References
1. Coraboeuf E, Deroubaix E, Coulombe A. Effect of tetrodotoxin on
action potentials of the conducting system in the dog heart. Am J
Physiol - Hear Circ Physiol. 1979;5(4).
2. Moreau A, Gosselin-Badaroudine P, Delemotte L, Klein ML, Chahine M.
Gating pore currents are defects in common with two Nav1.5 mutations in
patients with mixed arrhythmias and dilated cardiomyopathy. J Gen
Physiol. 2015;145(2):93-106.
3. Gosselin-Badaroudine P, Keller DI, Huang H, et al. A proton leak
current through the cardiac sodium channel is linked to mixed arrhythmia
and the dilated cardiomyopathy phenotype. PLoS One. 2012;7(5).
4. Hosseini SM, Kim R, Udupa S, et al. Reappraisal of Reported Genes for
Sudden Arrhythmic Death. Circulation. 2018;138(12):1195-1205.
5. Adler A, Novelli V, Amin AS, et al. An International, Multicentered,
Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT
Syndrome. Circulation. 2020;141(6):418-428.
6. George AL, Varkony TA, Drabkin HA, et al. Assignment of the human
heart tetrodotoxin-resistant voltage-gated Na+ channel α-subunit gene
(SCN5A) to band 3p21. Cytogenet Genome Res. 1995;68(1-2):67-70.
doi:7956363
7. Bennett, Paul B.; Yazawa, Kazuto; Makita, Naomasa; George AL.
Molecular mechanisms for an inherited cardiac arrhythmia.pdf.
8. Tan BH, Pundi KN, Van Norstrand DW, et al. Sudden infant death
syndrome-associated mutations in the sodium channel beta subunits. Hear
Rhythm. 2010;7(6):771-778.
9. Gollob MH, Blier L, Brugada R, et al. Recommendations for the Use of
Genetic Testing in the Clinical Evaluation of Inherited Cardiac
Arrhythmias Associated with Sudden Cardiac Death: Canadian
Cardiovascular Society/Canadian Heart Rhythm Society Joint Position
Paper. Can J Cardiol. 2011;27(2):232-245.
10. Dwyer T, Ponsonby AL, Blizzard L, Newman NM, Cochrane JA. The
contribution of changes in the prevalence of prone sleeping position to
the decline in sudden infant death syndrome in tasmania. Obstet Gynecol
Surv. 1995;50(10):704-705.
11. VILKE GM, CHAN TC. A Molecular Link Between The Sudden Infant Death
Syndrome And The Long-QT Syndrome. Prehospital Emerg Care.
2002;6(2):259-259.
12. England TN. Prolongation Of The QT Interval And The Sudden Infant
Death Syndrome. Published online 1998:1709-1714.
13. Schwartz PJ, Stramba-Badiale M. Repolarization abnormalities in the
newborn. J Cardiovasc Pharmacol. 2010;55(6):539-543.
14. Huang H, Priori SG, Napolitano C, O’Leary ME, Chahine M. Y1767C, a
novel SCN5A mutation, induces a persistent Na+ current and potentiates
ranolazine inhibition of Nav1.5 channels. Am J Physiol - Hear Circ
Physiol. 2011;300(1):288-299.
15. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the
interpretation of sequence variants: a joint consensus recommendation of
the American College of Medical Genetics and Genomics and the
Association for Molecular Pathology. Genet Med. 2015;17(5):405-423.
16. Chahine M, Deschene I, Chen LQ, Kallen RG. Electrophysiological
characteristics of cloned skeletal and cardiac muscle sodium channels.
Am J Physiol - Hear Circ Physiol. 1996;271(2 40-2):498-506.
17. Kanavy DM, McNulty SM, Jairath MK, et al. Comparative analysis of
functional assay evidence use by ClinGen Variant Curation Expert Panels.
Genome Med. 2019;11(1):77.
18. Brnich SE, Abou Tayoun AN, Couch FJ, et al. Recommendations for
application of the functional evidence PS3/BS3 criterion using the
ACMG/AMP sequence variant interpretation framework. Genome Med.
2020;12(1):3.
19. Jiang D, Shi H, Tonggu L, et al. Structure of the Cardiac Sodium
Channel. Cell. 2020;180(1):122-134.e10.
20. McPhee JC, Ragsdale DS, Scheuer T, Catterall WA. A Critical Role for
the S4-S5 Intracellular Loop in Domain IV of the Sodium Channel
α-Subunit in Fast Inactivation. J Biol Chem. 1998;273(2):1121-1129.
21. Beaufort-Krol GCM, Van Den Berg MP, Wilde AAM, et al. Developmental
aspects of long QT syndrome type 3 and brugada syndrome on the basis of
a single SCN5A mutation in childhood. J Am Coll Cardiol.
2005;46(2):331-337.
22. Keller DI, Acharfi S, Delacrétaz E, et al. A novel mutation in
SCN5A, delQKP 1507-1509, causing long QT syndrome: Role of Q1507 residue
in sodium channel inactivation. J Mol Cell Cardiol.
2003;35(12):1513-1521.
23. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with
an inherited cardiac arrhythmia, long QT syndrome. Cell.
1995;80(5):805-811.
24. Song W, Xiao Y, Chen H, et al. The human Nav1.5 F1486 deletion
associated with long QT syndrome leads to impaired sodium channel
inactivation and reduced lidocaine sensitivity. J Physiol.
2012;590(20):5123-5139.
25. Bennett PB, Valenzuela C, Chen LQ, Kallen RG. On the molecular
nature of the lidocaine receptor of cardiac Na+ channels modification of
block by alterations in the α-subunit III-IV interdomain. Circ Res.
1995;77(3):584-592.
26. Balser JR, Nuss HB, Romashko DN, Marban E, Tomaselli GF. Functional
consequences of lidocaine binding to slow-inactivated sodium channels. J
Gen Physiol. 1996;107(5):643-658.
27. Neubauer J, Wang Z, Rougier J, et al. Functional characterization of
a novel SCN5A variant associated with long QT syndrome and sudden
cardiac death. Int J Legal Med. Published online 2019.
28. Huang H, Millat G, Rodriguez-Lafrasse C, et al. Biophysical
characterization of a new SCN5A mutation S1333Y in a SIDS infant linked
to long QT syndrome. FEBS Lett. 2009;583(5):890-896.