References
Aparicio R., Morales M. T., Aparicio-Ruiz R., Tena N., &
García-González D. L. (2013) Authenticity of olive oil: Mapping and
comparing official methods and promising alternatives, Food
Research International , 54 :2025-2038.
Bogdanovic A., Tadic V., Stamenic M., Petrovic S., & Skala D. (2015)
Supercritical carbon dioxide extraction of Trigonella foenum-graecum L.
seeds: Process optimization using response surface methodology,Journal of Supercritical Fluids The , 107 :44-50.
Buratti S., Malegori C., Benedetti S., Oliveri P., & Giovanelli G.
(2018) E-nose, e-tongue and e-eye for edible olive oil characterization
and shelf life assessment: A powerful data fusion approach,Talanta , 182 :131-141.
Chaikul P., Sripisut T., Chanpirom S., Sathirachawan K., &
Ditthawuthikul N. (2017) Melanogenesis inhibitory and antioxidant
effects of camellia oleifera seed oil, Advanced Pharmaceutical
Bulletin , 7 :473-477.
Cheng X., Yang T., Wang Y., Zhou B., Yan L., Teng L., Wang F., Chen L.,
He Y., Guo K., & Zhang D. (2018) New method for effective
identification of adulterated Camellia oil basing on Camellia
oleifera-specific DNA, Arabian Journal of Chemistry ,11 :815-826.
Chu X., Wang W., Li C., Zhao X., & Jiang H. (2017) Identifying camellia
oil adulteration with selected vegetable oils by characteristic
near-infrared spectral regions, Journal of Innovative Optical
Health Sciences , 11 :1850006.
Duan D., Su B., Zhang Z., Bao Z., Yang Y., & Ren Q. (2013) Synthesis,
characterization and structure effects of polyethylene glycol
bis(2-isopropoxyethyl) dimethyl diphosphates on lanthanides extraction
with supercritical carbon dioxide, The Journal of Supercritical
Fluids , 81 :103-111.
Fattahi-far E., Sahari M. A., & Barzegar M. (2006) Interesterification
of tea seed oil and its application in margarine production,Journal of the American Oil Chemists’ Society ,83 :841-845.
Gao C., Cai C., Liu J., Wang Y., Chen Y., Wang L., & Tan Z. (2020)
Extraction and preliminary purification of polysaccharides from Camellia
oleifera Abel. seed cake using a thermoseparating aqueous two-phase
system based on EOPO copolymer and deep eutectic solvents, Food
Chemistry , 313 :126164.
Guan L. E. I., Chung H. Y., & Chen Z. Y. (2011) Comparison of
hypocholesterolemic activity of tea seed oil with commonly used
vegetable oils in hamsters, Journal of Food Biochemistry ,35 :859-876.
Han J., Sun R., Zeng X., Zhang J., Xing R., Sun C., & Chen Y. (2020)
Rapid classification and quantification of camellia (Camellia oleifera
Abel.) oil blended with rapeseed oil using FTIR-ATR spectroscopy,Molecules , 25 :2036.
Harzalli U., Rodrigues N., Veloso A. C. A., Dias L. G., Pereira J. A.,
Oueslati S., & Peres A. M. (2018) A taste sensor device for unmasking
admixing of rancid or winey-vinegary olive oil to extra virgin olive
oil, Computers and Electronics in Agriculture ,144 :222-231.
Lin Y., Huang G., Zhang Q., Wang Y., Dia V. P., & Meng X. (2020)
Ripening affects the physicochemical properties, phytochemicals and
antioxidant capacities of two blueberry cultivars, Postharvest
Biology and Technology , 162 :111097.
Liu B., Zhao D., Zhang P., Liu F., Jia M., & Liang J. (2020) Seedling
evaluation of six walnut rootstock species originated in China based on
principal component analysis and cluster analysis, Scientia
Horticulturae , 265 :109212.
Ma J., Ye H., Rui Y., Chen G., & Zhang N. (2011) Fatty acid composition
of Camellia oleifera oil, Journal für Verbraucherschutz und
Lebensmittelsicherheit , 6 :9-12.
Moslavac T., Jokić S., Šubarić D., Aladić K., Vukoja J., & Prce N.
(2014) Pressing and supercritical CO2 extraction of
Camelina sativa oil, Industrial Crops and Products ,54 :122-129.
Oliveri P., Baldo M. A., Daniele S., & Forina M. (2009) Development of
a voltammetric electronic tongue for discrimination of edible oils,Analytical and Bioanalytical Chemistry , 395 :1135-1143.
Peng Q., Xu Q., Dula B. G., Wang J., Fu J., Wang L., Qian B., Zhou J.,
Wu J., Wang J., & Ding Y. (2020) Discrimination of geographical origin
of camellia seed oils using electronic nose characteristics and
chemometrics, Journal of Consumer Protection and Food Safety ,15 :263-270.
Pilavtepe M., Yucel M., Helvaci S., Demircioglu M., & Yesil-Celiktas O.
(2012) Optimization and mathematical modeling of mass transfer between
Zostera marina resides and supercritical CO2 modified
with ethanol, The Journal of Supercritical Fluids ,68 :87-93.
Qi S., Chen H., Liu Y., Wang W., Shen L., & Wang Y. (2015) Evaluation
of glycidyl fatty acid ester levels in Camellia oil with different
refining degrees, International Journal of Food Properties ,18 :978-985.
Rodrigues N., Dias L. G., Veloso A. C. A., Pereira J. A., & Peres A. M.
(2017) Evaluation of extra-virgin olive oils shelf life using an
electronic tongue-chemometric approach, European Food Research and
Technology , 243 :597-607.
Rodrigues N., Marx Í. M. G., Casal S., Dias L. G., Veloso A. C. A.,
Pereira J. A., & Peres A. M. (2019) Application of an electronic tongue
as a single-run tool for olive oils’ physicochemical and sensory
simultaneous assessment, Talanta , 197 :363-373.
Rodrigues N., Oliveira L., Mendanha L., Sebti M., Dias L. G., Oueslati
S., Veloso A. C. A., Pereira J. A., & Peres A. M. (2018) Olive oil
quality and sensory changes during house-use simulation and temporal
assessment using an electronic tongue, Journal of the American Oil
Chemists’ Society , 95 :1121-1137.
Saidi T., Moufid M., Zaim O., El Bari N., & Bouchikhi B. (2018)
Voltammetric electronic tongue combined with chemometric techniques for
direct identification of creatinine level in human urine,Measurement , 115 :178-184.
Semenov V., Volkov S., Khaydukova M., Fedorov A., Lisitsyna I., Kirsanov
D., & Legin A. (2019) Determination of three quality parameters in
vegetable oils using potentiometric e-tongue, Journal of Food
Composition and Analysis , 75 :75-80.
Shao P., Liu Q., Fang Z., & Sun P. (2015) Chemical composition, thermal
stability and antioxidant properties of tea seed oils obtained by
different extraction methods: Supercritical fluid extraction yields the
best oil quality, European Journal of Lipid Science and
Technology , 117 :355-365.
Sliwinska M., Wisniewska P., Dymerski T., Namiesnik J., & Wardencki W.
(2014) Food analysis using artificial senses, Journal of
Agricultural and Food Chemistry , 62 :1423-1448.
Tahri K., Duarte A. A., Carvalho G., Ribeiro P. A., da Silva M. G.,
Mendes D., El Bari N., Raposo M., & Bouchikhi B. (2018)
Distinguishment, identification and aroma compound quantification of
Portuguese olive oils based on physicochemical attributes, HS-GC/MS
analysis and voltammetric electronic tongue, Journal of the
Science of Food and Agriculture , 98 :681-690.
Veloso A. C. A., Silva L. M., Rodrigues N., Rebello L. P. G., Dias L.
G., Pereira J. A., & Peres A. M. (2018) Perception of olive oils
sensory defects using a potentiometric taste device, Talanta ,176 :610-618.
Wang W. F., Han S., Jiao Z., Cheng J. R., & Song J. Y. (2019)
Antioxidant activity and total polyphenols content of camellia oil
extracted by optimized supercritical carbon dioxide, J. Am. Oil
Chem. Soc. , 96 :1275-1289.
Wei J., Chen L., Qiu X., Hu W., Sun H., Chen X., Bai Y., Gu X., Wang C.,
Chen H., Hu R., Zhang H., & Shen G. (2015) Optimizing refining
temperatures to reduce the loss of essential fatty acids and bioactive
compounds in tea seed oil, Food and Bioproducts Processing ,94 :136-146.
Wei W., Cheng H., Cao X., Zhang X., & Feng F. (2015) Triacylglycerols
of camellia oil: Composition and positional distribution of fatty acids,European Journal of Lipid Science and Technology ,118 :1254-1255.
Wu H., Li C., Li Z., Liu R., Zhang A., Xiao Z., Ma L., Li J., & Deng S.
(2018) Simultaneous extraction of oil and tea saponin from Camellia
oleifera Abel. seeds under subcritical water conditions, Fuel
Processing Technology , 174 :88-94.
Wu S. X., Zhang Z. M., Liu R. X., & Huang S. S. (2012) Effect of
production process on benzo (a) pyrene content in Camellia oil,Advanced Materials Research , 554-556 :1099-1102.
Yang C., Liu X., Chen Z., Lin Y., & Wang S. (2016) Comparison of oil
content and fatty acid profile of ten new Camellia oleifera Cultivars,J Lipids , 2016 :3982486-3982486.
Yang J.-Y., Li J., Wang M., Zou X.-G., Peng B., Yin Y.-L., & Deng Z.-Y.
(2019) A novel aqueous extraction for Camellia oil by emulsified oil: A
frozen/thawed method, European Journal of Lipid Science and
Technology , 121 :1800431.
Ye Y., Xing H., & Li Y. (2014) Nanoencapsulation of the sasanquasaponin
from Camellia oleifera, its photo responsiveness and neuroprotective
effects, International Journal of Nanomedicine ,9 :4475-4484.
Zhou D., Shi Q., Pan J., Liu M., Long Y., & Ge F. (2019) Effectively
improve the quality of camellia oil by the combination of supercritical
fluid extraction and molecular distillation (SFE-MD), LWT-Food
Science And Technology , 110 :175-181.
Zhou Q.-f., Jia X.-j., Li Q.-q., Yang R.-w., Zhang L., Zhou Y.-h., &
Ding C.-b. (2014) Antioxidant and antimicrobial activities of Camellia
Oleifera seed oils, Journal of Applied Biological Chemistry ,57 :123-129.
Zhu D., Ren X., Wei L., Cao X., Ge Y., Liu H., & Li J. (2020)
Collaborative analysis on difference of apple fruits flavour using
electronic nose and electronic tongue, Scientia Horticulturae ,260 :108879.
Zhu G., Liu H., Xie Y., Liao Q., Lin Y., Liu Y., Liu Y., Xiao H., Gao
Z., & Hu S. (2019) Postharvest Processing and Storage Methods for
Camellia oleifera Seeds, Food Reviews International ,36 :319-339.