Trend analysis of statistically downscaled precipitation for tropical semi-arid climate
Abstract
The coarse resolution climatic data extracted from the global climate models (GCM) cannot be utilised straightaway for research works on climate change impact analysis. Thus, the downscaling technique is used to attain a higher resolution scenario from the GCM. In the current study, the Canadian Centre for Climate Modelling and Analysis (CCCma)-GCM is used to predict monthly precipitation using the statistical downscaling technique for the tropical semi-arid region of Eastern Gujarat for the period 2019-2099. Geo-potential height (h500) and mean sea level pressure (MSLP) are chosen as explanatory variables for the downscaling model. The model is developed using the principal component analysis (PCA) - multiple linear regression (MLR) combined approach. The model is applied to predict rainfall for three representative concentration pathway (RCP) scenarios, RCP2.6, RCP 4.5, and RCP 8.5. The best-suited scenario for the study area is selected using robust statistical indicators such as the Nash-Sutcliffe efficiency and the root mean square error. Several parametric and nonparametric tests are conducted to analyse rainfall trends in the Eastern Gujarat region. The outcomes showed that the precipitation scenario produced for RCP4.5 replicates the climatology of the region suitably. The trend investigation of the predicted rainfall showed that the significance of the seasonal trend is independent of the significance of monthly trends. Trend analysis of downscaled precipitation series can report multiple change points for a region. Further, the annual rainfall increases significantly in the tropical semi-arid regions over the 21st century. This study will provide insights into sustainable water resource management and development.
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1      |      INTRODUCTION
Climate change is an unavoidable fact. India is suffering tremendously from the impacts of global climate change (Jain & Singh, 2020; Mishra, 2019; Rickards et al., 2020). Irregularity in hydrological processes is increasing because of radical changes taking place in the climate (Intergovernmental Panel on Climate Change [IPCC], 2007). The anthropic emission of greenhouse gases (GHG) was the foremost reason for global warming in the 20th century (Crowley, 2000). Climate models can imitate the alterations in the global climate throughout the last century if both natural and anthropogenic factors are taken into consideration (IPCC, 2007). The disastrous effects of the variation in climate include glacier melting, increasing sea level, and increasing rate of tropical storms (Alavian et al., 2009). One of the most reliable instruments for analysing the effects of the fluctuating climate is the general circulation model (GCM; Maraun et al., 2010). These are efficient in reproducing the past climatic alterations using both natural and anthropogenic factors responsible for the change (IPCC, 2007). GCM yields have a very coarse spatial scale but works related to climate change impact analysis need high-resolution climatic inputs (Ghosh & Mujumdar, 2008). The resolution difference between the GCM outputs and basin-scale hydrologic variable creates primary hindrance in the impact analysis studies (Willems & Vrac, 2011). The downscaling technique is developed to eradicate the scale mismatch between these variables.
Downscaling techniques are primarily segregated into two classes, dynamical and statistical downscaling. Dynamical downscaling sets the GCM outputs as boundary conditions for regional climate models to generate the climatic parameters at a spatial resolution of 10-50 km (Yang, Li, Wang, Xu, & Yu, 2012). The dynamic downscaling technique can simulate spatially distributed climatic scenarios at a refined scale as compared to the GCM (Maurer & Hidalgo, 2008). The technique involves complex physical processes happening in the atmosphere and requires extensive capital investment for computation. Whereas, statistical downscaling models empirically link the GCM outputs with fine-scale meteorological parameters (Hay & Clark, 2003). Hence, this method is very cost-effective compared to the dynamical downscaling technique (Akhter, Das, Meher, & Deb, 2019; Sachindra, Huang, Barton, & Perera, 2014). Observed climatic data for an extended period are essential for establishing the statistical downscaling model (Sachindra, Huang, Barton, & Perera, 2013). The model presumes that the empirical predictor-predictand linkage is stationary (von Storch, Langenberg, & Feser, 2000).
Three kinds of statistical downscaling techniques are there: the regression-based approach, the weather classification method, and the weather generator technique (Wilby et al., 2004). Regression models are widely accepted by researchers because of their simplicity and efficiency (Nasseri, Tavakol-Davani, & Zahraie, 2013). Chu, Xia, Xu, and Singh (2010) applied multiple linear regression (MLR) to perform a spatio-temporal downscaling and successfully predicted point scale daily precipitation, temperature, and pan evaporation in the Haihe River Basin, China. Goyal and Ojha (2010) used a series of regression-based downscaling techniques on monthly rainfall in the Pichola catchment, India, and found that the linear regression method performed very well. Ghosh and Mujumdar (2006) utilised MLR and fuzzy clustering-based statistical downscaling method to generate future precipitation scenarios for Odisha, India, and concluded that the technique worked adequately.
Detailed trend analysis of the downscaled rainfall data is beneficial for sustainable water resources management and disaster control (Hossain, Rasel, Imteaz & Mekanik, 2020). Both parametric and nonparametric techniques are typically applied for the investigation of trends in the meteorological data. The parametric approaches are employed to test the trend in uncorrelated, random, and normally distributed time series. Whereas nonparametric methods are adapted for the trend analysis of serially independent, random, and arbitrarily distributed datasets (Jaiswal, Lohani, & Tiwari, 2015; Patakamuri, Muthiah, & Sridhar, 2020; Wagholikar, Ray, Sen, & Kumar, 2014; von Storch, 1999). Very few researchers had examined the trend in the downscaled meteorological series. Most of the studies do not even reflect the inhomogeneity and autocorrelation in the meteorological variable before testing the trend (Goyal, Burn, & Ojha, 2012; Guo, Chen, Xu, Guo, & Guo, 2012; Tao, Chen, Xu, Hou, & Jie, 2015).
The most popular nonparametric tests used for finding the trend direction are the Mann-Kendall (MK) technique (Kendall, 1955; Mann, 1945) and Spearman’s rank correlation coefficient (SRC) method (Lehmann & D’Abrera, 1975; Spearman, 1904). Sen’s slope (SS) estimator (Sen, 1968) is utilised for estimating the trend magnitude. The above tests are used for analysing the trend in the homogeneous and serially independent time series. It is very essential to test the homogeneity and serial correlation in downscaled meteorological data before examining its trend. Homogeneity tests are used to detect the impact of non-climatic forces on the meteorological parameters over time (Emmanuel, Hounguè, Biaou, & Badou, 2019; Onyutha, Tabari, Taye, Nyandwaro, & Willems, 2016; Patakamuri et al., 2020). The most widely utilised homogeneity tests are the Buishand’s range (BR) approach (Buishand, 1982), the standard normal homogeneity (SNH) method (Alexandersson, 1986), Pettitt’s technique (Pettitt, 1979), and the von Neumann approach (Von Neumann, 1941). The first three tests used for homogeneity analysis also apply for CP investigation in an inhomogeneous dataset. Altered variants of MK tests such as pre-whitening (PW; Kulkarni, & von Storch, 1995; von Storch, 1999), trend free pre-whitening (TPW; Yue, Pilon, & Cavadias, 2002), bias-corrected pre-whitening (BPW; Hamed, 2009), variance correction technique proposed by Hamed and Rao (1998) (VCH; Hamed & Rao, 1998), and variance correction method recommended by Yue and Wand (2004) (VCY; Yue & Wand, 2004) has been applied for determining the trend in data series having autocorrelation. It is also essential to examine the change point (CP) in the downscaled data prior to testing the trend. But limited studies have reported CP in the hydro-climatic series (Sonali & Kumar, 2013). Goyal et al. (2012) had performed trend analysis on downscaled precipitation series of the Upper Thames Basin using the MK technique alone and showed an increasing temperature trend for the area. Guo et al. (2012) applied the MK test for examining the trends of the downscaled precipitation of the Yangtze River Basin and observed a mixed rainfall trend in the region. Tao et al. (2015) utilised the MK approach for examining the trend in the downscaled meteorological variable for the Xiangjiang River Basin. 
Insufficient data from a single reliable source is a common problem faced by researchers around the world. The current study proposes the use of observed rainfall data from two unique sources as predictand for downscaling model development. In this study, GCM variables are interpolated at NCEP grid points using a regression-based interpolation approach instead of traditional techniques. We compare the RCP scenarios for selecting the best-suited pathway for the region. The research work is also aimed at predicting the monthly precipitation using the statistical downscaling technique and examining the trend in the downscaled data for the tropical semi-arid region of Eastern Gujarat. This study will aid in disaster management and socioeconomic growth of the region.
2      |      STUDY SITE
In the current study, a tropical semi-arid region was selected for trend analysis of downscaled rainfall. The Eastern half of Gujarat fulfilled the criteria required for the research work (Figure 1). The region selected for the study has 82,696 km2 area and has a population of around 42.1 Million (Ministry of Home Affairs, 2011). The area experiences a dry and an arid climate. The region is also characterised by scorching summer, dry-arid winter, and hot-humid monsoon. 
3      |      MATERIALS AND METHODS
3.1      |      Data
In this research, rainfall at the monthly time scale is downscaled for Eastern Gujarat. The predictor variables selected for the model development should be adequately replicated by the GCM, easily available from the GCM archives, and strongly linked to the predictand (Wetterhall, Halldin, & Xu, 2005). Rainfall can be linked to wind velocities, geo-potential height, and ambient pressure as precipitation is strongly correlated with the movement of air-mass and water vapour in the atmosphere (Cannon & Whitfield, 2002; Wetterhall et al., 2005). Following preliminary correlation analysis and the literature (Ghosh & Mujumdar, 2006), mean sea level pressure (MSLP) and geo-potential height at 500 hPa (h500) were selected as the explanatory variables for the model. Gridded NCEP-NCAR reanalysis data (2.5o x 2.5o) attained over the area 20o-25o N and 70o-75o E for the period 1961-2005 served as predictors of the model. Reanalysis datasets are produced by very high-quality climate models that receive inputs from the surface, air, and satellite observation platforms. Researchers have often utilised these datasets in the absence of observed meteorological data (Raje & Mujumdar, 2011). Weighted average monthly rainfall data for the region for the period 1961-2006 was gained from the archives of the Indian Institute of Tropical Meteorology (IITM), and the data for the 1982-2018 study period were obtained from the Prediction of Worldwide Energy Resources (POWER) Project of  NASA (www.power.larc.nasa.gov). Data were acquired from two sources because the IITM archive had data for the 1901-2006 period only. Hence, another source had to be selected to collect recent data. The IITM provides weighted average monthly rainfall data based on high-quality information obtained from 316 rainfall observatories appropriately distributed throughout the area. High-resolution gridded data (0.5o x 0.5o) provided by the POWER Project was used to attain the weighted average data for the area using the Thiessen polygon method. Before proceeding further, the eligibility of the POWER project rainfall data was checked for extending the IITM rainfall record.
As a part of the empirical downscaling technique, a statistical link was developed among the predictors (i.e., the NCEP-NCAR variables) and the predictand (i.e., the observed precipitation dataset). The future rainfall was predicted using the GCM outputs as predictors of the model. The GCM data was acquired from the archive of CCCma-Coupled Model Intercomparison Project Phase 5 (CMIP5). GCM provides future climate projection as representative concentration pathway (RCP), which is a greenhouse gas concentration trajectory showing radiative forcing (i.e., the trapping of heat because of greenhouse gases). In the current study, three GCM scenarios labelled as RCP2.6, RCP4.5, and RCP8.5 were selected for the future rainfall prediction. The number associated with RCP indicates the radiative forcing (in W/m2) to be achieved during the 21st century (IPCC, 2014). The model-predicted rainfall series for the three pathways were compared with the observed rainfall dataset to determine the RCP that adequately represents the climatology of the region. According to Ghosh and Mujumdar (2006) the GCM outputs available at sub-daily time scales have low reliability. Hence, monthly scale GCM data was used in this study. GCM data for the three RCP scenarios were obtained for the area spanning 18.13o-26.51o N and 67.5o-75.94o E for the period 2006-2099.
3.2      |      Downscaling model
Both NCEP-NCAR and GCM variables were standardised before training the downscaling model to eradicate systematic errors in the means and variances of the series. Standardised meteorological parameters were obtained by deducting the series from its mean and subdividing the result by the SD of the data. Researchers have frequently used methodologies such as multidimensional scaling, principal component analysis (PCA), independent component analysis, maximum variance unfolding, and factor analysis to decrease the dimensionality of the predictor variables (Fodor, 2002). However, a detailed comparison of various dimensionality reduction methods conducted by van der Maaten, Postma, and van den Herik (2009) indicates that PCA yields the most optimal results. Hence, PCA was implemented to reduce dimensionality and to produce non-correlated orthogonal variables. The principal component (PC) produced by PCA is a linear blending of the predictor variables. Many researchers have applied a regression-based approach to developing the downscaling model. Among the regression techniques considered, MLR has consistently produced the most satisfactory result for several regions (Goyal & Ojha, 2010; Hay & Clark, 2003).
The NCEP-NCAR reanalysis and GCM data have spatial resolutions of 2.5o x 2.5o and 2.8o x 2.8o, respectively. Figure 2 depicts the schematic representation of the link among the GCM, NCEP-NCAR, and the predictand variables in the Eastern Gujarat region. The downscaling model established using NCEP-NCAR datasets cannot be utilised directly for the prediction of future rainfall using GCM datasets due to the resolution difference. Hence, the GCM variables were interpolated at the NCEP grid points to resolve the issue. In this study, a linear regression-based interpolation method was adopted instead of traditional spatial interpolation techniques (Goly, Teegavarapu, & Mondal, 2014). Equation (1) describes the MLR technique employed to replace spatial interpolation methodologies:
	
	(1)


Where  denotes the GCM variables at the kth grid at the jth interval of time,  refers to the regression coefficients, n is the overall number of GCM grid points, and  indicates the GCM variables at the NCEP-NCAR grid points. The NCEP-NCAR and GCM grid points superposed in the study area are shown in Figure 3. An overview of all the methodologies applied for the downscaling model development is depicted in Figure 4.
3.3   |   Model evaluation 
In this study, several quantitative and qualitative measures were adapted to examine the model performance. Observed rainfall was plotted against the model predicted rainfall for a graphical investigation. If the best-fit line of the plot lies above (below) the 1:1 line, it indicates that the model output is overestimated (underestimated). The coincidence of the regression line and 1:1 line implies a strong correlation between the observed and predicted datasets. Root mean square error (RMSE) was chosen to estimate the magnitude of error in the downscaling model, as shown in Equation (2):
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Where Pj and Qj are the observed and predicted series with samples size n. RMSE varies between 0 and 1, where ‘0’ shows a seamless fitting. Another popular indicator, the Nash Sutcliffe Efficiency (NSE; Nash & Sutcliffe, 1970), was used for model evaluation which was calculated using Equation (3):
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Where  refers to the average value of the observed dataset. The NSE value varies between -∞ to 1, where NSE = 1 suggests a flawless fitting and NSE ≤ 0 shows very poor model simulation. According to Gupta and Kling (2011), the NSE is an extensively utilised statistical indicator in hydro-climatic studies because of its applicability to a variety of mathematical models. McCuen, Knight, and Cutter (2006) reported that the NSE is affected by the bias present in the model simulations. To interpret the NSE values, Ritter and Muñoz-Carpena (2013) proposed a robust statistical indicator (C) for evaluating the model performance given by Equation (4):
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Ritter and Muñoz-Carpena (2013) classified the model assessment rating into four categories according to C and NSE ranges. Table 1 presents a summary of the efficiency evaluation criteria. A model is considered satisfactory if its residuals are serially independent. The autocorrelation coefficient () for a series can be estimated using Equation (5):
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Where ρ1 is the coefficient of autocorrelation (lag-1), Xi refers to the value of the variable of size m at the ith position, and E(xi) shows the expected value of the variable which is estimated using Equation (6):
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The critical values of the correlation coefficient proposed by Anderson (1942) are given in Equation (7):
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Autocorrelation is significant if the ρ1 value lies beyond the range of critical values. Further, the Ljung-Box statistic (Q) was used to test the significance of autocorrelation (Ljung & Box, 1978). The statistic Q was calculated by Equation (8) as:
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The null hypothesis (i.e., time series is random) is dismissed for larger values of Q. If the probability associated with Q is more than α = 0.05, then the time series is considered serially independent. Otherwise, it is considered that the serial correlation in the dataset is significant and the model is unsatisfactory.
3.4      |      Trend analysis
Several techniques were used to examine the trend in the downscaled rainfall data. The chronological steps of the analysis are:
· Homogeneity tests
· Trend CP analysis 
· Serial correlation test 
· Trend analysis 
3.4.1      |      Homogeneity tests
Inhomogeneity in time series is raised due to reasons such as erroneous instrumentation, structural alterations in the surrounding areas, and mismanagement by humans. However, there is no scope for such errors in downscaling studies involving future rainfall prediction. For these studies, inhomogeneity shows a substantial change in the climate for the region. The trend analysis of an inhomogeneous time series shows an incorrect result. The following four statistical tests were utilised for homogeneity analysis in the study. These four tests consider a null hypothesis that the time series is homogeneous.
SNH technique
For a time-series Xj having an average value of , test statistic T(m) defined by Alexandersson (1986) was estimated using Equations (9) and (10):
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	(10)


If a CP is found at year m, T(m) approaches a peak value at the year m=M. The statistic T0 is determined by Equation (11):
	
	(11)


The dataset is considered significantly inhomogeneous if T0 value surpasses the critical value. 
BR technique
Equation (12) gives corrected partial sums for a variable Xj having an average value of  for the BR method:
	 and  where t=1, 2,..., n
	(12)


In a homogeneous dataset, the  oscillates around zero as there is no significant diversion of the Xj compared to their mean. If a CP occurs in the dataset, the  value attains an optimum value at the year t = T. The rectified range (R) expressed in Equation (13) is employed to investigate the significance of the CP:
	R= ()/S, 0 ≤ t ≤ n 
	(13)


The significance of inhomogeneity is analysed by comparing the R/√n value with the critical values of the test.
Pettitt’s technique
Pettitt’s approach is a widely applied nonparametric ranking test. The rank rm associated with the series Ym is calculated by Equation (14):
	 m=1, 2,…, n
	(14)


If CP appears near the year M, then the test statistic attains an optimum value YM near the year m = M. Equation (15) gives YM as:
	, 
	(15)


The significance of inhomogeneity is analysed by comparing YM value with the critical values of the test.
Von Neumann’s ratio test
Von Neumann (1941) proposed an innovative approach for detecting inhomogeneity in a time series. Equation (16) provides the formula for estimating the ratio N for a variable Xj (j refers to the years from 1 to n) having an average value  as:
	
	(16)


If a CP exists in the series, the N value will be lesser than the mean of the series. If the expected value of the series fluctuates rapidly, then the values of N may reach a value higher than two. This test does not specify the exact position of the CP.
3.4.2      |      Trend CP tests
Identification of CP is crucial in trend analysis of the inhomogeneous time series. However, no study has been conducted in this region for CP investigation of the downscaled rainfall series. Three statistical techniques, Pettitt’s method, SNH technique, and Buishand’s method were utilised for the CP analysis.
3.4.3      |      Trend tests
Trends tests are performed to identify the direction and magnitude of the trend in data. The tests described in this section consider data are trend free as the null hypothesis (H0) and monotonic trend in the data as the alternative hypothesis (Ha). Two nonparametric tests, the MK technique and SRC technique were implemented for examining the direction of the trend. The SS estimator applied to detect the magnitude of the trend in the rainfall series. A robust parametric trend investigation approach based upon the linear regression technique was utilised for finding out the direction of the trend (Jaiswal et al., 2015). 
MK technique
The MK technique is a nonparametric method utilised for determining monotonic trends in meteorological datasets. For a variable Xj = x1, x2, ..., xn, the MK statistic S is determined using Equation (17):
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Where n refers to sample size, xj, and xk are the specific values of the variable at jth and kth position (k > j), and  is the signum function which is calculated by Equation (18):
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 Variance V(S) and parameters E(S) for MK statistic S are estimated using Equations (19) and (20), respectively:
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Where n refers to the sample size, m shows the total number of groupings, and th is the quantity of ties of extent h. The standardised statistic Z for the MK test is estimated by Equation (21):
	
	(21)


The trend in the dataset is significant if the standardised MK statistic  exceeds the critical statistic . A positive (negative) value of the MK statistic shows an increment (reduction) in the trend. 
SRC test
Another globally accepted nonparametric test for determination of the precipitation trend is the SRC test. Equation (22) provides the SRC coefficient (rSRC) as:
	
	(22)


Where di = (mXi − mYi), mXi, and mYi are the ranks of the variables Xi, and Yi, respectively, and n indicates the sample size. The statistic tSRC is calculated by using Equation (23) as:
	
	(23)


The statistic tSRC follows a t-distribution having a significance level α and a degree of freedom f. The H0 is rejected if > tf,1−( α /2).
SS estimator
The SS estimator is a robust nonparametric indicator utilised to calculate the magnitude of the rainfall trend. The SS estimator β for a variable Xi of size n is estimated using Equation (24) and (25):
	
	(24)


Where βi refers to the slope of the data. The SS estimator β is calculated by Equation (25) as:
	
	(25)


Simple linear regression (SLR) test
SLR is the most popular parametric approach used for investigating trends in hydro-climatic data (Jaiswal et al., 2015). The expression of the SLR model used for trend analysis is presented in Equation (26):
	
	(26)


Where Y represents the rainfall series, X is time in months, L denotes the intercept, and m refers to the slope of the best-fit line. The positive (negative) values of the parameter m indicate the increment (decrement) in the rainfall trend.
3.4.4      |      Testing for serial correlation
[bookmark: _Hlk47865035]Serial independence of the climatic dataset is one of the most vital assumptions of both parametric and nonparametric trend tests. The existence of autocorrelation in a dataset influences the result of the trend tests (Onyutha et al., 2016). A positive serial correlation boosts the likelihood of turning down the null hypothesis (i.e., the series is trend free) while it is true and negative autocorrelation promotes acceptance of the null hypothesis when it is incorrect. The autocorrelation coefficient for the downscaled rainfall series was calculated using Equation (5). After reviewing several past pieces of literature, it is concluded that no absolute technique is available for solving the autocorrelation problem in a dataset. Hence, a series of statistical methods are recommended for trend analysis of serially dependent series. In the current research, the following variants of modified MK tests were conducted for trend analysis of the data with significant autocorrelation.
· PW method (von Storch, 1999; Kulkarni & von Storch, 1995) 
· TPW method (Yue et al., 2002) 
· BPW method (Hamed, 2009)
· VCH method (Hamed & Rao, 1998) 
· VCY method (Yue & Wang, 2004)
PW method
Von Storch (1999) suggested the estimation of PW series  for a variable Xj (where j=1, 2,…,n) having lag-1 correlation coefficient ρ1 in Equation (27):
	
	(27)


TPW method
To get the TPW series for a variable Xj, SS estimator (β) is estimated using Equations (24) and (25). The β value is deducted from the series to attain a trend-free series yj as shown in Equation (28):
	
	(28)


Where xj is the value of the variable at the jth time interval, and yj refers to the detrended variable. The lag-1 autocorrelation coefficient (ρ1) of the dataset yj is estimated using Equation (5). If the dataset yj is found serially independent, then the trend analysis is conducted on the detrended series. If the series yt shows a significant serial correlation, then it is pre-whitened and the residuals of the series  is determined by Equation (29):
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The slope component of the trend is combined again with the residuals  to get the TPW series  as presented in Equation (30):
	
	(30)


BPW method
A data series Xj having an autocorrelation coefficient (ρ), and a linear trend is expressed by Equation (31): 
	
	(31)


Where xj and xj-1 refer to the readings at time intervals j and j-1, α shows the intercept, β is the SS estimator, and εt is the noise term. The matrix for the computation of ρ, α, and β values are calculated by Equation (32):
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Where Z refers to a matrix of size (n-1) x 3 with the middle column comprising (n-1) values equal to 1, the last column comprises the values from 2 to n, and y is an (n-1) x 1 sized vector comprising the observations from x2 to xn. The bias-free correlation coefficient ρ∗ (Hamed, 2009) is computed using Equation (33). The ρ∗ value is utilised for studies related to trend analysis of the BPW series:
	
	(33)


VCH and VCY method
In a variable Xj out of m observations, only m∗ observations contain effective information (m > m∗). The effect of autocorrelation in the series is neutralised using the rectified variance V*(S) estimated using Equation (34):
	
	(34)


Where F is the variance correction factor. The correction factor Fh (Hamed & Rao, 1998) and factor Fy (Yue & Wand, 2004) are expressed in Equation (35) and (36), respectively:
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	(36)


Where rk refers to the lag-k autocorrelation coefficient of the series, is the ranks of the series, and m refers to the sample size. Corrected variance V*(S) is employed for examining the trend in the MK test.
3.5      |      Software packages
An open-source package called ‘modifiedmk’ (Patakamuri & O’Brien, 2019) created in R language was utilised to carry out the MK test, SRC test, and the altered variants of the MK tests for investigating rainfall trend.
4      |      RESULTS AND DISCUSSION
[bookmark: _Hlk46747731]In this study, observed rainfall data was obtained from the IITM archive and the POWER project of NASA. These two datasets had a 24-years (1982-2006) overlapping period, that was used to check the correlation between the two series. Figure 5 depicts the scatter plot of the IITM and the POWER project rainfalls. The plot indicated a strong correlation between the datasets (R2 = 0.89). Comparison of these two-rainfall series showed an NSE = 0.91, C = 2.40, and SD = 3.40 RMSE. It was concluded that both rainfall datasets have ‘very good’ correlation. Reliability of the POWER project data was further checked by performing the Ljung-Box test on residuals of the two rainfall datasets at a 95% confidence interval (CI). The Ljung-Box statistic (Q) value of 21.82 (p = 0.12) suggested the acceptance of the alternative hypothesis (i.e., the residual series is serially independent). Plots of the autocorrelation function (ACF) and partial autocorrelation function (PACF) for the residual series once again verified the above result (Figure 6). The tests showed that the POWER project rainfall data could be used for extending the IITM rainfall record for the 2006-2018 study period. Thus, rainfall records from multiple sources can be used as predictand for downscaling model development. Interpolated GCM variables at the nine NCEP-NCAR grid points were obtained using the regression-based interpolation technique. The method was evaluated, and the outcomes were presented in Table 2. The interpolation technique performance was found ‘very good’ for six NCEP grid points and ‘good’ for the rest of the grid points. Hence, the regression-based interpolation technique can be used as a suitable replacement for the traditional interpolation methods.
4.1      |      Statistical downscaling model development
Two predictor variables (MSLP & h500) obtained for nine NCEP grid points (dimensionality = 18, i.e., 9 x 2) were employed for developing the downscaling model. PCA was performed on these predictors, and the initial three PCs explaining 98% variance in the dataset were selected for the model development (Table 3). The downscaling model established using observed rainfall as predictand, and the three principal components as the response variable are expressed in Equation (37):
	
	(37)


Where Yt is the observed monthly rainfall and C1, C2, and C3 are the PCs. The magnitude of the error term was found negligible.
4.1.1      |      Model calibration and validation
Thirty years (1961-1991) of NCEP-NCAR data were selected for calibrating the downscaling model. The 30-years duration is adequate for setting up a profound relationship between the GCM variables and the observed rainfall that could adequately represent the climatology of the region (Ghosh & Mujumdar, 2006). Remaining data for the period 1992-2018 was split into two discrete series (i.e., 1992-2005 & 2006-2018). The first part (1992-2005) was utilised for validating the model, and the second part (2006-2018) was used for selecting the best-suited scenario among RCP2.6, RCP4.5, and RCP8.5. Figure 7 indicated that the simulated rainfall was in proper agreement with the observed rainfall for both calibration (1961-1991) and validation (1992-2005) periods. However, it was noticed that the model under-predicted higher precipitation values throughout the analysis period.
The model performance rating was ‘good’ for both periods (Table 4). Figure 8 showed a strong correlation between observed and the predicted rainfall for the calibration (R2 = 0.86) and the validation (R2 = 0.81) periods. But it was noticed that the smaller monthly rainfall values were overestimated, and larger values were underestimated during both calibration and validation. Wilby et al. (2004) reported that the statistical downscaling models cannot explain total variance in the predictand variables. It happens because of the variance in the observed rainfall series are higher compared to the variance in the predictor variables. The downscaling model trained by the GCM data explains the medium range of variance in the predictand variable better compared to the extreme values. Hence, these models simulate the average rainfall more effectively than extreme rainfall events. Otherwise stated, the downscaling models under-predict the larger rainfall values and over-predict the near-zero rainfall values.
Residual of both calibration and validation series were analysed for autocorrelation using the Ljung-Box test at a 95% CI. The statistic Q value of 17.38 (p= 0.09) for calibration and 28.31 (p= 0.14) for validation suggested the acceptance of the alternative hypothesis (i.e., the residual series is serially independent for both series. ACF and PACF plots of the residual (Figure 9) for both series again verified the above result. From the above statistical tests, it was concluded that the downscaling model performance was good for both calibration and validation periods. However, it was observed that the model performed better for calibration compared to validation. In other words, the model explained more variance in observed rainfall for the calibration period. It is because the model is trained by the data for the calibration period that helps to capture more variation in the data.
4.2      |      Best scenario selection
[bookmark: _Hlk48144978]The observed rainfall was compared with the rainfall predicted for the three pathways for the 2006-2018 period to select the best-suited scenario for the region (Figure 10). The observed rainfall showed a stronger correlation with the rainfall simulated for RCP4.5 (R2 =0.83) compared to RCP2.6 (R2 =0.67) and RCP8.5 (R2 =0.71). Table 5 also suggested that the model performance was better for the RCP4.5 scenario. The Ljung-Box test analysed the residual series of the rainfall simulated for the pathways at a 95% CI. Table 6 indicated that the downscaling model was satisfactory for the RCP4.5 scenario alone as other pathways had failed to reproduce the climatology in the region. The ACF and PACF plots (Figure 11) of the residuals again verified the results. 
4.3      |      Future rainfall scenario 
Rainfall was predicted for the Eastern Gujarat region, employing the RCP4.5 scenario until the end of the 21st century (Figure 12). The rainfall showed an increment in the frequency of the large rainfall events in the future. In this research, the trend of the downscaled rainfall was examined for monthly, seasonal, and annual frequencies. As per the Indian Meteorological Department (IMD), the country experiences four dominant seasons in India, (i) the pre-monsoon season ranging from March to May, (ii) the monsoon season from June to September, (iii) the post-monsoon season stretching between October and November, and (iv) the winter from December to February (Patakamuri et al., 2020). Trend analysis was conducted on the 17 series (12 months, four seasons, and one annual series) in the Eastern Gujarat region.
4.4      |      Trend analysis of downscaled rainfall series
4.4.1      |      Homogeneity of downscaled rainfall data
Researchers (Wijngaard, Klein Tank, & Können, 2003) have classified the results of homogeneity tests into the following three categories: 
· Useful: if at most one out of the four homogeneity tests detect significant inhomogeneity in the series 
· Doubtful: if two out of the four tests find out significant inhomogeneity in the series 
· Suspect: if over two tests detect significant inhomogeneity in the series
Doubtful and suspect classes were considered inhomogeneous. Results of the homogeneity tests presented in Table 7 showed that six series were homogeneous, and 11 were inhomogeneous. The investigation of CP is essential to detect the potential time of substantial change in an inhomogeneous dataset. Outcomes of the CP test performed at 95% CI for the 11 inhomogeneous series were presented in Table 8. If a series shows multiple change points, as a thumb rule, the lowest significant value is taken as the CP for the series. Results suggested that, in downscaling studies, the same region can have multiple points (Table 8). 
4.4.2      |      Serial correlation analysis
Ljung-Box test was conducted at a 95% CI on the 17 series for autocorrelation analysis. Table 9 showed that four out of 17 series had significant serial correlation. Table 10 depicted the result of the Ljung-Box test on the inhomogeneous series both before and after CP. The results obtained from Table 10 agreed with the outcomes of Table 9. The four series that were found serially dependent were also inhomogeneous.
4.4.3      |      Trend investigation
The rainfall trend was examined for the 17 series, and the results of the six homogeneous and serially independent series were presented in Table 11. Four out of the six series showed significantly increasing trends. Both the MK test and the SRC test showed a significant rise in the rainfall trend for March (4.01 mm/year), May (2.73 mm/year), and October (4.28 mm/year) series at 95% CI. However, only the SRC test showed an increment in the rainfall trend for the Pre-monsoon series at 95% CI (2.94 mm/year), and the MK test did not exhibit any significant rainfall trend. The rainfall trend for July and August months were insignificant. An increase in temperature because of global warming causes an increment in the evaporation leading to a rise in the rainfall as seen in the results.  
Trend analysis results of serially independent inhomogeneous series are shown in Table 12. The February month showed no significant trend before CP but became significant (2.15 mm/year) after CP. The April series exhibited a significant increasing trend (2.3 mm/year) before CP but turned into a significantly decreasing trend (-1.78mm/year) after CP. The November month demonstrated a significantly increasing rainfall trend (2.06 mm/year) before CP, which became insignificant after CP. The Annual series indicated a significantly increasing trend both before CP (2.34 mm/year) and after CP (4.14 mm/year). June, December, and Post-monsoon series did not exhibit any significant trend. 
Five altered variants of the Mann-Kendall tests were used for investigating trends in a serially correlated inhomogeneous time series. Results showed that the January and Winter series exhibited a significantly increasing trend both before and after CP (Table 13). The Monsoon series demonstrated no significant trend before CP, but the trend became significantly increasing after CP. September series did not show any significant trend.
Trend reversal was observed in April, June, and September months after CP (i.e., the positive trend became negative and vice versa). Significance of the trends in February, November, and the monsoon series changed after CP (i.e., the significant trend became insignificant and vice versa). This may be an indication of a sudden change in climate patterns for these months in the region. The change in climate patterns may cause a shift in the monsoon season. It was found peculiar that the June, July, August, and September months demonstrated no significant rainfall trend while the Monsoon series revealed a significant increase in rainfall trend after CP. October and November months showed a significantly increasing trend, but the Post-monsoon season exhibited no significant rainfall trend. From these outcomes, it may be interpreted that the significance of the seasonal rainfall trend is independent of the significance of monthly precipitation trends. This might be due to the erratic nature of rainfall.
5      |      CONCLUSION
In the current study, observed data from two unique sources, the IITM archive and the POWER project of NASA were used as predictand for downscaling model development. The POWER project dataset was successfully utilised to extend the IITM dataset. It was concluded that data from multiple sources can be used as predictand for the downscaling model. A regression-based technique was used for the interpolation of GCM variables at the NCEP-NCAR grid points. The approach was found satisfactory for the nine NCEP-NCAR grid points. It was inferred that the interpolation technique is a replacement for the existing methodologies. PCA was used to minimise the dimensionality of NCEP variables. The downscaling model performed well for both calibration and validation periods. The model overestimated the near-zero rainfall and underestimated larger rainfall values. It was concluded that the downscaling models could not captivate the entire variance in the predictand. Three RCP scenarios were employed to predict future rainfall using the downscaling model. Rainfall simulated using the three pathways were compared with the observed rainfall data, and the RCP 4.5 scenario was found suitable for the region. Monthly rainfall data for the 1961-2099 period was used for investigating rainfall trends at various time scales (monthly, seasonal, and annual). The ‘modifiedmk’ R-package was utilised to conduct the trend tests. Results showed that 11 out of 17 series were inhomogeneous, 4 out of 17 series were serially correlated, and the series that were found serially dependent were also inhomogeneous. From this study, it was concluded that the downscaled rainfall series could have multiple change points for the region of interest. It was found that the significance of the seasonal rainfall trend does not depend upon the significance of monthly rainfall trends. Outcomes of the study suggested a probable shift in the monsoon season. However, it requires further research for confirming the above suggestion. The annual series showed a significant increase in rainfall both before CP (2.34 mm/year) and after CP (4.14 mm/year). In semi-arid regions such as Eastern Gujarat where rain-fed agriculture is predominant, the increase in rainfall is a good sign. The rainwater can be harvested and used throughout the non-monsoon seasons, which can solve the water shortage issue in the region. On the contrary, the rise in precipitation might be an indication of an increasing number of tropical storms. This can lead to frequent flood conditions in the region. Thus, climate change can cause tremendous socio-economic damage. So, the authorities must take proper measures to minimise the impact. The study will provide insights for the execution of better water resources management decisions and help in refining policies for sustainable water resources development.
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TABLE 1   Model assessment criteria
	[bookmark: _Hlk49680983]Rating
	C
	Efficiency Evaluation
	NSE

	Very good
	≥2.2
	SD ≥ 3.2 RMSE
	≥0.90

	Good
	1.2-2.2
	SD = 2.2 RMSE-3.2 RMSE
	0.80-0.90

	Acceptable
	0.7-1.2
	SD = 1.2 RMSE-2.2 RMSE
	0.65-0.80

	Unsatisfactory
	<0.7
	SD < 3.2 RMSE
	<0.65





TABLE 2   Evaluation of the regression-based interpolation method
	NCEP-NCAR grid points
	Efficiency Evaluation
	C
	NSE
	Rating

	P1
	SD = 3.78 RMSE
	2.78
	0.93
	Very good

	P2
	SD = 4.94 RMSE
	3.94
	0.96
	Very good

	P3
	SD = 3.03 RMSE
	2.03
	0.89
	Good

	P4
	SD = 3.35 RMSE
	2.35
	0.91
	Very good

	P5
	SD = 2.72 RMSE
	1.72
	0.86
	Good

	P6
	SD = 3.60 RMSE
	2.60
	0.92
	Very good

	P7
	SD = 4.61 RMSE
	3.61
	0.95
	Very good

	P8
	SD = 2.93 RMSE
	1.93
	0.88
	Good

	P9
	SD = 3.40 RMSE
	2.40
	0.91
	Very good





TABLE 3   Magnitude of variance explained by the PCs
	Principal components (PCs)
	Eigenvalue
	Proportion of variance
	Cumulative variance

	C1
	8.49
	0.57
	0.57

	C2
	4.26
	0.29
	0.85

	C3
	1.93
	0.13
	0.98

	C4
	0.11
	0.01
	1.00

	C5
	0.09
	0.01
	1.00

	C6
	0.03
	0.00
	1.00

	C7
	0.01
	0.00
	1.00

	C8
	0.01
	0.00
	1.00

	C9
	0.01
	0.00
	1.00

	C10
	0.00
	0.00
	1.00

	C11
	0.00
	0.00
	1.00

	C12
	0.00
	0.00
	1.00

	C13
	0.00
	0.00
	1.00

	C14
	0.00
	0.00
	1.00

	C15
	0.00
	0.00
	1.00

	C16
	0.00
	0.00
	1.00

	C17
	0.00
	0.00
	1.00

	C18
	0.00
	0.00
	1.00





TABLE 4   Performance evaluation of downscaling model 
	
	Calibration
	Validation

	Efficiency evaluation
	SD = 3.07 RMSE
	SD = 2.61 RMSE

	C
	2.07
	1.61

	NSE
	0.89
	0.85

	Performance rating
	Good
	Good





TABLE 5   Performance evaluation of RCP 
	 
	RCP2.6
	RCP4.5
	RCP8.5

	Efficiency evaluation
	SD = 1.81 RMSE
	SD = 2.81 RMSE
	SD = 1.94 RMSE

	C
	0.81
	1.81
	0.94

	NSE
	0.69
	0.87
	0.73

	Performance rating
	Acceptable
	Good
	Acceptable





TABLE 6   Result of Ljung-Box test performed on residuals of RCP2.6, RCP4.5, and RCP8.5
	Scenario
	Ljung-Box test statistic
	p-value

	RCP2.6
	27.63
	0.02

	RCP4.5
	  1.01
	0.31

	RCP8.5
	31.97
	0.00





TABLE 7   Summary of homogeneity test results
	Useful
	Doubtful 
	Suspect

	March 
	April
	January

	May
	
	February

	July
	
	June

	August
	
	September

	October
	
	November

	Pre-monsoon 
	
	December

	
	
	Annual

	
	
	Monsoon 

	
	
	Post-monsoon 

	
	
	Winter 





TABLE 8   CP test summary
	Series
	Pettitt’s test
	SNH test 
	BR test

	January 
	2028 c
	2043 c
	2043 c

	February
	2036
	2058 c
	2036 c

	April
	2005
	2026
	2026 c

	June
	2048 c
	2050 c
	2048 c

	September 
	2004
	2004 c
	2036

	November
	2029
	2051 c
	2051 c

	December
	2048 c
	2048 c
	2048

	Annual
	2042 c
	2042 c
	2042 c

	Monsoon 
	2036
	2067 c
	2036 c

	Post-monsoon
	2045 c
	2047 c
	2047 c

	Winter 
	2033
	2048 c
	2043 c


c significant CP at 95% CI; years in bold letters show CP


TABLE 9   Summary of correlation test results
	Series
	ρ1
	Q

	January
	0.18+
	4.55 +

	February
	0.11
	1.74 

	March
	-0.04
	0.26

	April
	0.02
	0.06

	May
	0.00
	0.00

	June
	0.05
	0.31

	July
	0.16
	3.42

	August
	-0.12
	2.03

	September
	0.27+
	10.14 +

	October
	0.07
	0.73

	November
	0.15
	3.01

	December
	0.12
	2.15

	Annual
	0.16
	3.80

	Pre-monsoon
	0.13
	2.25

	Monsoon
	0.29+
	13.77 +

	Post-monsoon
	0.15
	3.25

	Winter
	0.38+
	20.85 +


+, the significant serial correlation at 95% CI


TABLE 10   Correlation test results of the inhomogeneous time series
	
	Before CP
	
	After CP

	Series
	ρ1
	Q
	ρ1
	Q

	January
	-0.22
	23.41 I
	-0.24
	20.00 I

	February
	-0.13
	  1.39
	 0.14
	  1.12

	April
	-0.04
	  0.10
	-0.01
	  0.01

	June
	-0.08
	  0.29
	 0.21
	  4.14

	September
	 0.19
	14.79 I
	-0.22
	18.25 I

	November
	 0.04
	  0.18
	 0.08
	  0.32

	December
	-0.15
	  2.13
	-0.16
	  1.32

	Annual
	 0.17
	  2.65
	-0.13
	  0.91

	Monsoon
	-0.25
	25.67 I
	-0.27
	28.69 I

	Post-monsoon
	-0.03
	  0.08
	-0.01
	  0.00

	Winter
	-0.20
	19.67 I
	-0.23
	20.85 I


I, significant inhomogeneity at a 95% CI



TABLE 11   Trend analysis result of homogeneous series with no serial correlation
	Series
	MK
	SS
	SRC
	m

	January 
	Ac & Hn
	Ac & Hn
	Ac & Hn
	Ac & Hn

	February
	Hn
	Hn
	Hn
	Hn

	March
	3.17*
	4.01
	0.30*
	3.51

	April
	Hn
	Hn
	Hn
	Hn

	May
	2.13*
	2.73
	0.21*
	2.29

	June
	Hn
	Hn
	Hn
	Hn

	July
	5.10
	0.09
	0.04
	0.18

	August
	7.96
	0.15
	0.07
	0.28

	September
	Ac & Hn
	Ac & Hn
	Ac & Hn
	Ac & Hn

	October
	4.15*
	4.28
	0.31*
	3.14

	November
	Hn
	Hn
	Hn
	Hn

	December
	Hn
	Hn
	Hn
	Hn

	Annual
	Hn
	Hn
	Hn
	Hn

	Pre-monsoon
	1.88
	2.94
	0.19*
	2.01

	Monsoon
	Ac & Hn
	Ac & Hn
	Ac & Hn
	Ac & Hn

	Post-monsoon
	Hn
	Hn
	Hn
	Hn

	Winter
	Ac & Hn
	Ac & Hn
	Ac & Hn
	Ac & Hn


*, significant inhomogeneity at a 95% CI; Ac, serially correlated; Hn, inhomogeneous


TABLE 12   Trend analysis result of the inhomogeneous series with no serial correlation
	
	Before CP
	
	After CP

	Series
	MK
	SS
	SRC
	m
	MK
	SS
	SRC
	m

	February
	1.73
	0.00
	0.20
	 0.00
	 2.08 *
	 2.15
	 0.26 *
	 1.14

	April
	2.60 *
	2.30 
	0.36 *
	 0.02
	-3.10 *
	-1.78
	-0.37 *
	-0.09

	June
	1.49
	0.53
	0.15
	 0.95
	-0.37
	-0.59
	-0.07
	-0.78

	November
	3.24 *
	2.06 
	0.34 *
	 1.71
	 1.93
	 0.14
	 0.28
	 0.15

	December
	2.56
	0.00
	0.26
	 0.01
	 0.15
	 0.00
	 0.01
	 0.04

	Annual
	1.97 *
	2.34
	0.21
	 2.22
	 2.99 *
	 4.14 
	 0.40 *
	 4.96

	Post-monsoon
	1.41
	0.09
	0.15
	-0.05
	 1.82
	 0.29
	 0.23
	 0.12


*, significant inhomogeneity at a 95% CI


TABLE 13   Outcomes of modified MK tests implemented on serially dependent inhomogeneous data
	Tests
	Before CP
	
	
	After CP

	
	January
	September
	Monsoon
	Winter
	January
	September
	Monsoon
	Winter

	PW
	0.038 *
	-1.246
	2.376
	0.459 *
	0.169
	0.608
	4.747 *
	0.459*

	TPW
	0.035 *
	-1.191
	2.099
	0.466 *
	0.191 *
	0.690
	4.463 *
	0.466*

	BPW
	0.036 *
	-1.249
	2.334
	0.536 *
	0.170 *
	0.604
	5.277 *
	0.536*

	VCH
	0.020 *
	-1.519
	1.811
	0.403 *
	0.167 *
	0.548
	3.915 *
	0.403*

	VCY
	0.020 *
	-0.169
	1.811
	0.403 *
	0.167 *
	0.548
	3.915 *
	0.403*


*, significant inhomogeneity at 95% CI

