References
1. Coraboeuf E, Deroubaix E, Coulombe A. Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol - Hear Circ Physiol. 1979;5(4).
2. Moreau A, Gosselin-Badaroudine P, Delemotte L, Klein ML, Chahine M. Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy. J Gen Physiol. 2015;145(2):93-106.
3. Gosselin-Badaroudine P, Keller DI, Huang H, et al. A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype. PLoS One. 2012;7(5).
4. Hosseini SM, Kim R, Udupa S, et al. Reappraisal of Reported Genes for Sudden Arrhythmic Death. Circulation. 2018;138(12):1195-1205.
5. Adler A, Novelli V, Amin AS, et al. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation. 2020;141(6):418-428.
6. George AL, Varkony TA, Drabkin HA, et al. Assignment of the human heart tetrodotoxin-resistant voltage-gated Na+ channel α-subunit gene (SCN5A) to band 3p21. Cytogenet Genome Res. 1995;68(1-2):67-70. doi:7956363
7. Bennett, Paul B.; Yazawa, Kazuto; Makita, Naomasa; George AL. Molecular mechanisms for an inherited cardiac arrhythmia.pdf.
8. Tan BH, Pundi KN, Van Norstrand DW, et al. Sudden infant death syndrome-associated mutations in the sodium channel beta subunits. Hear Rhythm. 2010;7(6):771-778.
9. Gollob MH, Blier L, Brugada R, et al. Recommendations for the Use of Genetic Testing in the Clinical Evaluation of Inherited Cardiac Arrhythmias Associated with Sudden Cardiac Death: Canadian Cardiovascular Society/Canadian Heart Rhythm Society Joint Position Paper. Can J Cardiol. 2011;27(2):232-245.
10. Dwyer T, Ponsonby AL, Blizzard L, Newman NM, Cochrane JA. The contribution of changes in the prevalence of prone sleeping position to the decline in sudden infant death syndrome in tasmania. Obstet Gynecol Surv. 1995;50(10):704-705.
11. VILKE GM, CHAN TC. A Molecular Link Between The Sudden Infant Death Syndrome And The Long-QT Syndrome. Prehospital Emerg Care. 2002;6(2):259-259.
12. England TN. Prolongation Of The QT Interval And The Sudden Infant Death Syndrome. Published online 1998:1709-1714.
13. Schwartz PJ, Stramba-Badiale M. Repolarization abnormalities in the newborn. J Cardiovasc Pharmacol. 2010;55(6):539-543.
14. Huang H, Priori SG, Napolitano C, O’Leary ME, Chahine M. Y1767C, a novel SCN5A mutation, induces a persistent Na+ current and potentiates ranolazine inhibition of Nav1.5 channels. Am J Physiol - Hear Circ Physiol. 2011;300(1):288-299.
15. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-423.
16. Chahine M, Deschene I, Chen LQ, Kallen RG. Electrophysiological characteristics of cloned skeletal and cardiac muscle sodium channels. Am J Physiol - Hear Circ Physiol. 1996;271(2 40-2):498-506.
17. Kanavy DM, McNulty SM, Jairath MK, et al. Comparative analysis of functional assay evidence use by ClinGen Variant Curation Expert Panels. Genome Med. 2019;11(1):77.
18. Brnich SE, Abou Tayoun AN, Couch FJ, et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 2020;12(1):3.
19. Jiang D, Shi H, Tonggu L, et al. Structure of the Cardiac Sodium Channel. Cell. 2020;180(1):122-134.e10.
20. McPhee JC, Ragsdale DS, Scheuer T, Catterall WA. A Critical Role for the S4-S5 Intracellular Loop in Domain IV of the Sodium Channel α-Subunit in Fast Inactivation. J Biol Chem. 1998;273(2):1121-1129.
21. Beaufort-Krol GCM, Van Den Berg MP, Wilde AAM, et al. Developmental aspects of long QT syndrome type 3 and brugada syndrome on the basis of a single SCN5A mutation in childhood. J Am Coll Cardiol. 2005;46(2):331-337.
22. Keller DI, Acharfi S, Delacrétaz E, et al. A novel mutation in SCN5A, delQKP 1507-1509, causing long QT syndrome: Role of Q1507 residue in sodium channel inactivation. J Mol Cell Cardiol. 2003;35(12):1513-1521.
23. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80(5):805-811.
24. Song W, Xiao Y, Chen H, et al. The human Nav1.5 F1486 deletion associated with long QT syndrome leads to impaired sodium channel inactivation and reduced lidocaine sensitivity. J Physiol. 2012;590(20):5123-5139.
25. Bennett PB, Valenzuela C, Chen LQ, Kallen RG. On the molecular nature of the lidocaine receptor of cardiac Na+ channels modification of block by alterations in the α-subunit III-IV interdomain. Circ Res. 1995;77(3):584-592.
26. Balser JR, Nuss HB, Romashko DN, Marban E, Tomaselli GF. Functional consequences of lidocaine binding to slow-inactivated sodium channels. J Gen Physiol. 1996;107(5):643-658.
27. Neubauer J, Wang Z, Rougier J, et al. Functional characterization of a novel SCN5A variant associated with long QT syndrome and sudden cardiac death. Int J Legal Med. Published online 2019.
28. Huang H, Millat G, Rodriguez-Lafrasse C, et al. Biophysical characterization of a new SCN5A mutation S1333Y in a SIDS infant linked to long QT syndrome. FEBS Lett. 2009;583(5):890-896.