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Abstract In this paper, we deal with the blow-up analysis of the following porous media equation system
with non-local boundary conditions

ut = ∆um + uα1

∫
Ω

uη1dx+ k1(t)a1(x)f1(v),

vt = ∆vn + vα2

∫
Ω

vη2dx+ k2(t)a2(x)f2(u) inΩ× (0, t∗),

∂u

∂ν
= h1(t)

∫
Ω

g1(u)dx,
∂v

∂ν
= h2(t)

∫
Ω

g2(v)dx on∂Ω× (0, t∗),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 x ∈ Ω ,

where m,n > 1, α1, η1, α2, η2 are positive constants and Ω ⊂ RN (N > 2) is a bounded convex domain
with smooth boundary ∂Ω. By constructing appropriate auxiliary functions and using differential inequality
techniques, we show that under certain conditions, the solution will blow-up in finite time. We also draw
the upper and lower bounds of blow-up time. In addition, an example is given to verify the obtained results.
Mathematics Subject Classification 35B44; 35K65.
Keywords Porous media equation system; Blow-up; Lower bound; Upper bound.

1 Introduction

At present, there are many articles to study the blow-up phenomenon of parabolic equation (see[1-4]). As
we know, the parabolic equation may have a global solution or blow up at finite time. In general, we can not get
the exact blow-up time when the blow-up occurs. Therefore, we have to study the upper and lower bounds of
blow-up time. In [5-15], we get many conclusions of blow-up time upper bound and lower bound. Among them,
there are many results about the blow-up phenomenon of systems (see[11-15]). As a kind of parabolic equation,
more and more scholars have studied the blow-up phenomenon of porous medium equations and systems in
recent years, and many results have been obtained in [11-19]. Inspired by their works, our interest is focused
on the following porous medium equation systems with nonlinear boundary conditions

ut = ∆um + uα1

∫
Ω

uη1dx+ k1(t)a1(x)f1(v),

vt = ∆vn + vα2

∫
Ω

vη2dx+ k2(t)a2(x)f2(u) inΩ× (0, t∗),

∂u

∂ν
= h1(t)

∫
Ω

g1(u)dx,
∂v

∂ν
= h2(t)

∫
Ω

g2(v)dx on∂Ω× (0, t∗),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 x ∈ Ω ,

(1.1)

where m,n > 1, α1, η1, α2, η2 are positive constants and Ω ⊂ RN (N > 2) is a bounded convex domain with
smooth boundary ∂Ω. ∂u

∂ν , ∂v
∂ν are the outward normal derivative on ∂Ω, t∗ is the blow time of (u, v) and Ω is
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the closure of Ω. Set R+ = (0,+∞). We assume that f1,f2,g1 and g2 are nonnegative C(R+) function, k1 and
k2 are positive C1(R+) function,a1,a2 are positive C1(Ω) function. u0 and v0 are nonnegative C1(R+) function.

To complete our research on problem (1.1), we focus on the articles [19,20]. The following problems were
considered by [19]:

ut = ∆um + k1(t)f1(v), vt = ∆vn + k2(t)f2(u) inΩ× (0, t∗),

∂u

∂ν
= g1(u),

∂v

∂ν
= g2(v) on∂Ω× (0, t∗),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 x ∈ Ω ,

(1.2)

where Ω ⊂ RN (N > 2) is a bounded convex domain with smooth boundary ∂Ω. Authors prove that blow-
up occurs at time t∗ under certain hypothetical conditions. The upper bound of the blow-up time when
Ω ⊂ R(N ≥ 2) and the lower bound when Ω ⊂ R(N ≥ 3) are also obtained.

[20] investigated the following problems with nonlinear boundary conditions:
ut = ∆u+ upvq − |∇u|α, vt = ∆v + vγus − |∇v|α inΩ× (0, t∗),

∂u

∂ν
= g(u),

∂v

∂ν
= h(v) on∂Ω× (0, t∗),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 x ∈ Ω ,

(1.3)

where Ω ⊂ RN (N > 1) is a bounded region with smooth boundary ∂Ω. By constructing an appropriate auxiliary
functions, and by means of PayneCWeinberger or Scotts method, they obtained a criterion to guarantee that
the solution exists globally or blows up at some finite time. Moreover, upper and lower bounds were derived
under appropriate measure in high-dimensional spaces.

Encouraged by the work mentioned above, we study the blow-up phenomenon of question (1.1) in this article.
We need to construct appropriate auxiliary functions and use differential inequality techniques to ensure that
blow-up occurs under appropriate hypothetical conditions and further obtain the upper and lower bounds of
blow-up time.

The structure of this paper is arranged as follows. In section 2, the upper bound of blow-up time is
determined. Section 3 is dedicated to obtaining the lower bound when blow-up does occur. In section 4, an
example is given to demonstrate our main results.

2 An upper bound for blow-up time

In this section, an upper bound for the blow-up time is gained by considering the problem (1.1) .We assume
that k1(t) and k2(t) satisfy

inf{k1(t), k2(t)} = k > 1, sup{k1(t), k2(t)} = K t ≥ 0, (2.1)

We also make the following assumptions:

inf{a1(x), a2(x)} = β, (2.2)

f1(s) ≥ asq, f2(s) ≥ bsp, (2.3)

where k,K, β, a, b, p, q are positive constants and

p > m, q > n. (2.4)

min{bβK(p− 1)

2(m− 1)
,
aβK(q − 1)

2(n− 1)
} > λ1, (2.5)

And λ1is the first eigenvalue of the following fixed membrane problem and ω1is the corresponding eigenfunction{
∆ω + λω = 0, ω > 0 in Ω,

ω = 0 on ∂Ω,
(2.6)
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with ∫
Ω

ω2
1dx = 1. (2.7)

We define the following auxiliary function and positive constants

B(t) = φ(t) + ψ(t) (2.8)

where

φ(t) =

∫
Ω

ω2
1udx, ψ(t) =

∫
Ω

ω2
1vdx. (2.9)

C1 = max{p−m
p− 1

,
q − n
q − 1

}, (2.10)

C2 = min{bβk − 2λ1
m− 1

p− 1
, aβk − 2λ1

n− 1

q − 1
}. (2.11)

Theorem 2.1. Let (u, v) be a nonnegative classical solution of problem of (1.1).We suppose that (2.1) −
(2.7) hold. In addition, we also assume that the initial data satisfies

−2λ1C1B(0) + 21−qC2B
q(0)− C2

p− q
p

(
p

q
)

q
q−p > 0. (2.12)

Then when p > q, (u, v) blows up at some finite time t < t∗ in the measure B(t) and

t∗ =

∫ +∞

B(0)

dτ

−2λ1C1τ + 21−qC2τ q − C2
(p−q)
p (pq )

q
q−p

Proof. Applying the condition (2.2)-(2.4) and (2.7), we have

B
′
(t) =

∫
Ω

ω2
1utdx+

∫
Ω

ω2
1vtdx

=

∫
Ω

ω2
1(∆um + uα1

∫
Ω

uη1dx+ k1(t)a1(x)f1(v))dx+

∫
Ω

ω2
1(∆vn + vα2

∫
Ω

vη2dx+ k2(t)a2(x)f2(u))dx

=

∫
Ω

ω2
1∆umdx+

∫
Ω

ω2
1u
α1

∫
Ω

uη1dx+ k1(t)

∫
Ω

ω2
1a1(x)f1(v)dx

+

∫
Ω

ω2
1∆vndx+

∫
Ω

ω2
1v
α2

∫
Ω

vη2dx+ k2(t)

∫
Ω

ω2
1a2(x)f2(u)dx

≥
∫

Ω

um∆ω2
1dx+

∫
Ω

ω2
1u
α1

∫
Ω

uη1dx+ aβk

∫
Ω

ω2
1v
qdx

+

∫
Ω

vn∆ω2
1dx+

∫
Ω

ω2
1v
α2

∫
Ω

vη2dx+ bβk

∫
Ω

ω2
1u
pdx

=

∫
Ω

um∇ · (∇ω2
1)dx+

∫
Ω

ω2
1u
α1

∫
Ω

uη1dx+ aβk

∫
Ω

ω2
1v
qdx

+

∫
Ω

vn∇ · (∇ω2
1)dx+

∫
Ω

ω2
1v
α2

∫
Ω

vη2dx+ bβk

∫
Ω

ω2
1u
pdx

=

∫
Ω

2ω1u
m∆ω1dx+

∫
Ω

2um|∇ω1|2dx+

∫
Ω

ω2
1u
α1

∫
Ω

uη1dx+ aβk

∫
Ω

ω2
1v
qdx

+

∫
Ω

2ω1v
n∆ω1dx+

∫
Ω

2vn|∇ω1|2dx+

∫
Ω

ω2
1v
α2

∫
Ω

vη2dx+ bβk

∫
Ω

ω2
1u
pdx

≥ −2

∫
Ω

λ1ω
2
1u
mdx+ aβk

∫
Ω

ω2
1v
qdx− 2

∫
Ω

λ1ω
2
1v
ndx+ bβk

∫
Ω

ω2
1u
pdx. (2.13)

Using the Hölder inequality and the Young inequality, we have∫
Ω

ω2
1u
mdx ≤ (

∫
Ω

ω2
1udx)

p−m
p−1 (

∫
Ω

ω2
1u
pdx)

m−1
p−1 ≤ p−m

p− 1

∫
Ω

ω2
1udx+

m− 1

p− 1

∫
Ω

ω2
1u
pdx (2.14)
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and ∫
Ω

ω2
1v
ndx ≤ (

∫
Ω

ω2
1vdx)

q−n
q−1 (

∫
Ω

ω2
1v
qdx)

n−1
q−1 ≤ q − n

q − 1

∫
Ω

ω2
1vdx+

n− 1

q − 1

∫
Ω

ω2
1v
qdx (2.15)

Inserting (2.14) and (2.15) into (2.13), we get

B
′
(t) ≥ −2λ1

p−m
p− 1

∫
Ω

ω2
1udx+

(
bβk − 2λ1

m− 1

p− 1

)∫
Ω

ω2
1u
pdx

−2λ1
q − n
q − 1

∫
Ω

ω2
1vdx+

(
aβk − 2λ1

n− 1

q − 1

)∫
Ω

ω2
1v
qdx

≥ −2λ1C1B(t) +
(
bβk − 2λ1

m− 1

p− 1

)∫
Ω

ω2
1u
pdx+

(
aβk − 2λ1

n− 1

q − 1

)∫
Ω

ω2
1v
qdx (2.16)

Where C1 is given in (2.10) Applying the Hölder inequality and (2.7), we obtain∫
Ω

ω2
1udx ≤ (

∫
Ω

ω2
1u
pdx)

1
p (

∫
Ω

ω2
1dx)

p−1
p = (

∫
Ω

ω2
1u
pdx)

1
p , (2.17)

and ∫
Ω

ω2
1vdx ≤ (

∫
Ω

ω2
1v
qdx)

1
q (

∫
Ω

ω2
1dx)

q−1
q = (

∫
Ω

ω2
1v
qdx)

1
q . (2.18)

From which we have

(

∫
Ω

ω2
1udx)p ≤

∫
Ω

ω2
1u
pdx, (2.19)

(

∫
Ω

ω2
1vdx)q ≤

∫
Ω

ω2
1v
qdx. (2.20)

We insert (2.19) and (2.20) into (2.16) to get

B
′
(t) ≥ −2λ1C1B(t) +

(
bβk − 2λ1

m− 1

p− 1

)
(

∫
Ω

ω2
1udx)p +

(
aβk − 2λ1

n− 1

q − 1

)
(

∫
Ω

ω2
1vdx)q

≥ −2λ1C1B(t) + C2

(
φp(t) + ψq(t)

)
. (2.21)

Where C2 is defined in (2.11). Next, we prove it in two cases.
Firstly, when p = q, according the basic inequality

jl1 + jl2 ≥ 21−l(j1 + j2)l, j1, j2 > 0, l > 1, (2.22)

we can obtain
B
′
(t) ≥ −2λ1C1B(t) + 21−pC2B

p(t). (2.23)

We integrate (2.23) from 0 to t and get

B1−p(t) ≤ e(p−1)2λ1C1t(B1−p(0)− 21−pC2

2λ1C1
) +

21−pC2

2λ1C1
= Φ(t). (2.24)

It’s easy to see from (2.12) that Φ(T ) = 0 and Φ(t) < 0, t > T with

T = − 1

(p− 1)2λ1C1
ln

1− 2λ1C1B
1−p(0)

21−pC2 (2.25)

Hence, solution (u, v) must blow up in measure B(t) at some time t∗ and

t∗ ≤ T = − 1

(p− 1)2λ1C1
ln

1− 2λ1C1B
1−p(0)

21−pC2 =

∫ +∞

B(0)

dτ

−2λ1C1τ + 21−pC2τp
. (2.26)

Secondly, when p > q, Applying the Young inequality, we can get

φq(t) =
(p
q
φp(t)

) q
p
(

(
p

q
)

q
q−p

) p−q
p ≤ φp(t) +

p− q
p

(
p

q
)

q
q−p , (2.27)

4



that is

φp(t) ≥ φq(t)− p− q
p

(
p

q
)

q
q−p . (2.28)

Inserting (2.28) into (2.21), we can get the following through (2.22)

B′(t) ≥ −2λ1C1B(t) + C2

(
φq(t)− p− q

p
(
p

q
)

q
q−p + ψq(t)

)
≥ −2λ1C1B(t) + C221−qBq(t)− C2

p− q
p

(
p

q
)

q
q−p = Ψ(B(t)). (2.29)

We note that hypothesis (2.12) implies

Ψ(B(t)) = −2λ1C1B(t) + C221−qBq(t)− C2
p− q
p

(
p

q
)

q
q−p > 0, t ≥ 0. (2.30)

Actually, if (2.30) does not hold, we order

t1 = min{t > 0|Ψ(B(t)) ≤ 0}, (2.31)

from which we can get
Ψ(B(t)) > 0, 0 ≤ t ≤ t1. (2.32)

Available from (2.29) and (2.32)
B′(t) > 0, 0 ≤ t < t1. (2.33)

We can easily verify that when 0 ≤ B(t) ≤ 2( 2λ1C1

C2q
)

1
q−1 , the value of Ψ(B(t)) is negative; when B(t) =

2( 2λ1C1

C2q
)

1
q−1 , Ψ(B(t)) achieve minimum negative value; in addition, Ψ(B(t)) about B(t) is increasing when

B(t) ≥ 2( 2λ1C1

C2q
)

1
q−1 . Therefore, we can deduce from (2.12)

Ψ(B(t1)) > Ψ(B(0)) > 0, (2.34)

This is contradictory to (2.31), so (2.30) holds. From (2.29), we conclude that (u, v) blows up at some finite
time t∗ in the measure B(t) and

t ≤
∫ B(t)

B(0)

dτ

−2λ1C1τ + C2τ q21−q − C2
p−q
p (pq )

q
q−p

. (2.35)

Taking the limit t→ t∗ in (2.35), we obtain

t∗ ≤
∫ +∞

B(0)

dτ

−2λ1C1τ + C2τ q21−q − C2
p−q
p (pq )

q
q−p

. (2.36)

3 An lower bound for blow-up time

In order to get a lower bound for blow-up time t∗ with Ω ⊂ R3, we make the following assumption. We
suppose that nonnegative functions h, a, f and g satisfy

sup{h1(t), h2(t)} = H, t ≥ 0, (3.1)

sup{a1(x), a2(x)} = β0, (3.2)

f1(s) ≤ asq, f2(s) ≤ bsp, p, q ≥ 1, (3.3)

g1(s) ≤ sc1 , g2(s) ≤ sc2 , (3.4)

where H,β0, a, b, p, q, c1, c2 are some positive constants with

c1 >
η1 + α1 +m

2
, c2 >

η2 + α2 + n

2
. (3.5)
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Then we define the following auxiliary function

A(t) = A1(t) +A2(t),

with

A1(t) =

∫
Ω

urdx, A2(t) =

∫
Ω

vrdx,

where r is positive constant and

max{2(p− 1), 2(q − 1), 6c1 − 6, 6c2 − 6} < r. (3.6)

In order to complete our proof, we need to take advantage of what is mentioned in [5].

W 1,2(Ω) ↪→ L
2N
N−2 (Ω), N ≥ 3, (3.7)

that is (∫
Ω

ω
2N
N−2

)N−2
2N ≤ Cs

(∫
Ω

ω2dx+

∫
Ω

|∇ω|2dx
) 1

2

, (3.8)

where ω ∈W 1,2(Ω) and Cs is constant depending on N and Ω. In the case we discussed this time, N = 3. Our
main result is the following Theorem 3.1.

Theorem 3.1. Let (u, v) be a nonnegative classical solution of problem (1.1). Suppose that (3.1)-(3.6) hold
and u becomes unbounded in the measure A(t) at some finite time t∗. Then t∗ is bounded below by

t∗ >
∫ ∞
A(0)

dτ

ϕ(τ)
, (3.9)

where

ϕ(τ) = H1τ
r+c1+m−2

r +H2τ
r+p−1
r +H3τ

r(2c1−m−η1−α1)+(r+2c1−m−1)(η1+α1−1)

r(2c1−m−1) +H4τ
r+c2+n−2

r

+H5τ
r(2c2−n−η2−α2)+(r+2c2−n−1)(η2+α2−1)

r(2c2−n−1) +H6τ
2(r+c1+m−3)

r

+H7τ
(r+12c1−3m−9)(r+2c1−m−1)(η1+α1−1)+4r(r+3c1−3)(2c1−m−η1−α1)

4r(r+3c1−3)(2c1−m−1)−3r(r+2c1−m−1)(η1+α1−1) +H8τ
2(r+n+c2−3)

r

+H9τ
r+4p−3m−1

r +H10τ
r+4q−3n−1

r

+H11τ
(r+12c2−3n−9)(r+2c2−n−1)(η2+α2−1)+4r(r+3c2−3)(2c2−n−η2−α2)

4r(r+3c2−3)(2c2−n−1)−3r(r+2c2−n−1)(η2+α2−1) + C, (3.10)

with Hi, i = 1, · · · , 11, Lj , j = 1, · · · , 6 and ε1,ε2,C to be defined in (3.11)-(3.28):

H1 =
rmHN

ρ0
|Ω|

r−m−c1+2
r , (3.11)

H2 = K(
a(r + q − 1)

r + p− 1
+ b)

β0r

2
(

3

ρ0
)

3
2 |Ω|

r−2p+2
2r , (3.12)

H3 = r(
3

ρ0
)

3(r+2c1−m−1)(η1+α1−1)

2(r+3c1−3)(2c1−m−1) |Ω|
(η1+α1−1)[(r−6c1+6)(r+2c1−m−1)+2(c1+m−2)]

2r(r+3c1−3)(2c1−m−1) , (3.13)

H4 =
rnHN

ρ0
|Ω|

r−n−c2+2
r , (3.14)

H5 = r(
3

ρ0
)

3(r+2c2−n−1)(η2+α2−1)

2(r+3c2−3)(2c2−n−1) |Ω|
(η2+α2−1)[(r−6c2+6)(r+2c2−n−1)+2(c2+n−2)]

2r(r+3c2−3)(2c2−n−1) , H6 =
1

2
L1ε

−1
1 , (3.15)

H7 =
4(r + 3c1 − 3)(2c1 −m− 1)− 3(r + 2c1 −m− 1)(η1 + α1 − 1)

4(r + 3c1 − 3)(2c1 −m− 1)
L2 (3.16)

×ε
3(r+2c1−m−1)(η1+α1−1)

3(r+2c1−m−1)(η1+α1−1)−4(r+3c1−3)(2c1−m−1)

1 , (3.17)

H8 =
1

2
L3ε

−1
2 , H9 =

1

4
L4ε

−3
1 , H10 =

1

4
L5ε

−3
2 , (3.18)

6



H11 =
4(r + 3c2 − 3)(2c2 − n− 1)− 3(r + 2c2 − n− 1)(η2 + α2 − 1)

4(r + 3c2 − 3)(2c2 − n− 1)
L6 (3.19)

×ε
3(r+2c2−n−1)(η2+α2−1)

3(r+2c2−n−1)(η2+α2−1)−4(r+3c2−3)(2c2−n−1)

2 , (3.20)

L1 =
rmHd(r +m− 2)

ρ0
|Ω|

r−m−c1+3
r , (3.21)

L2 = r(
2(ρ0 + d)(r + 3c1 − 3)

3ρ0
)

3(r+2c1−m−1)(η1+α1−1)

2(r+3c1−3)(2c1−m−1) |Ω|
(η1+α1−1)[(2r−12c1+3m+9)(r+2c1−m−1)+4r(c1+m−2)]

4r(r+3c1−3)(2c1−m−1) ,

L3 =
rnHd(r + n− 2)

ρ0
|Ω|

r−n−c2+3
r , (3.22)

L4 = K(
a(r − 1) + bp

r + p− 1
)β0r
√

2
( (r + p− 1)(ρ0 + d)

3ρ0

) 3
2 |Ω|

2r−4p+3m+1
4r , (3.23)

L5 = K(
aq + b(r − 1)

r + p− 1
)β0r
√

2
( (r + p− 1)(ρ0 + d)

3ρ0

) 3
2 |Ω|

2r−4p+3n+1
4r , (3.24)

L6 = r(
2(ρ0 + d)(r + 3c2 − 3)

3ρ0
)

3(r+2c2−n−1)(η2+α2−1)

2(r+3c2−3)(2c2−n−1) |Ω|
(η2+α2−1)[(2r−12c2+3n+9)(r+2c2−n−1)+4r(c2+n−2)]

4r(r+3c2−3)(2c2−n−1) , (3.25)

ε1 =
4rm(r − 1)(r + 3c1 − 3)(2c1 −m− 1)

2(r + 3c1 − 3)(2c1 −m− 1)L1 + 3(r + 2c1 −m− 1)(η1 + α1 − 1)(L2 + L4)
, (3.26)

ε2 =
4rn(r − 1)(r + 3c2 − 3)(2c2 − n− 1)

2(r + 3c2 − 3)(2c2 − n− 1)L3 + 3(r + 2c2 − n− 1)(η2 + α2 − 1)(L6 + L5)
, (3.27)

C = rβ0aK
p− q

r + p− 1
|Ω|. (3.28)

|Ω| is the volume of Ω, ρ0 = min
∂Ω

x · ν, and d = max
Ω
|x|.

Proof. By the assumptions (3.1)-(3.4) and the divergence theorem, we obtain

A
′
(t) =

∫
Ω

rur−1utdx+

∫
Ω

rvr−1vtdx

≤ r

∫
Ω

ur−1[∆um + uα1

∫
Ω

uη1dx+ k1(t)a1(x)f1(v)]dx+ r

∫
Ω

vr−1[∆vn + vα2

∫
Ω

vη2dx+ k2(t)a2(x)f2(u)]dx

≤ −r
∫

Ω

∇ur−1 · ∇umdx+ r

∫
∂Ω

ur−1 ∂u
m

∂ν
dS + r

∫
Ω

ur+α1−1dx

∫
Ω

uη1dx+ r

∫
Ω

ur−1k1(t)a1(x)f1(v)dx

−r
∫

Ω

∇vr−1 · ∇vndx+ r

∫
∂Ω

vr−1 ∂v
n

∂ν
dS + r

∫
Ω

vr+α2−1dx

∫
Ω

vη2dx+ r

∫
Ω

vr−1k2(t)a2(x)f2(u)dx

≤ −rm(r − 1)

∫
Ω

ur+m−3|∇u|2dx+ rm

∫
∂Ω

ur+m−2 ∂u

∂ν
dS + r

∫
Ω

ur+η1+α1−1dx+ rβ0aK

∫
Ω

ur−1vqdx

−rn(r − 1)

∫
Ω

vr+n−3|∇v|2dx+ rn

∫
∂Ω

vr+n−2 ∂v

∂ν
dS + r

∫
Ω

vr+η2+α2−1dx+ rβ0bK

∫
Ω

vr−1updx

≤ −rm(r − 1)

∫
Ω

ur+m−3|∇u|2dx+ rmH

∫
∂Ω

ur+m−2dS

∫
Ω

uc1dx+ r

∫
Ω

ur+η1+α1−1dx

+rβ0aK

∫
Ω

ur−1vqdx− rn(r − 1)

∫
Ω

vr+n−3|∇v|2dx+ rnH

∫
∂Ω

vr+n−2dS

∫
Ω

vc2dx

+r

∫
Ω

vr+η2+α2−1dx+ rβ0bK

∫
Ω

vr−1updx

= −rm(r − 1)J1 + rmHJ2 + rJ3 + rβ0aKJ4 − rn(r − 1)Q1 + rnHQ2 + rQ3 + rβ0bKQ4. (3.29)

Where

J1 =

∫
Ω

ur+m−3|∇u|2dx, (3.30)

J2 =

∫
∂Ω

ur+m−2dS

∫
Ω

uc1dx, (3.31)

J3 =

∫
Ω

ur+η1+α1−1dx, (3.32)
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J4 =

∫
Ω

ur−1vqdx, (3.33)

Q1 =

∫
Ω

vr+n−3|∇v|2dx, (3.34)

Q2 =

∫
∂Ω

vr+n−2dS

∫
Ω

vc2dx, (3.35)

Q3 =

∫
Ω

vr+η2+α2−1dx, (3.36)

Q4 =

∫
Ω

vr−1updx. (3.37)

Firstly, according to Lemma A.2 in [21] we deal with J2.∫
∂Ω

ur+m−2dS ≤ N

ρ0

∫
Ω

ur+m−2dx+
d(r +m− 2)

ρ0

∫
Ω

ur+m−3|∇u|dx. (3.38)

Using the Hölder inequality we can obtain∫
Ω

ur+m−2dx ≤ (

∫
Ω

urdx)
r+m−2

r |Ω|
2−m
r = A

r+m−2
r

1 (t)|Ω|
2−m
r . (3.39)

∫
Ω

ur+m−3|∇u|dx ≤ (

∫
Ω

ur+m−3|∇u|2dx)
1
2 (

∫
Ω

ur+m−3dx)
1
2

≤ J
1
2
1 (

∫
Ω

urdx)
r+m−3

r |Ω|
3−m
r

= J
1
2
1 A

r+m−3
r

1 (t)|Ω|
3−m
r . (3.40)

∫
Ω

uc1dx ≤ (

∫
Ω

urdx)
c1
r |Ω|

r−c1
r = A

c1
r

1 (t)|Ω|
r−c1
r . (3.41)

where 0 < r+m−2
r < 1,0 < c1

r < 1 due to (3.5),(3.6). By bringing all these inequalities into (3.31), we can get

J2 ≤ N

ρ0
|Ω|

2−m
r A

r+m−2
r

1 (t)A
c1
r

1 (t)|Ω|
r−c1
r +

d(r +m− 2)

ρ0
J

1
2
1 A

r+m−3
r

1 (t)|Ω|
3−m
r A

c1
r

1 (t)|Ω|
r−c1
r

=
N

ρ0
|Ω|

r−m−c1+2
r A

r+c1+m−2
r

1 (t) +
d(r +m− 2)

ρ0
J

1
2
1 A

r+m+c1−3
r

1 (t)|Ω|
r−m−c1+3

r . (3.42)

Similar to the processing method, we deal with Q2, we can get

Q2 ≤ N

ρ0
|Ω|

r−n−c2+2
r A

r+c2+n−2
r

2 (t) +
d(r + n− 2)

ρ0
Q

1
2
1 A

r+n+c2−3
r

2 (t)|Ω|
r−n−c2+3

r . (3.43)

where 0 < r+n−2
r < 1,0 < c2

r < 1 due to (3.5),(3.6). Next, we deal with J3. Due to the Hölder inequality , we
can get

J3 =

∫
Ω

ur+η1+α1−1dx

≤ (

∫
Ω

ur+2c1−m−1dx)
η1+α1−1
2c1−m−1A

2c1−m−η1−α1
2c1−m−1

1 (t). (3.44)

∫
Ω

ur+2c1−m−1dx ≤ (

∫
Ω

ur+3c1−3dx)
r+2c1−m−1
r+3c1−3 |Ω|

c1+m−2
r+3c1−3 . (3.45)

where 0 < η1+α1−1
2c1−m−1 < 1, 0 < r+2c1−m−1

r+3c1−3 < 1. According to the Lemma in [21] and the Hölder inequality , we
can get∫

Ω

ur+3c1−3dx ≤ { 3

2ρ0

∫
Ω

u
2
3 (r+3c1−3)dx+

1

3
(1 +

d

ρ0
)(r + 3c1 − 3)

∫
Ω

u
2
3 (r+3c1−3)−1|∇u|dx} 3

2 . (3.46)
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∫
Ω

u
2
3 (r+3c1−3)dx ≤ (

∫
Ω

urdx)
2(r+3c1−3)

3r |Ω|
r−6c1+6

3r = A
2(r+3c1−3)

3r
1 (t)|Ω|

r−6c1+6
3r . (3.47)

∫
Ω

u
2
3 (r+3c1−3)−1|∇u|dx ≤ (

∫
Ω

ur+m−3|∇u|2dx)
1
2 (

∫
Ω

u
r+12c1−3m−9

3 dx)
1
2

= J
1
2
1 (

∫
Ω

u
r+12c1−3m−9

3 dx)
1
2 . (3.48)

∫
Ω

u
r+12c1−3m−9

3 dx ≤ (

∫
Ω

urdx)
r+12c1−3m−9

3r |Ω|
2r−12c1+3m+9

3r

= A
r+12c1−3m−9

3r
1 (t)|Ω|

2r−12c1+3m+9
3r , (3.49)

where 2
3 (r + 3c1 − 3) > 1,0 < 2(r+3c1−3)

3r < 1, and 0 < r+12c1−3m−9
3r < 1. The following results can be obtained

by substituting (3.45)-(3.49) into (3.44) and applying the basic inequality (a+ b)n ≤ 2n(an + bn)

J3 ≤ A
2c1−m−η1−α1

2c1−m−1

1 { 3

2ρ0
A

2(r+3c1−3)
3r

1 (t)|Ω|
r−6c1+6

3r +
1

3
(1 +

d

ρ0
)(r + 3c1 − 3)J

1
2
1 A

r+12c1−3m−9
6r

1 (t)

×|Ω|
2r−12c1+3m+9

6r }
3(r+2c1−m−1)(η1+α1−1)

2(r+3c1−3)(2c1−m−1) |Ω|
(c1+m−2)(η1+α1−1)

(r+3c1−3)(2c1−m−1)

≤ (
3

ρ0
)

3(r+2c1−m−1)(η1+α1−1)

2(r+3c1−3)(2c1−m−1) |Ω|
(η1+α1−1)[(r−6c1+6)(r+2c1−m−1)+2(c1+m−2)]

4r(r+3c1−3)(2c1−m−1) A
r(2c1−m−η1−α1)+(r+2c1−m−1)(η1+α1−1)

r(2c1−m−1)

1 (t)

+
(2(ρ0 + d)(r + 3c1 − 3)

3ρ0

) 3(r+2c1−m−1)(η1+α1−1)

2(r+3c1−3)(2c1−m−1) |Ω|
(η1+α1−1)[2r(c1+m−2)+(2r−12c1+3m+9)(r+2c1−m−1)]

4r(r+3c1−3)(2c1−m−1)

×J
3(r+2c1−m−1)(η1+α1−1)

4(r+3c1−3)(2c1−m−1)

1 A
(r+12c1−3m−9)(r+2c1−m−1)(η1+α1−1)+4r(r+3c1−3)(2c1−m−η1−α1)

4r(r+3c1−3)(2c1−m−1)

1 (t). (3.50)

Using the similar method to deal with Q3, we can get

Q3 ≤ A
2c2−n−η2−α2

2c2−n−1

2 { 3

2ρ0
A

2(r+3c2−3)
3r

2 (t)|Ω|
r−6c2+6

3r +
1

3
(1 +

d

ρ0
)(r + 3c2 − 3)Q

1
2
1 A

r+12c2−3n−9
6r

2 (t)

×|Ω|
2r−12c2+3n+9

6r }
3(r+2c2−n−1)(η2+α2−1)

2(r+3c2−3)(2c2−n−1) |Ω|
(c2+n−2)(η2+α2−1)

(r+3c2−3)(2c2−n−1)

≤ (
3

ρ0
)

3(r+2c2−n−1)(η2+α2−1)

2(r+3c2−3)(2c2−n−1) |Ω|
(η2+α2−1)[(r−6c2+6)(r+2c2−n−1)+2(c2+n−2)]

2r(r+3c2−3)(2c2−n−1) A
r(2c2−n−η2−α2)+(r+2c2−n−1)(η2+α2−1)

r(2c2−n−1)

2 (t)

+
(2(ρ0 + d)(r + 3c2 − 3)

3ρ0

) 3(r+2c2−n−1)(η2+α2−1)

2(r+3c2−3)(2c2−n−1) |Ω|
(η2+α2−1)[4r(c2+n−2)+(2r−12c2+3n+9)(r+2c2−n−1)]

4r(r+3c2−3)(2c2−n−1)

×Q
3(r+2c2−n−1)(η2+α2−1)

4(r+3c2−3)(2c2−n−1)

1 A
(r+12c2−3n−9)(r+2c2−n−1)(η2+α2−1)+4r(r+3c2−3)(2c2−n−η2−α2)

4r(r+3c2−3)(2c2−n−1)

2 (t). (3.51)

where 2
3 (r+ 3c2− 3) > 1,0 < 2(r+3c2−3)

3r < 1, and 0 < r+12c2−3n−9
3r < 1. According to the Hölder inequality and

the Young inequality, we deal J4, it can be obtained∫
Ω

ur−1vqdx ≤ (

∫
Ω

ur+q−1dx)
r−1
r+q−1 (

∫
Ω

vr+q−1dx)
q

r+q−1

≤ r − 1

r + q − 1

∫
Ω

ur+q−1dx+
q

r + q − 1

∫
Ω

vr+q−1dx

≤ r − 1

r + q − 1

(
(

∫
Ω

ur+p−1dx)
r+q−1
r+p−1 |Ω|

p−q
r+p−1

)
+

q

r + q − 1

(
(

∫
Ω

vr+p−1dx)
r+q−1
r+p−1 |Ω|

p−q
r+p−1

)
≤ r − 1

r + q − 1

(r + q − 1

r + p− 1

∫
Ω

ur+p−1dx+
p− q

r + p− 1
|Ω|
)

q

r + q − 1

(r + q − 1

r + p− 1

∫
Ω

vr+p−1dx+
p− q

r + p− 1
|Ω|
)

=
p− q

r + p− 1
|Ω|+ r − 1

r + p− 1

∫
Ω

ur+p−1dx+
q

r + p− 1

∫
Ω

vr+p−1dx. (3.52)
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We can get the following results∫
Ω

ur+p−1dx ≤ { 3

2ρ0

∫
Ω

u
2
3 (r+p−1)dx+

1

3
(r + p− 1)(1 +

d

ρ0
)

∫
Ω

u
2
3 (r+p−1)−1|∇u|dx} 3

2 . (3.53)

∫
Ω

u
2
3 (r+p−1)−1|∇u|dx ≤ J

1
2
1

(∫
Ω

u
r+4p−3m−1

3 dx
) 1

2

. (3.54)

∫
Ω

u
r+4p−3m−1

3 dx ≤ A
r+4p−3m−1

3r
1 (t)|Ω|

2r−4p+3m+1
3r . (3.55)

∫
Ω

u
2
3 (r+p−1)dx ≤ A

2(r+p−1)
3r

1 (t)|Ω|
r−2p+2

3r . (3.56)

where 2
3 (r+p−1) > 1, 0 < r+4p−3m−1

3r < 1,0 < 2(r+p−1)
3r < 1 due to (3.5),(3.6). By applying the basic inequality

(a+ b)
3
2 ≤
√

2(a
3
2 + b

3
2 ), we can get∫

Ω

ur+p−1dx ≤ 1

2
(

3

ρ0
)

3
2 |Ω|

r−2p+2
2r A

r+p−1
r

1 (t) +
√

2(
(r + p− 1)(ρ0 + d)

3ρ0
)

3
2 |Ω|

2r−4p+3m+1
4r

×A
r+4p−3m−1

4r
1 (t)J

3
4
1 . (3.57)

Similarly, to the
∫

Ω
vr+p−1dx, we have∫

Ω

vr+p−1dx ≤ { 3

2ρ0

∫
Ω

v
2
3 (r+p−1)dx+

1

3
(r + p− 1)(1 +

d

ρ0
)

∫
Ω

v
2
3 (r+p−1)−1|∇v|dx} 3

2 . (3.58)

∫
Ω

v
2
3 (r+p−1)−1|∇v|dx ≤ Q

1
2
1

(∫
Ω

v
r+4p−3n−1

3 dx
) 1

2

. (3.59)

∫
Ω

v
r+4p−3n−1

3 dx ≤ A
r+4p−3n−1

3r
2 (t)|Ω|

2r−4p+3n+1
3r . (3.60)

∫
Ω

v
2
3 (r+p−1)dx ≤ A

2(r+p−1)
3r

2 (t)|Ω|
r−2p+2

3r . (3.61)

where 0 < r+4p−3n−1
3r < 1,0 < δ1(2(r+p−1)

3r < 1 due to (3.5),(3.6).∫
Ω

vr+p−1dx ≤ 1

2
(

3

ρ0
)

3
2 |Ω|

r−2p+2
2r A

r+p−1
r

2 (t) +
√

2(
(r + p− 1)(ρ0 + d)

3ρ0
)

3
2

×|Ω|
2r−4p+3n+1

4r A
r+4p−3n−1

4r
2 (t)Q

3
4
1 . (3.62)

Bring these results into J4 and we can get

J4 ≤ p− q
r + p− 1

|Ω|+ r − 1

r + p− 1

1

2
(

3

ρ0
)

3
2 |Ω|

r−2p+2
2r A

r+p−1
r

1 +
r − 1

r + p− 1

√
2
( (r + p− 1)(ρ0 + d)

3ρ0

) 3
2

×|Ω|
2r−4p+3m+1

4r A
r+4p−3m−1

4r
1 (t)J

3
4
1 +

q

r + p− 1

1

2
(

3

ρ0
)

3
2 |Ω|

r−2p+2
2r A

r+p−1
r

2 (t)

+
q

r + p− 1

√
2
( (r + p− 1)(ρ0 + d)

3ρ0

) 3
2 |Ω|

2r−4p+3n+1
4r A

r+4p−3n−1
4r

2 (t)Q
3
4
1 . (3.63)

Similar to the treatment of J4, we can get some results.∫
Ω

vr−1updx ≤ (

∫
Ω

vr+p−1dx)
r−1
r+p−1 (

∫
Ω

vr+p−1dx)
p

r+p−1

≤ r − 1

r + p− 1

∫
Ω

vr+p−1dx+
p

r + p− 1

∫
Ω

ur+p−1dx. (3.64)
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The following results can be obtained by substituting (3.57) and (3.62) into (3.64)

Q4 ≤ r − 1

r + p− 1

1

2
(

3

ρ0
)

3
2 |Ω|

r−2p+2
2r A

r+p−1
r

2 (t) +
r − 1

r + p− 1

√
2
( (r + p− 1)(ρ0 + d)

3ρ0

) 3
2

×|Ω|
2r−4p+3n+1

4r A
r+4p−3n−1

4r
2 (t)Q

3
4
1 +

p

r + p− 1

1

2
(

3

ρ0
)

3
2 |Ω|

r−2p+2
2r A

r+p−1
r

1 (t)

+
p

r + p− 1

√
2
( (r + p− 1)(ρ0 + d)

3ρ0

) 3
2 |Ω|

2r−4p+3m+1
4r A

r+4p−3m−1
4r

1 (t)J
3
4
1 . (3.65)

We substitute (3.42),(3.43),(3.50),(3.51),(3.63) and (3.65) into (3.29). We can get

A′(t) ≤ −rm(r − 1)J1 +H1A
r+c1+m−2

r
1 (t) + L1J

1
2
1 A

r+m+c1−3
r

1 (t) +H3A
r(2c1−m−η1−α1)+(r+2c1−m−1)(η1+α1−1)

r(2c1−m−1)

1 (t)

+L2A
(r+12c1−3m−9)(r+2c1−m−1)(η1+α1−1)+4r(r+3c1−3)(2c1−m−η1−α1)

4r(r+3c1−3)(2c1−m−1)

1 (t)J
3(r+2c1−m−1)(η1+α1−1)

4(r+3c1−3)(2c1−m−1)

1

+H2A
r+p−1
r (t) + L4A

r+4p−3m−1
4r

1 (t)J
3
4
1 + L5A

r+4p−3n−1
4r

2 (t)Q
3
4
1 − rn(r − 1)Q1

+H4A
r+c2+n−2

r
2 (t) + L3A

r+n+c2−3
r

2 (t)Q
1
2
1 +H5A

r(2c2−n−η2−α2)+(r+2c2−n−1)(η2+α2−1)

r(2c2−n−1)

2 (t)

+L6A
(r+12c2−3n−9)(r+2c2−n−1)(η2+α2−1)+4r(r+3c2−3)(2c2−n−η2−α2)

4r(r+3c2−3)(2c2−n−1)

2 (t)Q
3(r+2c2−n−1)(η2+α2−1)

4(r+3c2−3)(2c2−n−1)

1 + C. (3.66)

with H1 −H5,L1 − L6 are defined in (3.11)-(3.15) and (3.21)-(3.25). The Young inequality implies

Aτ11 (t)Jτ21 ≤ τ2ε1J1 + (1− τ2)ε
τ2
τ2−1

1 A
τ1

1−τ2
1 (t), (3.67)

Aτ12 (t)Qτ21 ≤ τ2ε2Q1 + (1− τ2)ε
τ2
τ2−1

2 A
τ1

1−τ2
2 (t), (3.68)

where 0 < τ2 < 1 and ε1,ε2 are given in (3.26) and (3.27). We can deduce

L1A
r+m+c1−3

r
1 (t)J

1
2
1 ≤

1

2
L1ε1J1 +H6A

2(r+m+c1−3)
r

1 (t). (3.69)

L2A
l
1(t)J

3(r+2c1−m−1)(η1+α1−1)

4(r+3c1−3)(2c1−m−1)

1 ≤ 3(r + 2c1 −m− 1)(η1 + α1 − 1)

4(r + 3c1 − 3)(2c1 −m− 1)
ε1L2J1

+H7A
(r+12c1−3m−9)(r+2c1−m−1)(η1+α1−1)+4r(r+3c1−3)(2c1−m−η1−α1)

4(r+3c1−3)(2c1−m−1)−3(r+2c1−m−1)(η1+α1−1)

1 (t).(3.70)

L3A
r+n+c2−3

r
2 (t)Q

1
2
1 ≤

1

2
L3ε2Q1 +H8A

2(r+n+c2−3)
r

2 (t). (3.71)

L4A
r+4p−3m−1

4r
1 (t)J

3
4
1 ≤ 3

4
L4ε1J1 +H9A

r+4p−3m−1
r

1 (t), (3.72)

L5A
r+4p−3n−1

4r
2 (t)Q

3
4
1 ≤ 3

4
L5ε2Q1 +H10A

r+4p−3n−1
r

2 (t), (3.73)

L6A
i
2(t)Q

3(r+2c2−n−1)(η2+α2−1)

4(r+3c2−3)(2c2−n−1)

1 ≤ 3(r + 2c2 − n− 1)(η2 + α2 − 1)

4(r + 3c2 − 3)(2c2 − n− 1)
ε2L6Q1

+H11A
(r+12c2−3n−9)(r+2c2−n−1)(η2+α2−1)+4r(r+3c2−3)(2c2−n−η2−α2)

4(r+3c2−3)(2c2−n−1)−3(r+2c2−n−1)(η2+α2−1)

2 (t).(3.74)

where 0 < 3(r+2c1−m−1)(η1+α1−1)
4(r+3c1−3)(2c1−m−1) < 1, 0 < 3(r+2c2−n−1)(η2+α2−1)

4(r+3c2−3)(2c2−n−1) < 1 and H6-H11 are defined by (3.15)-

(3.19)and l = (r+12c1−3m−9)(r+2c1−m−1)(η1+α1−1)+4r(r+3c1−3)(2c1−m−η1−α1)
4r(r+3c1−3)(2c1−m−1) ,

11



i = (r+12c2−3n−9)(r+2c2−n−1)(η2+α2−1)+4r(r+3c2−3)(2c2−n−η2−α2)
4r(r+3c2−3)(2c2−n−1) . By substituting (3.69)-(3.74) into (3.66),

we can get the following results

A′(t) ≤ H1A
r+c1+m−2

r
1 (t) +H2A

r+p−1
r (t) +H3A

r(2c1−m−η1−α1)+(r+2c1−m−1)(η1+α1−1)

r(2c1−m−1)

1 (t) +H4A
r+c2+n−2

r
2 (t)

+H5A
r(2c2−n−η2−α2)+(r+2c2−n−1)(η2+α2−1)

r(2c2−n−1)

2 (t) +H6A
2(r+c1+m−3)

r
1 (t)

+H7A
(r+12c1−3m−9)(r+2c1−m−1)(η1+α1−1)+4r(r+3c1−3)(2c1−m−η1−α1)

4r(r+3c1−3)(2c1−m−1)−3r(r+2c1−m−1)(η1+α1−1)

1 (t) +H8A
2(r+n+c2−3)

r
2 (t)

+H9A
r+4p−3m−1

r
1 (t) +H10A

r+4q−3n−1
r

2 (t)

+H11A
(r+12c2−3n−9)(r+2c2−n−1)(η2+α2−1)+4r(r+3c2−3)(2c2−n−η2−α2)

4r(r+3c2−3)(2c2−n−1)−3r(r+2c2−n−1)(η2+α2−1)

2 (t) + C

≤ H1A
r+c1+m−2

r (t) +H2A
r+p−1
r (t) +H3A

r(2c1−m−η1−α1)+(r+2c1−m−1)(η1+α1−1)

r(2c1−m−1) (t) +H4A
r+c2+n−2

r (t)

+H5A
r(2c2−n−η2−α2)+(r+2c2−n−1)(η2+α2−1)

r(2c2−n−1) (t) +H6A
2(r+c1+m−3)

r (t)

+H7A
(r+12c1−3m−9)(r+2c1−m−1)(η1+α1−1)+4r(r+3c1−3)(2c1−m−η1−α1)

4r(r+3c1−3)(2c1−m−1)−3r(r+2c1−m−1)(η1+α1−1) (t) +H8A
2(r+n+c2−3)

r (t)

+H9A
r+4p−3m−1

r (t) +H10A
r+4q−3n−1

r (t)

+H11A
(r+12c2−3n−9)(r+2c2−n−1)(η2+α2−1)+4r(r+3c2−3)(2c2−n−η2−α2)

4r(r+3c2−3)(2c2−n−1)−3r(r+2c2−n−1)(η2+α2−1) (t) + C. (3.75)

By integrating (3.75) from 0 to t, we can get

t ≥
∫ A(t)

A(0)

dτ

ϕ(τ)
, (3.76)

where ϕ(τ) is given in (3.10). We pass the limits as t→ t∗, hence, we get

t∗ ≥
∫ +∞

A(0)

1

ϕ(τ)
. (3.77)

The proof is complete.

4 Applications

In this chapter, to verify Theorem 2.1 - 3.1, we give an example.
Let (u, v) be a nonnegative classical solution of the following equation:

ut = ∆u
3
2 + u2

∫
Ω

u3dx+ (5− e−t)(8 + |x|2)v3, vt = ∆v
5
4 + v2

∫
Ω

v2dx+ (5− e−t)(8 + |x|2)u2 inΩ× (0, t∗),

∂u

∂ν
=

67888

5π
(2− e2t)

∫
Ω

u3dx,
∂v

∂ν
=

11413

200π
(3− e3t)

∫
Ω

v2dx on∂Ω× (0, t∗),

u(x, 0) =
1

200
+

1

200
|x|2 ≥ 0, v(x, 0) =

1

200
+

1

200
|x|2 ≥ 0 x ∈ Ω ,

where Ω = {x = (x1, x2, x3)|x2
1 + x2

2 + x2
3 < 1}.

Then

k1(t) = k2(t) = 5− e−t, a1(x) = a2(x) = 8 + |x|2, f1(v) = v3, f2(u) = u2,

h1(t) =
67888

5π
(2− e2t), h2(t) =

11413

200π
(3− e3t) g1(u) = u3, g2(v) = v2,

u(x, 0) = v(x, 0) =
1

200
+

1

200
|x|2, m =

3

2
, n =

5

4
, α1 = α2 = η2 = 2, η1 = 3.

Conclusion of theorem 2.1
From (2.6) and (2.7), we choose λ1 = π2 and ω1 = sinπ|x|√

2π|x| . Then

B(t) =

∫
Ω

ω2
1udx+

∫
Ω

ω2
1vdx,

B(0) =

∫
Ω

ω2
1u(x, 0)dx+

∫
Ω

ω2
1v(x, 0)dx = 2

∫
Ω

( sinπ|x|√
2π|x|

)2

(
1

200
+

1

200
|x|2)dx ≈ 0.0128.
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Choosing k = 4, K = 5, β = 8, a = 1, b = 1, q = 3 and p = 2. It is easily to check that (2.1)-(2.7) and (2.12)
hold. Applying Theorem 2.1, we know that (u, v) blows up at a finite time t < t∗ in the measure Φ(t). And

t∗ =

∫ +∞

B(0)

dτ

−2λ1C1τ + 21−qC2τ q − C2
p−q
p (pq )

q
q−p

=

∫ +∞

0.0128

dτ

− 7
4π

2τ + 1
4 (32− π2)τ3 + 1

2 (32− π2)( 2
3 )3
≈ 0.0623, (4.1)

which is an upper bound for the blow-up time.
Conclusion of theorem 3.1
Next, we obtain the lower bound of blow-up from theorem 3.1. Selecting H = 67888

5π , β0 = 9, a = 1, b =
1, q = 3, p = 2, c1 = 4, c2 = 3, N = 3, r = 20 and they satisfy (3.1)-(3.5) and (3.6). In this case, we get
ρ0 = 1, d = 1, |Ω| = 4π

3 ,

A(t) =

∫
Ω

urdx+

∫
Ω

vrdx =

∫
Ω

u20dx+

∫
Ω

v20dx. (4.2)

By (3.11)-(3.28), we obtain H1 = 1.2 × 106, H2 = 9121.86, H3 = 60.44, H4 = 1.15 × 106, H5 = 82.62, H6 =
3.68 × 1010, H7 = 737.568, H8 = 1.89 × 1010, H9 = 1.88 × 1016, H10 = 3.64 × 1015, H11 = 3.37 × 107, C =
179.52, ε1 = 0.00012, ε2 = 0.00021

A(0) =

∫
Ω

u(x, 0)rdx+

∫
Ω

v(x, 0)rdx ≈ 8.16× 10−40. (4.3)

and

ϕ(τ) = 1.2× 106τ
47
40 + 9121.86τ

21
20 + 60.44τ

66
55 + 1.15× 106τ

89
80 + 82.62τ

23
30

+3.68× 1010τ
9
4 + 737.586τ1.3613 + 1.89× 1010τ

17
8 + 1.88× 1016τ

9
8 + 3.64× 1015τ

109
80

+3.37× 107τ1.3167 − 179.52. (4.4)

We can get from Hölder inequality and young inequality

B(t) =

∫
Ω

ω2
1udx+

∫
Ω

ω2
1vdx

≤
(∫

Ω

ω
40
19
1 dx

) 19
20
(∫

Ω

u20dx
) 1

20

+
(∫

Ω

ω
40
19
1 dx

) 19
20
(∫

Ω

v20dx
) 1

20

≤ 19

10

∫
Ω

ω
40
19
1 dx+

1

20
A(t).

Obviously, by Theorem 2.1, we know that (u, v) must blow up in measure B(t). Hence (u, v) is unbounded in
the measure A(t). Using Theorem 3.1, we get a lower bound for the blow-up time

t∗ >
∫ ∞
A(0)

dτ

ϕ(τ)

= 2.47× 10−14. (4.5)

It follows from (4.1)-(4.5) that
2.47× 10−14 6 t∗ 6 0.0623
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