REFERENCES
1. Zhang X, Peng W, Zhang S, et al.
MicroRNA expression profile in hyperoxia-exposed newborn mice during the
development of bronchopulmonary dysplasia. Respir Care.2011;56(7):1009-1015.
2. Villamor-Martinez E, Alvarez-Fuente M, Ghazi AMT, et al. Association
of Chorioamnionitis With Bronchopulmonary Dysplasia Among Preterm
Infants: A Systematic Review, Meta-analysis, and Metaregression.JAMA Netw Open. 2019;2(11):e1914611.
3. Nold MF, Mangan NE, Rudloff I, et al. Interleukin-1 receptor
antagonist prevents murine bronchopulmonary dysplasia induced by
perinatal inflammation and hyperoxia. Proc Natl Acad Sci U S A.2013;110(35):14384-14389.
4. Gronbach J, Shahzad T, Radajewski S, et al. The Potentials and
Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm
Infant. Stem Cells Int. 2018;2018:9652897.
5. Ekiz HA, Ramstead AG, Lee SH, et al. T Cell-Expressed microRNA-155
Reduces Lifespan in a Mouse Model of Age-Related Chronic Inflammation.J Immunol. 2020;204(8):2064-2075.
6. Pham TT, Ban J, Lee K, et al. MicroRNA gga-miR-10a-mediated
transcriptional regulation of the immune genes in necrotic enteritis
afflicted chickens. Dev Comp Immunol. 2020;102:103472.
7. Coarfa C, Zhang Y, Maity S, et al. Sexual dimorphism of the pulmonary
transcriptome in neonatal hyperoxic lung injury: identification of
angiogenesis as a key pathway. Am J Physiol Lung Cell Mol
Physiol. 2017;313(6):L991-L1005.
8. Butler B, De Dios R, Nguyen L, McKenna S, Ghosh S, Wright CJ.
Developmentally Regulated Innate Immune NFkappaB Signaling Mediates
IL-1alpha Expression in the Perinatal Murine Lung. Front Immunol.2019;10:1555.
9. Shivanna B, Maity S, Zhang S, et al. Gene Expression Profiling
Identifies Cell Proliferation and Inflammation as the Predominant
Pathways Regulated by Aryl Hydrocarbon Receptor in Primary Human Fetal
Lung Cells Exposed to Hyperoxia. Toxicol Sci.2016;152(1):155-168.
10. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP.
Summaries of Affymetrix GeneChip probe level data. Nucleic Acids
Res. 2003;31(4):e15.
11. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization,
and summaries of high density oligonucleotide array probe level data.Biostatistics. 2003;4(2):249-264.
12. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of
normalization methods for high density oligonucleotide array data based
on variance and bias. Bioinformatics. 2003;19(2):185-193.
13. Harris MA, Clark J, Ireland A, et al. The Gene Ontology (GO)
database and informatics resource. Nucleic Acids Res.2004;32(Database issue):D258-261.
14. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res. 2000;28(1):27-30.
15. Li Y, Li Q, Wang C, Li S, Yu L. Long Noncoding RNA Expression
Profile in BV2 Microglial Cells Exposed to Lipopolysaccharide.Biomed Res Int. 2019;2019:5387407.
16. Wang W, Wang T, Wang Y, et al. Integration of Gene Expression
Profile Data to Verify Hub Genes of Patients with Stanford A Aortic
Dissection. Biomed Res Int. 2019;2019:3629751.
17. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org
resource: targets and expression. Nucleic Acids Res.2008;36(Database issue):D149-153.
18. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA
target sites in mammalian mRNAs. Elife. 2015;4.
19. Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target
predictions. Nat Genet. 2005;37(5):495-500.
20. Jiang S, Fang X, Liu M, Ni Y, Ma W, Zhao R. MiR-20b Down-Regulates
Intestinal Ferroportin Expression In Vitro and In Vivo. Cells.2019;8(10).
21. Kerrien S, Aranda B, Breuza L, et al. The IntAct molecular
interaction database in 2012. Nucleic Acids Res. 2012;40(Database
issue):D841-846.
22. Pagel P, Kovac S, Oesterheld M, et al. The MIPS mammalian
protein-protein interaction database. Bioinformatics.2005;21(6):832-834.
23. Chou CH, Shrestha S, Yang CD, et al. miRTarBase update 2018: a
resource for experimentally validated microRNA-target interactions.Nucleic Acids Res. 2018;46(D1):D296-D302.
24. Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: A comprehensive
database of experimentally supported animal microRNA targets.RNA. 2006;12(2):192-197.
25. Nepusz, G.C.a.T. The igraph software package for complex network
research. InterJournal Complex Systems . 2006; 1695.
26. Sacar Demirci MD, Yousef M, Allmer J. Computational Prediction of
Functional MicroRNA-mRNA Interactions. Methods Mol Biol.2019;1912:175-196.
27. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software
environment for integrated models of biomolecular interaction networks.Genome Res. 2003;13(11):2498-2504.
28. Zhang X, Liu S, Hu T, Liu S, He Y, Sun S. Up-regulated microRNA-143
transcribed by nuclear factor kappa B enhances hepatocarcinoma
metastasis by repressing fibronectin expression. Hepatology.2009;50(2):490-499.
29. Kumar VHS, Wang H, Nielsen L. Adaptive immune responses are altered
in adult mice following neonatal hyperoxia. Physiol Rep.2018;6(2).
30. Balany J, Bhandari V. Understanding the Impact of Infection,
Inflammation, and Their Persistence in the Pathogenesis of
Bronchopulmonary Dysplasia. Front Med (Lausanne). 2015;2:90.
31. Kasat K, Patel H, Predtechenska O, Vancurova I, Davidson D.
Anti-inflammatory actions of endogenous and exogenous interleukin-10
versus glucocorticoids on macrophage functions of the newly born.J Perinatol. 2014;34(5):380-385.
32. Kramer BW, Kallapur S, Newnham J, Jobe AH. Prenatal inflammation and
lung development. Semin Fetal Neonatal Med. 2009;14(1):2-7.
33. Zhang X, Xu J, Wang J, et al. Reduction of microRNA-206 contributes
to the development of bronchopulmonary dysplasia through up-regulation
of fibronectin 1. PLoS One. 2013;8(9):e74750.
34. Zhang X, Wang H, Shi Y, et al. Role of bone marrow-derived
mesenchymal stem cells in the prevention of hyperoxia-induced lung
injury in newborn mice. Cell Biol Int. 2012;36(6):589-594.
35. Fujiu K, Manabe I, Nagai R. Renal collecting duct epithelial cells
regulate inflammation in tubulointerstitial damage in mice. J Clin
Invest. 2011;121(9):3425-3441.
36. Mengel A, Ulm L, Hotter B, et al. Biomarkers of immune capacity,
infection and inflammation are associated with poor outcome and
mortality after stroke - the PREDICT study. BMC Neurol.2019;19(1):148.
37. Liaskou E, Patel SR, Webb G, et al. Increased sensitivity of Treg
cells from patients with PBC to low dose IL-12 drives their
differentiation into IFN-gamma secreting cells. J Autoimmun.2018;94:143-155.
38. Preisker S, Brethack AK, Bokemeyer A, Bettenworth D, Sina C, Derer
S. Crohn’s Disease Patients in Remission Display an Enhanced Intestinal
IgM(+) B Cell Count in Concert with a Strong Activation of the
Intestinal Complement System. Cells. 2019;8(1).
39. Yu T, Liu D, Zhang T, Zhou Y, Shi S, Yang R. Inhibition of Tet1- and
Tet2-mediated DNA demethylation promotes immunomodulation of periodontal
ligament stem cells. Cell Death Dis. 2019;10(10):780.
40. Ma CJ, Liu X, Che L, Liu ZH, Samartzis D, Wang HQ. Stem Cell
Therapies for Intervertebral Disc Degeneration: Immune Privilege
Reinforcement by Fas/FasL Regulating Machinery. Curr Stem Cell Res
Ther. 2015;10(4):285-295.