References
[1] M. Mirfendereski, M.
Sadrzadeh, T. Mohammadi, Effect of synthesis parameters on single gas
permeation through T-type zeolite membranes, Int. J. Greenh. Gas Con. 2
(2008) 531-538. https://doi.org/10.1016/j.ijggc.2008.03.001.
[2] D.W. Shin, S.H. Hyun, C.H.
Cho, M.H. Han, Synthesis and CO2/N2 gas
permeation characteristics of ZSM-5 zeolite membranes, Micropor.
Mesopor. Mater. 85 (2005) 313-323.
https://doi.org/10.1016/j.micromeso.2005.06.035.
[3] M. Grahn, J. Hedlund,
Maxwell–Stefan modeling of high flux tubular silicalite-1 membranes for
CO2 removal from CO2/H2gas mixtures, J. Membrane Sci. 471 (2014) 328-337.
https://doi.org/10.1016/j.memsci.2014.08.034.
[4] D.M. D’Alessandro, B. Smit,
J.R. Long, Carbon dioxide capture: prospects for new materials, Angew.
Chem. Int. Edit. 49 (2010) 6058-6082.
https://doi.org/10.1002/anie.201000431.
[5] S. Gopalakrishnan, T.
Yamaguchi, S.-i. Nakao, Permeation properties of templated and
template-free ZSM-5 membranes, J. Membrane Sci. 274 (2006) 102-107.
https://doi.org/10.1016/j.memsci.2005.08.005.
[6] S.M. Mirfendereski,
Development of a multi-step hybrid method to synthesize highly-permeable
and well-oriented SAPO-34 membranes for CO2 removal
applications, Chem. Eng. Sci. 208 (2019) 115157.
https://doi.org/10.1016/j.ces.2019.115157.
[7] J.C. Poshusta, R.D. Noble,
J.L. Falconer, Temperature and pressure effects on CO2and CH4 permeation through MFI zeolite membranes, J.
Membrane Sci. 160 (1999) 115-125.
https://doi.org/10.1016/S0376-7388(99)00073-3.
[8] E. Hayakawa, S. Himeno,
Synthesis and Characteristics of Al-containing ZSM-58 Zeolite Membrane
for CO2 Separation, Int. J. Chem. Eng. Appl. 11 (2020).
https://doi.org/ 10.18178/ijcea.2020.11.1.771.
[9] Z. Zhang, M.H. Ibrahim, M.H.
El-Naas, J. Cai, Zeolites nanocomposite membrane applications in
CO2 capture, Handbook of Nanomaterials for Industrial
Applications, Elsevier, 2018, pp. 916-921.
[10] C.H. Chen, L. Meng, K.L.
Tung, Y. Lin, Effect of substrate curvature on microstructure and gas
permeability of hollow fiber MFI zeolite membranes, AIChE J. 64 (2018)
3419-3428. https://doi.org/10.1002/aic.16197.
[11] X. Zhang, H. Liu, K.L.
Yeung, Influence of seed size on the formation and microstructure of
zeolite silicalite-1 membranes by seeded growth, Mater. Chem. Phys. 96
(2006) 42-50. https://doi.org/10.1016/j.matchemphys.2005.06.031.
[12] S. Xia, Y. Peng, Z. Wang,
Microstructure manipulation of MFI-type zeolite membranes on hollow
fibers for ethanol–water separation, J. Membrane Sci. 498 (2016)
324-335. https://doi.org/10.1016/j.memsci.2015.10.024.
[13] L. Shan, J. Shao, Z. Wang,
Y. Yan, Preparation of zeolite MFI membranes on alumina hollow fibers
with high flux for pervaporation, J. Membrane Sci. 378 (2011) 319-329.
https://doi.org/10.1016/j.memsci.2011.05.011.
[14] Y. Li, X. Zhang, J. Wang,
Preparation for ZSM-5 membranes by a two-stage varying-temperature
synthesis, Sep. Purif. Technol. 25 (2001) 459-466.
https://doi.org/10.1016/S1383-5866(01)00075-2.
[15] C. Kong, J. Lu, J. Yang, J.
Wang, Preparation of silicalite-1 membranes on stainless steel supports
by a two-stage varying-temperature in situ synthesis, J. Membrane Sci.
285 (2006) 258-264. https://doi.org/10.1016/j.memsci.2006.08.027.
[16] M. Abbasi, M. Mirfendereski,
M. Nikbakht, M. Golshenas, T. Mohammadi, Performance study of mullite
and mullite–alumina ceramic MF membranes for oily wastewaters
treatment, Desalination 259 (2010) 169-178.
https://doi.org/10.1016/j.desal.2010.04.013.
[17] Y. Peng, H. Lu, Z. Wang, Y.
Yan, Microstructural optimization of MFI-type zeolite membranes for
ethanol–water separation, J. Mater. Chem. A 2 (2014) 16093-16100.
https://doi.org/10.1039/C4TA02837F.
[18] F. Banihashemi, L. Meng,
A.A. Babaluo, Y. Lin, Xylene vapor permeation in MFI zeolite membranes
made by templated and template-free secondary growth of randomly
oriented seeds: Effects of xylene activity and microstructure, Ind. Eng.
Chem. Res. 57 (2018) 16059-16068.
https://doi.org/10.1021/acs.iecr.8b01373.
[19] M. Mirfendereski, T.
Mohammadi, Investigation of hydrothermal synthesis parameters on
characteristics of T type zeolite crystal structure, Powder Technol. 206
(2011) 345-352. https://doi.org/10.1016/j.powtec.2010.10.003.
[20] R. Cai, Y. Liu, S. Gu, Y.
Yan, Ambient pressure dry-gel conversion method for zeolite MFI
synthesis using ionic liquid and microwave heating, J. Am. Chem. Soc.
132 (2010) 12776-12777. https://doi.org/10.1021/ja101649b.
[21] J. Li, C. Shi, H. Zhang, X.
Zhang, Y. Wei, K. Jiang, B. Zhang, Silicalite-1 zeolite membrane:
Synthesis by seed method and application in organics removal,
Chemosphere 218 (2019) 984-991.
https://doi.org/10.1016/j.chemosphere.2018.11.215.
[22] H. Wang, Y. Lin, Effects of
water vapor on gas permeation and separation properties of MFI zeolite
membranes at high temperatures, AIChE J. 58 (2012) 153-162.
https://doi.org/10.1002/aic.12622.
[23] Q. Li, D. Creaser, J.
Sterte, The nucleation period for TPA-silicalite-1 crystallization
determined by a two-stage varying-temperature synthesis, Micropor.
Mesopor. Mater. 31 (1999) 141-150.
https://doi.org/10.1016/S1387-1811(99)00064-5.
[24] X.-L. Zhang, M.-H. Zhu,
R.-F. Zhou, X.-S. Chen, H. Kita, Synthesis of a silicalite zeolite
membrane in ultradilute solution and its highly selective separation of
organic/water mixtures, Ind. Eng. Chem. Res. 51 (2012) 11499-11508.
https://doi.org/10.1021/ie300951e.
[25] W.C. Wong, L.T.Y. Au, C.T.
Ariso, K.L. Yeung, Effects of synthesis parameters on the zeolite
membrane growth, J. Membrane Sci. 191 (2001) 143-163.
https://doi.org/10.1016/S0376-7388(01)00453-7.
[26] C. Kong, J. Lu, J. Yang, J.
Wang, Catalytic dehydrogenation of ethylbenzene to styrene in a zeolite
silicalite-1 membrane reactor, J. Membrane Sci. 306 (2007) 29-35.
https://doi.org/10.1016/j.memsci.2007.08.018.
[27] H. Wang, T.J. Pinnavaia, MFI
zeolite with small and uniform intracrystal mesopores, Angew. Chem. Int.
Edit. 45 (2006) 7603-7606. https://doi.org/10.1002/ange.200602595.
[28] Z. Wang, I. Kumakiri, K.
Tanaka, X. Chen, H. Kita, NaY zeolite membranes with high performance
prepared by a variable-temperature synthesis, Micropor. Mesopor. Mater.
182 (2013) 250-258. https://doi.org/10.1016/j.micromeso.2013.05.002.
[29] M. Kanezashi, J. O’Brien, Y.
Lin, Template-free synthesis of MFI-type zeolite membranes: permeation
characteristics and thermal stability improvement of membrane structure,
J. Membrane Sci. 286 (2006) 213-222.
https://doi.org/10.1016/j.memsci.2006.09.038.
[30] X. Zhu, H. Wang, Y. Lin,
Effect of the membrane quality on gas permeation and chemical vapor
deposition modification of MFI-type zeolite membranes, Ind. Eng. Chem.
Res. 49 (2010) 10026-10033. https://doi.org/10.1021/ie101101z.
[31] Y. Zhang, Q. Sun, X. Gu,
Pure H2 production through hollow fiber
hydrogen‐selective MFI zeolite membranes using steam as sweep gas, AIChE
J. 61 (2015) 3459-3469. https://doi.org/10.1002/aic.14924.
[32] S.K. Wirawan, D. Creaser, J.
Lindmark, J. Hedlund, I.M. Bendiyasa, W.B. Sediawan,
H2/CO2 permeation through a silicalite-1
composite membrane, J. Membrane Sci. 375 (2011) 313-322.
https://doi.org/10.1016/j.memsci.2011.03.061.
[33] M. Kanezashi, Y. Lin, Gas
permeation and diffusion characteristics of MFI-type zeolite membranes
at high temperatures, J. Phys. Chem. C 113 (2009) 3767-3774.
https://doi.org/10.1021/jp804586q.
[34] J. Lindmark, J. Hedlund,
S.K. Wirawan, D. Creaser, M. Li, D. Zhang, X. Zou, Impregnation of
zeolite membranes for enhanced selectivity, J. Membrane Sci. 365 (2010)
188-197. https://doi.org/10.1016/j.memsci.2010.09.006.
[35] J. Lindmark, J. Hedlund,
Modification of MFI membranes with amine groups for enhanced
CO2 selectivity, J. Mater. Chem. 20 (2010) 2219-2225.
https://doi.org/10.1039/B919242E.
[36] H. Guo, G. Zhu, H. Li, X.
Zou, X. Yin, W. Yang, S. Qiu, R. Xu, Hierarchical growth of large‐scale
ordered zeolite silicalite‐1 membranes with high permeability and
selectivity for recycling CO2, Angew. Chem. Int. Edit.
45 (2006) 7053-7056. https://doi.org/10.1002/anie.200602308.
[37] F. Kapteijn, W. Bakker, J.
Van De Graaf, G. Zheng, J. Poppe, J. Moulijn, Permeation and separation
behaviour of a silicalite-1 membrane, Catal. Today 25 (1995) 213-218.
https://doi.org/10.1016/0920-5861(95)00078-T.
[38] W.J. Bakker, F. Kapteijn, J.
Poppe, J.A. Moulijn, Permeation characteristics of a metal-supported
silicalite-1 zeolite membrane, J. Membrane Sci. 117 (1996) 57-78.
https://doi.org/10.1016/0376-7388(96)00035-X.
[39] W. Yuan, D. Wang, L. Li, MFI-type zeolite membrane on hollow
fiber substrate for hydrogen separation, Chinese Sci. Bull. 56 (2011)
2416-2418. https://doi.org/10.1007/s11434-011-4599-4.