B15-B19-B21 8
B2-B4-B12-B14-B15 10
B2-B4-B12-B14-B21 10
B2-B4-B12-B15-B21 10
B2-B4-B14-B15-B21 10
B2-B4-B15-B19-B21 10
B2-B14-B15-B19-B21 10
B4-B14-B15-B19-B21 10

B2-B4-B12-B14-B15-B19 11
B2-B4-B12-B14-B15-B21 12
B2-B4-B12-B14-B19-B21 11
B2-B4-B12-B15-B19-B21 11
B2-B4-B14-B15-B19-B21 12
B2-B12-B14-B15-B19-B21 11
B4-B12-B14-B15-B19-B21 11

B2-B4-B12-B14-B15-B19-B21 13

Supplementary Table S2 The list of NCBI accession numbers, along with species name, of
the 62 MHC Class IIB exon 2 used to design the "cross-species" primers.

Species Accession number
Coturnix japonica AB110466
Coturnix japonica AB110468
Coturnix japonica AB110475
Coturnix japonica AB110477
Coturnix japonica AB110478
Coturnix japonica AB110482
Coturnix japonica AB181862
Coturnix japonica AB181866
Coturnix japonica AB181867
Coturnix japonica AB181868
Coturnix japonica AB181871
Coturnix japonica AB181872
Coturnix japonica AB181873
Coturnix japonica AB181874
Coturnix japonica AB181875
Coturnix japonica AB181876
Coturnix japonica AB181877
Coturnix japonica AB264281
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Coturnix japonica AB264282
Coturnix japonica AB282647
Coturnix japonica AB282648
Coturnix japonica AB282649
Coturnix japonica AB282650
Coturnix japonica AB282651
Coturnix japonica XM_015878560

Crossoptilon crossoptilon JQ001779
Meleagris gallopavo AM233486
Meleagris gallopavo FJ946995
Meleagris gallopavo FJ946997
Meleagris gallopavo GU189283
Meleagris gallopavo GU189285
Meleagris gallopavo GU189286
Numida meleagris DQ885563
Numida meleagris EF643464
Numida meleagris EU030445
Numida meleagris XM_021413450
Numida meleagris XM_021413509
Pavo cristatus AY928093
Pavo cristatus AY928094
Pavo cristatus AY928096
Pavo cristatus AY928097
Pavo cristatus AY928098
Pavo cristatus AY928100
Pavo cristatus AY928101
Pavo cristatus JQ001780
Perdix perdix KF007890
Perdix perdix KF007892
Perdix perdix KF007894
Perdix perdix KF007895
Perdix perdix KF007896
Perdix perdix KF007897
Perdix perdix KF007898
Perdix perdix KF007900
Perdix perdix KF007901
Perdix perdix KY040298
Perdix perdix KY040299
Perdix perdix KY040300
Perdix perdix KY040302
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Phasianus colchicus AJ224346
Phasianus colchicus AJ224347
Phasianus colchicus AJ224349

Supplementary Figure S1Multiple-comparison post-hoc of allele amplification according
to GAMM estimates for the optimal and cross-species datasets. Dots represent the

coefficient estimates and the thin lines are 95% confidence intervals.
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