References
[1] M. Mirfendereski, M. Sadrzadeh, T. Mohammadi, Effect of synthesis parameters on single gas permeation through T-type zeolite membranes, Int. J. Greenh. Gas Con. 2 (2008) 531-538. https://doi.org/10.1016/j.ijggc.2008.03.001.
[2] D.W. Shin, S.H. Hyun, C.H. Cho, M.H. Han, Synthesis and CO2/N2 gas permeation characteristics of ZSM-5 zeolite membranes, Micropor. Mesopor. Mater. 85 (2005) 313-323. https://doi.org/10.1016/j.micromeso.2005.06.035.
[3] M. Grahn, J. Hedlund, Maxwell–Stefan modeling of high flux tubular silicalite-1 membranes for CO2 removal from CO2/H2gas mixtures, J. Membrane Sci. 471 (2014) 328-337. https://doi.org/10.1016/j.memsci.2014.08.034.
[4] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Edit. 49 (2010) 6058-6082. https://doi.org/10.1002/anie.201000431.
[5] S. Gopalakrishnan, T. Yamaguchi, S.-i. Nakao, Permeation properties of templated and template-free ZSM-5 membranes, J. Membrane Sci. 274 (2006) 102-107. https://doi.org/10.1016/j.memsci.2005.08.005.
[6] S.M. Mirfendereski, Development of a multi-step hybrid method to synthesize highly-permeable and well-oriented SAPO-34 membranes for CO2 removal applications, Chem. Eng. Sci. 208 (2019) 115157. https://doi.org/10.1016/j.ces.2019.115157.
[7] J.C. Poshusta, R.D. Noble, J.L. Falconer, Temperature and pressure effects on CO2and CH4 permeation through MFI zeolite membranes, J. Membrane Sci. 160 (1999) 115-125. https://doi.org/10.1016/S0376-7388(99)00073-3.
[8] E. Hayakawa, S. Himeno, Synthesis and Characteristics of Al-containing ZSM-58 Zeolite Membrane for CO2 Separation, Int. J. Chem. Eng. Appl. 11 (2020). https://doi.org/ 10.18178/ijcea.2020.11.1.771.
[9] Z. Zhang, M.H. Ibrahim, M.H. El-Naas, J. Cai, Zeolites nanocomposite membrane applications in CO2 capture, Handbook of Nanomaterials for Industrial Applications, Elsevier, 2018, pp. 916-921.
[10] C.H. Chen, L. Meng, K.L. Tung, Y. Lin, Effect of substrate curvature on microstructure and gas permeability of hollow fiber MFI zeolite membranes, AIChE J. 64 (2018) 3419-3428. https://doi.org/10.1002/aic.16197.
[11] X. Zhang, H. Liu, K.L. Yeung, Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth, Mater. Chem. Phys. 96 (2006) 42-50. https://doi.org/10.1016/j.matchemphys.2005.06.031.
[12] S. Xia, Y. Peng, Z. Wang, Microstructure manipulation of MFI-type zeolite membranes on hollow fibers for ethanol–water separation, J. Membrane Sci. 498 (2016) 324-335. https://doi.org/10.1016/j.memsci.2015.10.024.
[13] L. Shan, J. Shao, Z. Wang, Y. Yan, Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation, J. Membrane Sci. 378 (2011) 319-329. https://doi.org/10.1016/j.memsci.2011.05.011.
[14] Y. Li, X. Zhang, J. Wang, Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis, Sep. Purif. Technol. 25 (2001) 459-466. https://doi.org/10.1016/S1383-5866(01)00075-2.
[15] C. Kong, J. Lu, J. Yang, J. Wang, Preparation of silicalite-1 membranes on stainless steel supports by a two-stage varying-temperature in situ synthesis, J. Membrane Sci. 285 (2006) 258-264. https://doi.org/10.1016/j.memsci.2006.08.027.
[16] M. Abbasi, M. Mirfendereski, M. Nikbakht, M. Golshenas, T. Mohammadi, Performance study of mullite and mullite–alumina ceramic MF membranes for oily wastewaters treatment, Desalination 259 (2010) 169-178. https://doi.org/10.1016/j.desal.2010.04.013.
[17] Y. Peng, H. Lu, Z. Wang, Y. Yan, Microstructural optimization of MFI-type zeolite membranes for ethanol–water separation, J. Mater. Chem. A 2 (2014) 16093-16100. https://doi.org/10.1039/C4TA02837F.
[18] F. Banihashemi, L. Meng, A.A. Babaluo, Y. Lin, Xylene vapor permeation in MFI zeolite membranes made by templated and template-free secondary growth of randomly oriented seeds: Effects of xylene activity and microstructure, Ind. Eng. Chem. Res. 57 (2018) 16059-16068. https://doi.org/10.1021/acs.iecr.8b01373.
[19] M. Mirfendereski, T. Mohammadi, Investigation of hydrothermal synthesis parameters on characteristics of T type zeolite crystal structure, Powder Technol. 206 (2011) 345-352. https://doi.org/10.1016/j.powtec.2010.10.003.
[20] R. Cai, Y. Liu, S. Gu, Y. Yan, Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating, J. Am. Chem. Soc. 132 (2010) 12776-12777. https://doi.org/10.1021/ja101649b.
[21] J. Li, C. Shi, H. Zhang, X. Zhang, Y. Wei, K. Jiang, B. Zhang, Silicalite-1 zeolite membrane: Synthesis by seed method and application in organics removal, Chemosphere 218 (2019) 984-991. https://doi.org/10.1016/j.chemosphere.2018.11.215.
[22] H. Wang, Y. Lin, Effects of water vapor on gas permeation and separation properties of MFI zeolite membranes at high temperatures, AIChE J. 58 (2012) 153-162. https://doi.org/10.1002/aic.12622.
[23] Q. Li, D. Creaser, J. Sterte, The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis, Micropor. Mesopor. Mater. 31 (1999) 141-150. https://doi.org/10.1016/S1387-1811(99)00064-5.
[24] X.-L. Zhang, M.-H. Zhu, R.-F. Zhou, X.-S. Chen, H. Kita, Synthesis of a silicalite zeolite membrane in ultradilute solution and its highly selective separation of organic/water mixtures, Ind. Eng. Chem. Res. 51 (2012) 11499-11508. https://doi.org/10.1021/ie300951e.
[25] W.C. Wong, L.T.Y. Au, C.T. Ariso, K.L. Yeung, Effects of synthesis parameters on the zeolite membrane growth, J. Membrane Sci. 191 (2001) 143-163. https://doi.org/10.1016/S0376-7388(01)00453-7.
[26] C. Kong, J. Lu, J. Yang, J. Wang, Catalytic dehydrogenation of ethylbenzene to styrene in a zeolite silicalite-1 membrane reactor, J. Membrane Sci. 306 (2007) 29-35. https://doi.org/10.1016/j.memsci.2007.08.018.
[27] H. Wang, T.J. Pinnavaia, MFI zeolite with small and uniform intracrystal mesopores, Angew. Chem. Int. Edit. 45 (2006) 7603-7606. https://doi.org/10.1002/ange.200602595.
[28] Z. Wang, I. Kumakiri, K. Tanaka, X. Chen, H. Kita, NaY zeolite membranes with high performance prepared by a variable-temperature synthesis, Micropor. Mesopor. Mater. 182 (2013) 250-258. https://doi.org/10.1016/j.micromeso.2013.05.002.
[29] M. Kanezashi, J. O’Brien, Y. Lin, Template-free synthesis of MFI-type zeolite membranes: permeation characteristics and thermal stability improvement of membrane structure, J. Membrane Sci. 286 (2006) 213-222. https://doi.org/10.1016/j.memsci.2006.09.038.
[30] X. Zhu, H. Wang, Y. Lin, Effect of the membrane quality on gas permeation and chemical vapor deposition modification of MFI-type zeolite membranes, Ind. Eng. Chem. Res. 49 (2010) 10026-10033. https://doi.org/10.1021/ie101101z.
[31] Y. Zhang, Q. Sun, X. Gu, Pure H2 production through hollow fiber hydrogen‐selective MFI zeolite membranes using steam as sweep gas, AIChE J. 61 (2015) 3459-3469. https://doi.org/10.1002/aic.14924.
[32] S.K. Wirawan, D. Creaser, J. Lindmark, J. Hedlund, I.M. Bendiyasa, W.B. Sediawan, H2/CO2 permeation through a silicalite-1 composite membrane, J. Membrane Sci. 375 (2011) 313-322. https://doi.org/10.1016/j.memsci.2011.03.061.
[33] M. Kanezashi, Y. Lin, Gas permeation and diffusion characteristics of MFI-type zeolite membranes at high temperatures, J. Phys. Chem. C 113 (2009) 3767-3774. https://doi.org/10.1021/jp804586q.
[34] J. Lindmark, J. Hedlund, S.K. Wirawan, D. Creaser, M. Li, D. Zhang, X. Zou, Impregnation of zeolite membranes for enhanced selectivity, J. Membrane Sci. 365 (2010) 188-197. https://doi.org/10.1016/j.memsci.2010.09.006.
[35] J. Lindmark, J. Hedlund, Modification of MFI membranes with amine groups for enhanced CO2 selectivity, J. Mater. Chem. 20 (2010) 2219-2225. https://doi.org/10.1039/B919242E.
[36] H. Guo, G. Zhu, H. Li, X. Zou, X. Yin, W. Yang, S. Qiu, R. Xu, Hierarchical growth of large‐scale ordered zeolite silicalite‐1 membranes with high permeability and selectivity for recycling CO2, Angew. Chem. Int. Edit. 45 (2006) 7053-7056. https://doi.org/10.1002/anie.200602308.
[37] F. Kapteijn, W. Bakker, J. Van De Graaf, G. Zheng, J. Poppe, J. Moulijn, Permeation and separation behaviour of a silicalite-1 membrane, Catal. Today 25 (1995) 213-218. https://doi.org/10.1016/0920-5861(95)00078-T.
[38] W.J. Bakker, F. Kapteijn, J. Poppe, J.A. Moulijn, Permeation characteristics of a metal-supported silicalite-1 zeolite membrane, J. Membrane Sci. 117 (1996) 57-78. https://doi.org/10.1016/0376-7388(96)00035-X.
[39] W. Yuan, D. Wang, L. Li, MFI-type zeolite membrane on hollow fiber substrate for hydrogen separation, Chinese Sci. Bull. 56 (2011) 2416-2418. https://doi.org/10.1007/s11434-011-4599-4.