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Abstract

Differential equations of second order with impulses at random moments are

set up and investigated in this paper. The main characteristic of the studied

equations is that the impulses occur at random moments which are exponentially

distributed random variables. The presence of random variables in the ordinary

differential equation leads to a total change of the behavior of the solution. It

is not a function as in the case of deterministic equations, it is a stochastic

process. It requires combining of the results in Theory of Differential Equations

and Probability Theory. The initial value problem is set up in appropriate

way. Sample path solutions are defined as a solutions of ordinary differential

equations with determined fixed moments of impulses. P-moment generalized

exponential stability is defined and some sufficient conditions for this type of

stability are obtained. The study is based on the application of Lyapunov

functions. The results are illustrated on example.

1 Introduction

It is well known that linear and nonlinear ordinary second order differential equa-
tions (ODEs) are adequate apparatus to model many phenomena in physics, biology,
chemistry, biophysics, mechanics, medicine, aerodynamics, economy, atomic energy,
control theory, information theory, population dynamics, electrodynamics of complex
media, and so on. One of the main question concerning qualitative behaviors of the
solutions to ODEs of second order, is the stability (see, for example, [2], [4] and the
references cited therein).
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At the same time, many real world phenomena are characterizing by a special
type of changes of the state of the process under investigation. If these changes act
on a negligible small time, i.e. they act impulsively, then the dynamic of the state
variable is modeling adequately by impulses. In the case when the impulses occur
at random times, then the model requires the time of impulses to be considered as
random variables. When there is uncertainty in the behavior of the state of the in-
vestigated process an appropriate model is usually a stochastic differential equation
where one or more of the terms in the differential equation are stochastic processes,
and this usually results with the solution being a stochastic process ([5], [7], [8],
[9]). But there are some real world phenomena the dynamic of the state variable is
changing deterministically between two consecutive instantaneous changes at uncer-
tain moments. In this case appropriate models are impulsive differential equations
with random impulses. The presence of random variables usually determine that the
solutions of these equations are stochastic processes. We note that impulsive differ-
ential equations with random impulsive moments differs from stochastic differential
equations with jumps. Deterministic differential equations with random impulses
were considered, for example, in [1], [3], [6].

The main goal of the paper is to study stability properties of solutions of second
order impulsive differential equation when the waiting time between two consecutive
impulses is exponentially distributed. The p-moment generalized exponential stability
of the zero solution is defined and some sufficient conditions are obtained. The results
are illustrated on an example.

2 Random impulses in second order differential equa-

tions

Initially, we will give a brief overview of second order differential equations with
deterministic impulses.

Let the increasing sequence of nonnegative points {Tk}∞k=0 be given and lim
k→∞

{Tk} =

∞. Consider the initial value problem for the system of second order impulsive dif-
ferential equations (IDE) with fixed points of impulses

x′′ = f(t, x(t), x′(t)) for t ∈ (Tk, Tk+1], k = 0, 1, 2, . . . ,

x(Tk + 0) = Ik(x(Tk − 0)), x′(Tk + 0) = Jk(x
′(Tk − 0)) for k = 1, 2, . . . ,

x(0) = x0, x′(0) = x1

(1)

where x, x0, x1 ∈ R
n, f : [0,∞)× R

n × R
n → R

n, Ik, Jk : R
n → R

n.
The solution of IDE (1) depends not only on the initial values (x0, x1) but on the

moments of impulses Tk, k = 1, 2, . . . and we will denote it by x(t; x0, x1, {Tk}). We
will assume that x(Tk; x0, x1, {Tk}) = lim

t→Tk−0
x(t; x0, x1, {Tk}) and x′(Tk; x0, x1, {Tk}) =

lim
t→Tk−0

x′(t; x0, x1, {Tk}) for any k = 1, 2, . . . .
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We will assume the following conditions are satisfied:
H1. f(t, 0, 0) = 0 for t ≥ 0, and Ik(0) = 0, Jk(0) = 0, k = 1, 2, . . . .
H2. For any initial values (t0, x0, x1) the ODE x′′ = f(t, x, x′) with x(t0) = x0 ,

x′(t0) = x1 has a unique solution x(t) = x(t; t0, x0, x1) defined for t ≥ t0.
Let the probability space (Ω,F , P ) be given. Let {τk}∞k=1 be a sequence of random

variables defined on the sample space Ω.
Assume

∑∞
k=1 τk = ∞ with probability 1.

Remark 1. The random variables τk will define the time between two consecutive
impulsive moments of the impulsive differential equation with random impulses.

We will assume the following condition is satisfied
H3. The random variables {τk}∞k=1 are independent exponentially distributed ran-

dom variables with the same rate parameter λ , i.e. τk ∈ Exp(λ).
Define the increasing sequence of random variables {ξk}∞k=0 such that ξ0 = 0 and

ξk =
∑k

i=1 τi, k = 1, 2, . . . .

Remark 2. The random variable ξn will be called the waiting time and it gives the
arrival time of n-th impulses in the impulsive differential equation with random im-
pulses.

Let the points tk be arbitrary values of the random variables τk, k = 1, 2, . . .
correspondingly. Define the increasing sequence of points Tk =

∑k

i=1 ti, k = 1, 2, 3 . . .
that are values of the random variables ξk and consider the initial value problem
for the system of IDE with fixed points of impulses (1). The set of all solutions
x(t; x0, x1, {Tk}) of IDE (1) for any values tk of the random variables τk, k = 1, 2, . . .
generates a stochastic process with state space R

n. We denote it by x(t; x0, x1, {τk})
and we will say that it is a solution of the initial value problem (IVP) for differential
equations with random moments of impulses (RIDE) formally written by

x′′(t) = f(t, x(t), x′(t)) for ξk < t < ξk+1, k = 0, 1, . . . ,

x(ξk + 0) = Ik(x(ξk − 0)), x′(ξk + 0) = Jk(x
′(ξk − 0)) for k = 1, 2, . . . ,

x(0) = x0, x′(0) = x1.

(2)

Definition 1. Let tk be a value of the random variable τk, k = 1, 2, 3, . . . and Tk =
∑k

i=1 ti, k = 1, 2, . . . . Then the solution x(t; x0, x1, {Tk}) of the IVP for the IDE with
fixed points of impulses (1) is called a sample path solution of the IVP for the RIDE
(2).

Remark 3. We note that if condition (H2) is satisfied then the sample path solution
of the IVP for the RIDE (2) exists for all t ≥ T0 provided that the times between two
consecutive impulses tk are such that

∑∞
k=1 tk = ∞.
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Definition 2. A stochastic process x(t; x0, x1, {τk)} with an uncountable state space
R

n is said to be a solution of the IVP for the system of RIDE (2) if for any values
tk of the random variable τk, k = 1, 2, 3, . . . and Tk =

∑k

i=1 ti, k = 1, 2, . . . the
corresponding function x(t; x0, x1, {Tk}) is a sample path solution of the IVP for RIDE
(2).

Example 1. Case 1. (Differential equations without any type of impulses). Con-
sider the following IVP for the scalar DE

x′′ = 0 for t ≥ 0,

x(0) = x0 6= 0, x′(0) = 0
(3)

where x0 is a given constant.
The solution of IVP (3) is x(t; x0) = x0, t ≥ 0.
Case 2. (impulsive differential equations with fixed points of impulses). Consider

the following IVP for the scalar IDE (1)

x′′ = 0 for t ≥ 0, t 6= Tk,

x(Tk + 0) = ax′(Tk − 0), x(Tk + 0) = bx′(Tk − 0) for k = 1, 2, . . . ,

x(0) = x0 6= 0, x′(0) = 0

(4)

where a, b, x0 are given constants, point {Tk}∞k=1 are initially given.
The solution of IVP (4) is the piecewise continuous function

x(t; x0) = x0(a+ b(t− Tk))
k−1
∏

i=1

(a+ b(Ti − Ti−1)), t ∈ (Tk, Tk+1]. (5)

The behavior of x(t; x0) depends significantly on the amplitudes a, b of the im-
pulses. It is obviously the behavior of the solution is totally changed because of the
presence of impulses (compare Case 1 and Case 2).

Case 3. (Differential equation with random points of impulses). Consider the
following special case of the IVP for RIDE (2)

x′′ = 0 for ξk < t < ξk+1, k = 0, 1, . . . ,

x(ξk + 0) = ax′(ξk − 0), x(ξk + 0) = bx′(ξk − 0) for k = 1, 2, . . . ,

x(0) = x0 6= 0, x′(0) = 0

(6)

where x0 ∈ R, a, b are constants and the random variables ξk are defined above.
Let for any k = 1, 2, . . . the point tk be an arbitrary value of the random variable

τk and Tk =
∑k

i=0 ti, k = 1, 2, 3 . . . , i.e. Tk is a value of the random variable ξk.
Consider the IVP for the corresponding IDE (4). The solution of (4) is given by (5)
and it depends on both initial value x0 and the moments of impulses Tk, i.e. on the
initially chosen arbitrary values tk of the random variables τk, k = 1, 2, . . . . The set
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of all solutions of the IVP (4) for any values tk of the random variables τk generates
a stochastic process x(t; x0, {τk}) = akx0 for ξk < t ≤ ξk+1

x(t; x0, {τk}) = x0(a+ b(t− ξk))
k
∏

i=1

(a+ bτi), ξk < t ≤ ξk+1, k = 0, 1, . . . , . (7)

3 Exponentially distributed moments of impulses

For any t ≥ 0 consider the events

Sk(t) = {ω ∈ Ω : ξk(ω) < t < ξk+1(ω)},

where the random variables ξk, k = 1, 2, . . . are defined as above.
In the case of exponentially distributed random variables τk, k = 1, 2, . . . we will

use the following result:

Lemma 3.1. ([1]) Let condition (H3) be satisfied.
Then the probability that there will be exactly k impulses until time t, t ≥ 0 is

given by P (Sk(t)) =
λktk

k!
e−λt.

In our further research we will use the formula for the solution of the initial value
problem for a scalar linear first order differential equation with random moments of
impulses (see [1])

u′ = −mu, for ξk < t < ξk+1, , k = 0, 1, . . . ,

u(ξk + 0) = Cku(ξk), for k = 1, 2, . . . ,

u(0) = u0,

(8)

where u0 ∈ R, m > 0 and Ck 6= 1, (k = 1, 2, . . . ) are real constants.

Lemma 3.2. ([1]). Let the condition (H3) be fulfilled and there exists a positive
constants C such that

∑∞
k=0

∏k

i=1 |Ci| = C.
Then the solution of the IVP for the linear RIDE (8) is

u(t; u0, {τk}) = u0

(

k
∏

i=1

Ci

)

e
∑

k

i=1
−mτie−m(t−ξk) for ξk < t < ξk+1, k = 1, 2, . . . (9)

and the expected value of the solution satisfies the inequality

E(|u(t; u0, {τk})|) ≤ |u0|e−mte−λt

∞
∑

k=0

k
∏

i=1

(

|Ci|
)λktk

k!
≤ |u0|Ce−mt. (10)
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4 Main result

In this paper we will use the class Λ(J,∆) of Lyapunov functions V (t, x, y) : J ×∆×
∆ → R+, which are continuous differentiable on J ×∆×∆ and locally Lipschitzian
with respect to its second and third arguments, where J ⊂ R+ and ∆ ⊂ R

n, 0 ∈ ∆.

Definition 3. Let p > 0. Then the trivial solution (x0 = 0) of the RIDE (2) is
said to be p-moment generalized exponentially stable if for any x0, x1 ∈ R

n there exist
constants α, µ > 0 and an increasing function m : R+ → R+ such that

E[||x(t; x0, x1, {τk)})||p] < α m(max{||x0||, ||x1||}p) e−µt, for all t > 0,

where x(t; x0, x1, {τk)} is the solution of the IVP for the RIDE (2).

Remark 4. In the case m(u) ≡ u the p-moment generalized exponential stability is
reduced to the known in the literature p-moment exponential stability.

Remark 5. We note that the two-moment exponential stability for stochastic equa-
tions is known as exponential stability in mean square.

In this section we will use Lyapunov functions to obtain sufficient conditions for
the p-moment exponential stability of the trivial solution of the nonlinear impulsive
random system impulses occurring at random moments (2).

Theorem 4.1. Let the following conditions be satisfied:
1. Conditions (H1), (H2), (H3) hold.
2. The function V ∈ Λ(R+,R

n) and
(i) there exist positive constants a, p > 0 and an increasing function m : R+ → R+

such that
a||(z, y)||p ≤ V (t, z, y) ≤ m(||(z, y)||p)

for t ∈ R+, z, y ∈ R
n where ||(z, y)|| = max{||z||, ||y||}.

(ii) there exists a constant K ≥ 0 such that:

∂

∂t
V (t, z, y) +

n
∑

i=1

∂

∂zi
V (t, z, y)yi +

n
∑

i=1

∂

∂yi
V (t, z, y)fi(t, z, y) ≤ −KV (t, z, y),

for t ∈ R+, z, y ∈ R
n where z = (z1, z2, . . . , zn), y = (y1, y2, . . . , yn).

(iii) for any k = 1, 2, . . . there exist constants Ck > 0, k = 1, 2, . . . , such that
∑∞

k=0

∏k

i=1 Ci = C < ∞ and

V (t, Ik(z), Jk(y)) ≤ CkV (t, z, y) for t ≥ 0, z, y ∈ R
n.

Then the trivial solution of the RIDE (2) is p-moment generalized exponentially
stable, i.e. the inequality

E(||x(t; x0, x1, {τk)}||p) ≤
C

a
m(||(x0, x1)||p)e−Kt, t ≥ 0

holds, where x(t; x0, x1, {τk)} is a solution of the IVP for the RIDE (2).
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Proof: Let (x0, x1) ∈ R+×R
n be an arbitrary initial value and the stochastic process

xτ (t) = x(t; x0, x1, {τk)} be a solution of the IVP for the RIDE (2).
Let tk be arbitrary values of the random variables τk, k = 1, 2, . . . and Tk =

T0 +
∑k

i=1 ti, k = 1, 2, . . . . Consider the sample path solution x(t) = x(t; x0, x1, {Tk})
of IVP (2), i.e. a solution of (1). Substitute y = x′, z = x in (1) and obtain the
following system of impulsive differential equation

z′(t) = y(t)

y′ = f(t, z(t), y(t)) for t ∈ (Tk, Tk+1], k = 0, 1, 2, . . . ,

z(Tk + 0) = Ik(z(Tk − 0)), y(Tk + 0) = Jk(y(Tk − 0)) for k = 1, 2, . . . ,

z(0) = x0, y(0) = x1.

(11)

The couple of functions (z(t), y(t)), t ≥ 0, with z(t) = x(t), y(t) = x′(t) is a
solution of (11).

Let v(t) = V (t, z(t), y(t)) for t ≥ 0. Then

v′(t) =
∂

∂t
V (t, z(t), y(t)) +

∂

∂z
V (t, z(t), y(t))y(t)

+
∂

∂y
V (t, z(t), y(t))f(t, z(t), y(t))

≤ −KV (t, z(t), y(t)) = −Kv(t), t 6= Tk.

For any k = 1, 2, . . . we get v(Tk + 0) = V (Tk + 0, z(Tk + 0), y(Tk + 0)) = V (Tk +
0, Ik(z(Tk)), Jk(y(Tk))) ≤ CkV (Tk, z(Tk), y(Tk)) = Ckv(Tk).

Thus, function v(t) satisfies the linear impulsive differential inequalities with fixed
points of impulses

v′(t) ≤ −K v(t) for t ≥ 0, t 6= Tk, k = 1, 2, . . . ,

v(Tk + 0) ≤ Ckv(Tk), k = 1, 2, . . . ,

v(0) = V (0, x0, x1).

(12)

The function v(t) is a sample path solution of the corresponding to (8) with
u0 = V (0, x0, x1) whose solution is the generated stochastic process vτ (t) with state
space Rn. According to Lemma 3.2 the expected value of the corresponding stochastic
process satisfies

E
(

vτ (t)
)

≤ V (0, x0, x1)Ce−Kt, t ≥ 0.

Thus, applying condition 2(i) we obtain for the solution xτ (t) of IVP (1)

E(||xτ (t)||p) =
1

a
E(a||xτ (t)||p) ≤

1

a
E(a||(zτ (t), yτ (t))||p)

≤ 1

a
E(V (t, xτ (t))) =

1

a
E(vτ (t))

≤ C

a
V (0, x0, x1)e

−Kt ≤ C

a
m(||(x0, x1)||p)e−Kt, t ≥ 0.

(13)
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Inequality (13) proves the p-moment generalized exponential stability of zero so-
lution with α = C

a
and µ = K.

�

Corollary 1. Let the conditions of Theorem 4.1 be satisfied with m(u) ≡ bu, b > a

and replacing 2(ii) by:
(ii∗) there exists a constant L ≥ 0 such that:

∂

∂t
V (t, z, y) +

n
∑

i=1

∂

∂zi
V (t, z, y)yi +

n
∑

i=1

∂

∂yi
V (t, z, y)fi(t, z, y) ≤ −L||(z, y)||p,

for t ∈ R+, z, y ∈ R
n.

Then the trivial solution of the RIDE (2) is p-moment generalized exponentially
stable.

Proof: In this case the inequality (12) will be true with replacing K by K
b

and thus,

E(||xτ (t)||p) =
1

a
E(a||xτ (t)||p) ≤

1

a
E(a||(zτ (t), yτ (t))||p)

≤ 1

a
E(V (t, xτ (t))) =

1

a
E(vτ (t))

≤ C

a
V (0, x0, x1)e

−K

b
t ≤ Cb

a
||(x0, x1)||pe−

K

b
t, t ≥ 0.

(14)

�

Remark 6. Note conditions 2(i) and 2(ii) guarantee the exponential stability of the
corresponding to (1) ODE. Therefore, if additionally the condition (H3) and 2(iii) are
satisfied, the presence of random impulses in the equation does not change on average
the stability of the solution.

5 Applications

We will illustrate the obtained sufficient conditions on some particular examples with
impulses at random times.

First, we will consider the application of a Lyapunov function which does not
depend on the time variable t. Because we would like to emphasize on the influence
of random impulses on the behavior of the solutions and in connection with better
graphical illustrations we will consider a scalar nonlinear second order differential
equation with random impulses.

Example 1. Consider the scalar equation

x′′(t) = −x′(t)− x(t) for ξk < t < ξk+1, k = 0, 1, . . . ,

x(ξk + 0) = −0.5x(ξk), x′(ξk + 0) = −0.5x′(ξk) for k = 1, 2, . . . ,

x(0) = x0, x′(0) = x1.

(15)
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2 4 6 8 10 12 14
t

- 1.0

- 0.5

0.5

1.0

1.5

x(t)

x0=- 1, x1=3

x0=1, x1=2

x0=1.5, x1=- 3

Figure 1. Graphs of the solutions of

ODE with various initial values.

2 4 6 8 10
t

- 1.0

- 0.5

0.5

1.0

x(t)

1st

Figure 2. Graph of a particular sample

path solution of (15) with

t1 = 2, t2 = 5, t3 = 10.

Then f(t, z, y) = −y − z and Ik(y) = −0.5y, Jk(y) = −0.5y.
Note that the ordinary differential equation x′′(t) = −x′(t) − x(t), x(0) = A,

x′(0) = B has an explicit solution

x(t) =
1

3
e−0.5t

(

3A cos(0.5
√
3t) +

√
3A sin(0.5

√
3t) + 2

√
3B sin(0.5

√
3t)

)

and it is stable (see Figure 1 for various initial data: x0 = −1, x1 = 3, x0 = 1, x1 = 2
and x0 = 1.5, x1 = −3.)

Consider the function V (t, x, y) = y2 + x2 + xy. The following inequalities

V (t, x, y) = 0.5(x+ y)2 + 0.5x2 + 0.5y2 ≥ 0.5(x2 + y2)

and
V (t, x, y) ≤ 1.5x2 + 1.5y2

hold, i.e. condition 2(i) is satisfied with p = 1, a = 0.5 and m(u) = 1.5u.
Then we get

∂

∂t
V (t, z, y) +

∂

∂z
V (t, z, y)y +

∂

∂y
V (t, z, y)f(t, z, y) = 2zy + y2 + (z + 2y)f(t, z, y)

= 2zy + y2 − (z + 2y)(y + z) = 2zy + y2 − zy − z2 − 2y2 − 2zy

= −zy − z2 − y2 = −V (t, z, y),

(16)

i.e. condition 2 (ii) is satisfied with K = 1.
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5 10 15 20
t

- 1.0

- 0.5

0.5

1.0

x(t)

2nd

Figure 3. Graph of a particular sample

path solution of (15) with

t1 = 5, t2 = 4, t3 = 6.

5 10 15 20
t

- 1.0

- 0.5

0.5

1.0

x(t)

3rd

Figure 4. Graph of a particular sample

path solution of (15) with

t1 = 3, t2 = 3, t3 = 2, t4 = 6.

2 4 6 8 10
t

- 1.0

- 0.5

0.5

1.0

x(t)

1st

2nd

3rd

Figure 5. Graphs of some particular

sample path solutions of (15) on [0, 10].

12 14 16 18 20
t

- 0.002

0.002

0.004

x(t)

1st

2nd

3rd

Figure 6. Graphs of some particular

sample path solutions of (15) on [10, 20].
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Also,

V (t, Ik(z), Jk(y))

= (−0.9y)2 + (−0.9z)2 + (−0.9x)(−0.9y)

= 0.81y2 + 0.81z2 + 0.811zy = 0.81V (t, z, y)

(17)

with
∑∞

k=0

∏k

i=1 0.25 = 1
1−0.0.81

= C < ∞, i.e. condition 2(iii) is satisfied.
According to Theorem 4.1 the zero solution of (15) is mean square generalized

stable with m(u) = eu
2

, α = 4
3
, µ = K = 1, i.e. the

E[|x(t; x0, x1, {τk)})|2] < 4||(x0, x1)||2e−t, for all t > 0 (18)

holds.
We would like to note that the inequality (18) is about the expected value (mean)

of the norm of the stochastic process which is a solution of (15) and for a sample path
solution the inequality (18) could not be satisfied but on average it is true.

To illustrate the behavior of the zero solution of (15) with impulses occurring at
random times, we consider several sample path solutions. We fix the initial values
as x0 = 1, x1 = 3 and choose different values of each random variable tk, k = 1, 2, ...,
and graph the sample path solutions on the interval [0, 20] (see Figures 5 and Figure
6 combining the 3 particular sample path solutions) in the following way:

- values of random variables τ1, τ2, τ3, respectively, t1 = 2, t2 = 5, t3 = 10, i.e.
impulses at the points T1 = 2, T2 = 7, T3 = 17 (see Figure 2);

- values of random variables τ1, τ2, τ3, respectively, t1 = 5, t2 = 4, t3 = 6, i.e.
impulses at the points T1 = 5, T2 = 9, T3 = 15 (see Figure 3);

- values of random variables τ1, τ2, τ3, respectively, t1 = 3, t2 = 3, t3 = 2, t4 = 6,
i.e. impulses at the points T1 = 3, T2 = 6, T3 = 8, T4 = 14(see Figure 4).

Note all solutions coincide until the first point of impulse, i.e. the first particular
value of the random variable τ1 (see Figure 5).

From Figures 2-6 it could be seen the particular sample path solutions approach
zero.

�

Now we will consider the application of a Lyapunov function depending on the
time variable t on a system of nonlinear second order differential equations with
random impulses.

Example 2. Consider the system of two second order differential equations with
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impulses at random time:

x′′
1(t) = −x2(t)x

′
2(t)x

′
1(t)−

x′
1(t)

2(e−t + 1)
for ξk < t < ξk+1, k = 0, 1, . . . ,

x′′
2(t) = −x1(t)x

′
1(t)x

′
2(t)−

x′
2(t)

2(e−t + 1)
for ξk < t < ξk+1, k = 0, 1, . . . ,

x1(ξk + 0) = ax1(ξk), x′
1(ξk + 0) = bx′

1(ξk) for k = 1, 2, . . . ,

x2(ξk + 0) = cx2(ξk), x′
2(ξk + 0) = dx′

2(ξk) for k = 1, 2, . . . ,

x1(0) = x01, x′
1(0) = x11 x2(0) = x02, x′

2(0) = x12.

(19)

where a, b, c, d ∈ (−1, 1).
Then f1(t, z1, z2, y1, y2) = −z2y2y1 − y1

2(e−t+1)
and f2(t, z1, z2, y1, y2) = −z1y1y2 −

y2
2(e−t+1)

Consider V (t, z1, z2, y1, 22) = (e−t +1)
(

ez
2

1y21 + ez
2

2y22

)

. Applying that ex
2 ≥ x2 we

get

V (t, z1, z2, y1, 22) ≥ max{z21 , y21}+max{z22 , y22} ≥ max{z21 + z22 , y
2
1 + y22}

and

V (t, z1, z2, y1, 22) ≤ 2ez
2

1
+z2

2(y21 + y22) ≤ 2ez
2

1
+z2

2ey
2

1
+y2

2 ≤ 2e2max{z2
1
+z2

2
,y2

1
+y2

2
},

i.e. condition 2(i) is satisfied with m(u) =
√
2eu

2

and p = 2.
About the derivative we get

∂V

∂t
+

∂V

∂z1
y1 +

∂V

∂z2
y2 +

∂V

∂y1
f(t, z1, z2, y1, y2) +

∂V

∂y2
f(t, z1, z2, y1, y2)

= −e−t
(

ez
2

1y22 + ez
2

2y21

)

+ 2(e−t + 1)
(

z1e
z2
1y22y1 + z2e

z2
2y21y2 + y1e

z2
2f1(t, z, y) + y2e

z2
1f2(t, z, y)

)

= −e−t
(

ez
2

1y22 + ez
2

2y21

)

− ez
2

1y22 − ez
2

2y21,

(20)

i.e. condition 2(ii) is satisfied with K = 1.

Also, V (t, Ik(z), Jk(y)) = (e−t+1)
(

ea
2z2

1c2y21+eb
2z2

2d2y22

)

< (e−t+1)
(

ez
2

1y21+ez
2

2y22

)

,

i.e. condition 2(iii) is satisfied with C = 1.
According to Theorem 4.1 the zero solution of (19) is mean square generalized

stable, i.e.

E(||x(t; x0, x1, {τk)}||p) ≤ 2e2max{x2

01
+x2

02
,x2

11
+x2

12
}e−t, t ≥ 0.

To illustrate the behavior of the zero solution of (19) with impulses occurring at
random times, we consider several sample path solutions. We fix the initial values as
x01 = 3, x11 = −1, x02 = −1, x12 = 0.01 and choose different values of each random
variable tk, k = 1, 2, ..., and graph the sample path solutions on the interval [0, 30]
(see Figures 7 and Figure 8) in the following way:
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Figure 7. Graphs of first component

x1(t) of some particular sample path

solutions of (19) on [0, 30].
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Figure 8. Graphs of the second

component x2(t) of some particular

sample path solutions of (19) on [0, 30].

- values of random variables τ1, τ2, τ3, respectively, t1 = 3, t2 = 3, t3 = 6, i.e.
impulses at points T1 = 3, T2 = 6, T3 = 12;

- values of random variables τ1, τ2, τ3, respectively, t1 = 4, t2 = 4, t3 = 8, i.e.
impulses at points T1 = 4, T2 = 8, T3 = 16;

- values of random variables τ1, τ2, τ3, respectively, t1 = 5, t2 = 5, t3 = 5, i.e.
impulses at T1 = 5, T2 = 10, T3 = 15.

- values of random variables τ1, τ2, τ3, τ4, respectively, t1 = 6, t2 = 6, t3 = 6, t4 = 6,
i.e. impulses at T1 = 6, T2 = 12, T3 = 18, T4 = 24.

From Figures 7 and 8 it could be seen the particular sample path solutions ap-
proach zero.

�

6 Conclusions

The main goal of the paper is to set up in appropriate way a second order nonlinear
differential equation with impulses occurring at random times. The time between
two consecutive impulses is exponentially distributed. The p-moment generalized
exponential stability of the zero solution of the studied system is defined and some
sufficient conditions are obtained. In this way a mathematical apparatus for more
adequate modeling of some real World phenomena is given. For the set up problem
some other properties different than stability could be also studied. In this study
results from Theory of Differential Equations and Probability Theory have to be
combined.
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