References
Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124(4), 783-801.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics25(1), 25-29.
Bolón-Canedo, V., Alonso-Betanzos, A., López-de-Ullibarri, I., and Cao, R. (2019). Challenges and Future Trends for Microarray Analysis.Methods in molecular biology (Clifton, N.J.) 1986,283-293. doi: 10.1007/978-1-4939-9442-7_14.
Chou, C.-H., Chang, N.-W., Shrestha, S., Hsu, S.-D., Lin, Y.-L., Lee, W.-H., et al. (2016). miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic acids research 44(D1), D239-D247. doi: 10.1093/nar/gkv1258.
Clough, E., and Barrett, T. (2016). The Gene Expression Omnibus Database. Methods in molecular biology (Clifton, N.J.) 1418. doi: 10.1007/978-1-4939-3578-9_5.
Dong, J., Carey, W.A., Abel, S., Collura, C., Jiang, G., Tomaszek, S., et al. (2012). MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia. BMC Genomics13, 204. doi: 10.1186/1471-2164-13-204.
Durrmeyer, X., Kayem, G., Sinico, M., Dassieu, G., Danan, C., and Decobert, F. (2012). Perinatal risk factors for bronchopulmonary dysplasia in extremely low gestational age infants: a pregnancy disorder-based approach. The Journal of pediatrics 160(4). doi: 10.1016/j.jpeds.2011.09.025.
Ezzie, M.E., Crawford, M., Cho, J.-H., Orellana, R., Zhang, S., Gelinas, R., et al. (2012). Gene expression networks in COPD: microRNA and mRNA regulation. Thorax 67(2), 122-131. doi: 10.1136/thoraxjnl-2011-200089.
Fu, Y., Wang, C., Zhang, D., Chu, X., Zhang, Y., and Li, J. (2019). miR-15b-5p ameliorated high glucose-induced podocyte injury through repressing apoptosis, oxidative stress, and inflammatory responses by targeting Sema3A. Journal of cellular physiology234(11), 20869-20878. doi: 10.1002/jcp.28691.
Hatley, M.E., Patrick, D.M., Garcia, M.R., Richardson, J.A., Bassel-Duby, R., van Rooij, E., et al. (2010). Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer cell18(3), 282-293. doi: 10.1016/j.ccr.2010.08.013.
Hilgendorff, A., and O’Reilly, M.A. (2015). Bronchopulmonary dysplasia early changes leading to long-term consequences. Frontiers in medicine 2, 2. doi: 10.3389/fmed.2015.00002.
Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4(1), 44-57. doi: 10.1038/nprot.2008.211.
Hung, J.-H., and Weng, Z. (2017). Analysis of Microarray and RNA-seq Expression Profiling Data. Cold Spring Harbor protocols 2017(3). doi: 10.1101/pdb.top093104.
Jobe, A.H. (2011). The new bronchopulmonary dysplasia. Current opinion in pediatrics 23(2), 167-172. doi: 10.1097/MOP.0b013e3283423e6b.
Kalikkot Thekkeveedu, R., Guaman, M.C., and Shivanna, B. (2017). Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respiratory medicine 132, 170-177. doi: 10.1016/j.rmed.2017.10.014.
Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28(1), 27-30.
Lal, C.V., Olave, N., Travers, C., Rezonzew, G., Dolma, K., Simpson, A., et al. (2018). Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants. JCI insight 3(5). doi: 10.1172/jci.insight.93994.
Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15-20.
Li, J., Yu, K.-H., Oehlert, J., Jeliffe-Pawlowski, L.L., Gould, J.B., Stevenson, D.K., et al. (2015). Exome Sequencing of Neonatal Blood Spots and the Identification of Genes Implicated in Bronchopulmonary Dysplasia. American journal of respiratory and critical care medicine 192(5), 589-596. doi: 10.1164/rccm.201501-0168OC.
Lingappan, K., and Savani, R.C. (2020). The Wnt Signaling Pathway and the Development of Bronchopulmonary Dysplasia. American journal of respiratory and critical care medicine . doi: 10.1164/rccm.202002-0277ED.
Malash, A.H., Ali, A.A., Samy, R.M., and Shamma, R.A. (2016). Association of TLR polymorphisms with bronchopulmonary dysplasia.Gene 592(1), 23-28. doi: 10.1016/j.gene.2016.07.049.
Ota, C., Baarsma, H.A., Wagner, D.E., Hilgendorff, A., and Königshoff, M. (2016). Linking bronchopulmonary dysplasia to adult chronic lung diseases: role of WNT signaling. Molecular and cellular pediatrics 3(1), 34.
Pietrzyk, J.J., Kwinta, P., Wollen, E.J., Bik-Multanowski, M., Madetko-Talowska, A., Günther, C.-C., et al. (2013). Gene expression profiling in preterm infants: new aspects of bronchopulmonary dysplasia development. PloS one 8(10), e78585. doi: 10.1371/journal.pone.0078585.
Ryan, F.J., Drew, D.P., Douglas, C., Leong, L.E.X., Moldovan, M., Lynn, M., et al. (2019). Changes in the Composition of the Gut Microbiota and the Blood Transcriptome in Preterm Infants at Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia. mSystems4(5). doi: 10.1128/mSystems.00484-19.
Sampath, V., Garland, J.S., Le, M., Patel, A.L., Konduri, G.G., Cohen, J.D., et al. (2012). A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatric pulmonology 47(5), 460-468. doi: 10.1002/ppul.21568.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research13(11), 2498-2504.
Shi, Y., Zhao, Y., Zhang, Y., AiErken, N., Shao, N., Ye, R., et al. (2018). AFF3 upregulation mediates tamoxifen resistance in breast cancers. Journal of experimental & clinical cancer research : CR37(1), 254. doi: 10.1186/s13046-018-0928-7.
Silva, D.M.G., Nardiello, C., Pozarska, A., and Morty, R.E. (2015). Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. American journal of physiology. Lung cellular and molecular physiology 309(11),L1239-L1272. doi: 10.1152/ajplung.00268.2015.
Sticht, C., De La Torre, C., Parveen, A., and Gretz, N. (2018). miRWalk: An online resource for prediction of microRNA binding sites. PloS one 13(10), e0206239. doi: 10.1371/journal.pone.0206239.
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic acids research 43(Database issue), D447-D452. doi: 10.1093/nar/gku1003.
Wang, J., Yin, J., Wang, X., Liu, H., Hu, Y., Yan, X., et al. (2019). Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model. J Cell Biochem 120(6), 9369-9380. doi: 10.1002/jcb.28212.
Wong, N., and Wang, X. (2015). miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic acids research 43(Database issue), D146-D152. doi: 10.1093/nar/gku1104.
Yang, Y., Qiu, J., Kan, Q., Zhou, X.G., and Zhou, X.Y. (2013). MicroRNA expression profiling studies on bronchopulmonary dysplasia: a systematic review and meta-analysis. Genetics and molecular research : GMR12(4), 5195-5206. doi: 10.4238/2013.October.30.4.
Yao, L., Shi, Y., Zhao, X., Hou, A., Xing, Y., Fu, J., et al. (2017). Vitamin D attenuates hyperoxia-induced lung injury through downregulation of Toll-like receptor 4. International journal of molecular medicine 39(6), 1403-1408. doi: 10.3892/ijmm.2017.2961.
Zhang, S., Patel, A., Moorthy, B., and Shivanna, B. (2015). Adrenomedullin deficiency potentiates hyperoxic injury in fetal human pulmonary microvascular endothelial cells. Biochemical and biophysical research communications 464(4), 1048-1053. doi: 10.1016/j.bbrc.2015.07.067.
Zhang, X., Peng, W., Zhang, S., Wang, C., He, X., Zhang, Z., et al. (2011). MicroRNA expression profile in hyperoxia-exposed newborn mice during the development of bronchopulmonary dysplasia. Respiratory care 56(7), 1009-1015. doi: 10.4187/respcare.01032.
Zhang, X., Xu, J., Wang, J., Gortner, L., Zhang, S., Wei, X., et al. (2013). Reduction of microRNA-206 contributes to the development of bronchopulmonary dysplasia through up-regulation of fibronectin 1.PloS one 8(9), e74750. doi: 10.1371/journal.pone.0074750.
Zhou, G., Soufan, O., Ewald, J., Hancock, R.E.W., Basu, N., and Xia, J. (2019). NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic acids research 47(W1), W234-W241. doi: 10.1093/nar/gkz240.
Table 1. Significant DEMs in infants with BPD compared with normal preterm infants.