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Abstract
The complexity of lipid feedstocks and the lack of data on physical properties hinder the simulation of oleochemical processing units. In this work, an iterative lumping approach is proposed to define an adequate number of key components such that diversification between lipid feedstocks becomes possible, while keeping the determination of physical properties as required for process modelling manageable. As a case study, the iterative lumping approach is used for simulation and optimization of a fatty acid distillation plant. For predicting vapour-liquid equilibria of fatty acids, the best results were acquired using the property method UNIQ-HOC. Using the iterative lumping approach, 11 key components were selected to represent the feedstock. The process model properly predicts the product composition, yield, purity and heat duty. The most important process parameters are found to be side-reflux-ratio, reboiler-outlet-temperature and heat-duty of the pitch-distiller. For optimization, an increase of the side-reflux-ratio and reboiler-outlet-temperature, is recommended. 
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1. Introduction
The oleochemical industry uses different feedstocks, from low quality animal fat to higher quality canola and other vegetable oils, for the production of renewables-based fatty acids (FA). Hydrolysis and distillation are the two key operations in the production of renewables-based fatty acids. Important considerations for fatty acid distillation are a high purity, resulting in low colour values and a good stability (storage & heat) of the distilled fatty acids, a high yield, and a reduced steam consumption 1. This motivates a holistic model-based optimization approach of fatty acid distillation that takes into account three process indicators: yield and purity of the product fraction and heat duty of the process. However, although the oleochemical industry is mature, the use of modelling and simulation within this industry is limited due to the complexity of vegetable oils and fats and a lack of physical property data of lipid components 2. Lipid components are divided into major and minor components, depending on the amount in which they are present. Major components generally are the fatty acids, with carbon chain lengths ranging from 6 to 26, and the glycerol esters of these fatty acids (mono-, di- and triglycerides). Typical minor components are non-glyceridic materials such as sterols, tocopherols, phosphatides, terpenes and volatile hydrocarbons such as alcohols, ketones and aldehydes 3-5. Collecting experimental data for all pure component properties, e.g. critical temperature, and mixtures, e.g. vapour-liquid equilibria (VLE), of lipid systems is not practically realistic. As a result, mechanistic type of modelling requires a simplified representation of lipid feedstocks for modelling and simulation purposes. Thermodynamic property methods should be recurred to for the calculation of the missing properties of lipid components and their mixtures from a minimum amount of experimental data 2.
Similarities can be drawn with the petrochemical industry dealing with complex hydrocarbon mixtures. Among the representation techniques used, considering crude oil as a continuous mixture, in which chemical identity is replaced by a continuous property index such as boiling point, has gained quite some popularity. Also, lumping methods, i.e., grouping components with similar physicochemical properties into lumps, connected by simplified reaction networks have been frequently proposed 6. The lumping of components can be based on boiling point range, molecular weight, C-number distribution or chemical structure, such as in the structure-oriented lumping methodology developed by Quann, Jaffe 7. Every lump of components is represented by a key component with physical properties and behaviour that are considered representative for the entire lump. One of the key issues in developing the ideal lumping strategy is determining the point at which increasing the number of lumps no longer enhances the predictions of the process model 8. The complexity of lipid feedstocks motivates the development of such a lumping approach for the simulation of oleochemical processes. 
In the past decade, the number of studies related to the modelling of oleochemical processes has increased, mostly for edible oil and biodiesel applications 2,9. Díaz-Tovar, Gani, Sarup 5 developed a lipids database supplying values for different physical properties of lipid components as required for modelling edible oil processes. Perederic 2 developed a systematic identification method for data analysis and phase equilibria modelling for lipid systems applied to different UNIFAC variants. Most recently, a comprehensive process model for oil hydrolysis was developed and used for the optimization of a splitting tower 10,11. However, a systematic approach was never used for the lumping of components. Most frequently, all fatty acids were lumped and represented by one key component for the whole range of carbon chain length and saturation. Kiss 12 for example used solely lauric acid to represent all fatty acids, while Tehlah, Kaewpradit, Mujtaba 13 used oleic acid and Jones, Forero-Hernandez, Zubov, Sarup, Sin 10 used palmitic acid. However, a specific challenge in oleochemical processes, especially for those implemented in Western Europe, is the pronounced feedstock variability, resulting in differences in composition and quality of the product 1. Model predictive control could be used to tackle this challenge of feedstock diversity by changing process conditions for compositional variability of the incoming feedstock 14. However, using only one key component for all fatty acids in a predictive model would not allow diversifying between feedstocks. The challenge in this respect is to define an adequate number of components sufficiently allowing diversification between feedstocks, yet remaining manageable for process modelling. 
Towards implementation of process modelling, commercial process simulators, such as ProSim or Aspen Plus, provide standard models of unit operations, a database with thermodynamic properties of components, and thermodynamic property methods to predict missing physical properties of pure components and mixtures 2. When modelling fatty acid distillation, an adequate prediction of fatty acid vapour-liquid equilibria (VLE) is crucial. VLE predictions can be performed using activity coefficient models or by an equation of state 15. The selection of a property method depends on the properties of components, process conditions and the availability of experimental data. Fatty acids could be considered more (non-) polar depending on the fatty acid chain length. In literature, sources that regard fatty acids as nonpolar, use Redlich Kwong Soave (RKS) based equation of state models such as RKS with Boston–Mathias (RKS-BM) and RKS with Wong-Sandler (RKSWS) or the predictive Soave–Redlich–Kwong (PSRK) model 13,16-18. Sources that regard fatty acids as polar components, use property methods based on the non-random two-liquid (NRTL), universal quasichemical (UNIQUAC), or UNIQUAC Functional-group Activity Coefficients (UNIFAC) model, often in combination with the Nothnagel (NTH) or Hayden–O'Conell (HOC) model to describe the dimerization of fatty acids in the vapour phase 5,16,19,20. However, UNIFAC models can’t be used for fatty acid distillation, as their applicability is limited to temperatures below 425K 21. 
It is thus clear that fundamental steps in the characterisation of lipid feedstocks for simulation and optimization purposes would benefit the cost-competitiveness of the oleochemical industry. The objectives of this work are, hence, (i) selection of a thermodynamic property method towards effectiveness of predicting fatty acid VLE, (ii) development of an iterative lumping approach to determine an optimal set of key components for the modelling of oleochemical processes, and (iii) demonstrating the applicability of the lumping approach in a case study by building and validating a comprehensive simulation, using the proper property methods, of an industrial fatty acid distillation plant for optimizing the product yield, purity and heat duty of the process. 
2. Materials and Methods
2.1 Strategy for Modelling and Optimization of an Industrial Fatty Acid Distillation Plant 
Central in the strategy for this study is building a mechanistic process model and using the proposed iterative lumping approach to determine an optimal set of key components to represent the feedstock. However, first, a property method has to be selected towards efficiently predicting fatty acid vapour-liquid equilibria (VLE). The methodology used for selecting a property method is described in section 2.2, and the result, given in section 3.1, is applicable for modelling other oleochemical processes requiring predictions of fatty acid VLE. Second, an iterative lumping approach is proposed to find a balanced feedstock representation with the most reduced complexity as possible that still delivers an acceptable prediction of product compositions. The generic algorithm of this iterative lumping approach is explained in section 2.3, and is presented so that it is applicable for modelling other (oleo-) chemical processes. However, the results, given in section 3.2, are for the specific fatty acid distillation case study. 
A process description for the case study and information on data collection is given in section 2.4. The data are collected on-site at the fatty acid distillation plant of Oleon NV. Equipment and process information, e.g., number of trays or stages, are collected to match the settings of available models of unit operations, e.g., a distillation tower, to the actual plant information. Standard settings of process conditions and average values of feedstock and product properties are used for building the base case of the process model. In addition, data of campaigns having varying process parameters are used for model validation, i.e, the model’s ability to predict the process indicators yield, purity and heat duty for varying process parameters. The developed process model is used to investigate the effect of process parameters on these indicators and make suggestions for optimizing the process parameters of the fatty acid distillation plant. A sensitivity analysis is used to determine the key independent process parameters having a significant effect on the three process indicators. For optimization, response Surface Methodology (RSM) is used to fit a mathematical model to the data obtained from the simulation results. Optimization can also be performed directly using the process model. However, RSM is used as it allows quantifying the single and combined effect of process parameters and build surface plots. Finally, the process model is used to quantify the effect of suggestions for optimization of key process parameters on the process indicators. Details regarding model building and validation and the optimization steps are given in section 2.5. 
2.2 [bookmark: _Ref41560780]Selection of Thermodynamic Property Methods for Predicting Fatty Acid Vapour-Liquid Equilibria
Based on previous works, the following property methods were selected for validation towards effectiveness of predicting fatty acid VLE: NRTL, NRTL-NTH, NRTL-HOC, UNIQUAC, UNIQ-NTH, UNIQ-HOC, PSRK en RK-SOAVE 5,13,16,17,20. 
To validate the property methods, experimental vapour-liquid equilibrium data of binary fatty acid mixtures, found in the NIST-database, were employed. A list of the employed datasets can be found in Table A.1 in the supporting information. Only the datasets that passed an area consistency test, to test the thermodynamic consistency of experimental datasets, were employed 22. Essential pure and binary component properties, required to use the property methods, were first determined using regression, interpolation or estimation via UNIFAC-DMD 23,24. Finally, a variance analysis, as presented in equation 1, was used to validate the thermodynamic property methods based on the prediction of the molar fractions in the liquid phase (x), vapour phase (y), temperature (T) and pressure (P). The superscripts ° and M respectively represent experimental values (NIST database) and calculated values. σ is the standard error on the measurement. The property method that minimizes the function I is preferred. However, I needs to be divided by the number of data points (n) in order to compare results from different datasets 25. 

2.3 [bookmark: _Ref41560897]Iterative Lumping Approach for Key Component Selection 
One of the key issues in deciding upon the ideal degree of lumping is determining the point at which further increasing the number of key components no longer enhances the predictive capabilities of the model 8. A generic algorithm for an iterative lumping approach, which can be used for oleochemical but also other chemical processes, is given in Figure 1. In the case of lipid feedstocks, a first set of lumps could be: fatty acids, glyceridic components and minor components, each represented by one key component. The component in every lump with the highest weight fraction can be chosen as key component, however, also the availability of physical property data for pure components and mixtures should be taken into account when selecting key components to represent each group. After each iteration, the performance of the model is evaluated by calculating the Theil’s inequality coefficient (TIC) for every product stream based on the prediction of the weight fractions (x) of experimental (°) and calculated (m) values. For the experimental values, average product compositions, for the process using standard process parameters, should be used. The calculated values are the product compositions predicted by the model for these process parameters. The TIC value, for every product stream separately, indicates how well the composition of a product stream is predicted by the model 26: 
In case the model does not properly simulate the behaviour of all components in one lump for a product stream, this lump is split into a new set of lumps, each represented by a different key component. The individual contributions to the TIC value of every component for every product stream indicate if their behaviour is properly simulated by the selected key component. This methodology is repeated until the TIC value drops below a threshold value, indicating that an acceptable simulation is obtained. Generally, 0.3 is used as a threshold when using the TIC test 27. In the case of multiple product streams, as is the case in fatty acid distillation, it is possible to use different thresholds for different streams In case a correct prediction of specific components is more important, a variable weight per component can be added. The optimal number of key components required will most probably differ for various groups of components, as the required complexity will not be the same for every group.
[image: ]
Figure 1. Algorithm for the iterative lumping approach in order to find the characterization with lowest complexity that still delivers an acceptable prediction.
2.4 [bookmark: _Ref41564510][bookmark: _Ref42597663]Case Study – Description of the Industrial Fatty Acid Distillation Plant
2.4.1 [bookmark: _Ref41563711]Process Description
Hydrolysis and distillation are the two main operations in the production of fatty acids at the oleochemical plant of Oleon NV in Ertvelde, Belgium. The hydrolysis of animal fat (tallow) or vegetable oil produces crude fatty acids and glycerol. The second step in fatty acid production is refining the crude fatty acids by distillation. This distillation takes place at temperatures up to 250°C and under vacuum. There are many types of feedstocks used such as tallow, palm oil, palm fatty acid distillate (PFAD) and rapeseed/canola oil. However, tallow is the most commonly used. Therefore, the optimization will focus on the distillation of crude tallow fatty acids.
A simplified flowsheet of the fatty acid distillation is given in Figure 2. The crude fatty acids are first preheated in two heat exchangers, dried and then fed to the bottom of the distillation column. The column contains two sections of structured packing. Above the second packing section, fatty acids are condensed and withdrawn as a top fraction, containing lightweight fatty acids and volatile hydrocarbons such as alcohols, ketones and aldehydes. The top fraction is partially refluxed back to the column at the top. In the middle of the column, in between both packing sections, a side fraction is captured containing the purified C16-C18 fatty acids. This side fraction is the main and most valuable product. Also here, a part of the side stream is recycled to the column as a side reflux. At the bottom of the column, a bottom fraction is withdrawn and fed to a second distillation unit, called pitch distiller, where fatty acids remaining in the bottom fraction are recuperated. This distillate can be recycled back to the bottom of the column or be withdrawn as a separate heavy fraction containing primarily long-chain fatty acids. The bottom product, which remains after the second distillation, is called pitch and contains mostly glyceridic components and impurities such as sterols.
[image: ]
Figure 2. Flowsheet of the industrial fatty acid distillation.
2.4.2 Process Indicators
For fatty acid distillation, important considerations are low colour values and a good stability (storage & heat) of the distilled fatty acids (side fraction). The side fraction being the main and most valuable product, high yields of this side fraction are preferred. The distillation unit has a significant steam consumption, mainly due to the heat duty of the reboiler, pitch distiller and preheating of the feed, which results in a significant economic and environmental cost 28. Including colour quality in a fatty acid distillation model is challenging due to the large number of components linked to colour formation. Therefore, purity is included and validated as a proxy for product quality. The three process indicators are:



In the base case, the yield amounts to 93.3%, the purity to 99.3% and the total heat duty to 2.1 MW for the distillation of 14460 kg/h crude fatty acids. 
2.4.3 [bookmark: _Ref41563792]Data Collection
In total, samples from 121 industrial campaigns of fatty acid distillation were acquired and analysed, 30 using crude fatty acids from the feedstock tallow, 30 palm, 24 PFAD and 37 canola. The collected information on feedstock and product composition and process parameters were used for the building and validation of the fatty acid distillation model. Campaigns with clear process problems, e.g. malfunctioning equipment, were not considered. In addition, samples were taken after the process reached steady state. 
A list of the measured process parameters, feedstock and product properties is given in Table 1. A detailed fatty acid composition of the feedstock, side and top fraction was determined by GC-FID analysis on an AGILENT G3-00 chromatograph with a CP-Sil 88 stationary phase. Hydrogen was used as the carrier gas with split injection. The total amount of monoglycerides, diglycerides and triglycerides in the feedstock and side fraction was determined by an in-house chromatographic method developed by Oleon NV. The average wt% of fatty acids and glycerides in the crude, side and top fraction of fatty acids from tallow, palm, PFAD and canola fatty acids are given in table B.1-B.4 of the supporting information. Colour and heat stability of the side fraction were measured to determine the quality of the purified fatty acids. A two-dimensional GCxGC-MS analysis was performed to determine the presence of minor components in the side and top fraction 29. Apart from fatty acids (C6-C18), many different low-molecular impurities were identified, such as aldehydes and alcohols. Surprisingly, also higher molecular-weight components were found, such as terpenes. However, these components may have been formed inside the distillation column due to thermal polymerisation reactions. For tallow, in the side fraction, the main impurities are monoglycerides (. Chromatographic analysis of the pitch fraction was not possible due to the presence of polymerised and high molecular weight impurities. However, the acid value of the pitch fraction was measured as an indication of the fatty acids remaining in the pitch fraction. The acid value measures the amount of carboxylic acid groups in oleochemical feedstocks or products. For tallow, the acid value of the pitch fraction (  ) indicates that only a small fraction of the pitch consists of free fatty acids compared to the crude fatty acids (  ). 
[bookmark: _Ref42072990][bookmark: _Ref46835043]Table 1. List of measured process parameters, feedstock properties and product properties of the industrial fatty acid distillation. 
	Measurement
	Unit
	Methodology

	PROCESS PARAMETERS

	Flow Crude FA
	Kg/h
	Flow Measurement

	Flow Top FA
	Kg/h
	Flow Measurement

	Flow Dist FA
	Kg/h
	Flow Measurement

	Flow Bottom FA
	Kg/h
	Flow Measurement

	Flow HP Steam
	Kg/h
	Flow Measurement

	Flow LP Steam
	Kg/h
	Flow Measurement

	Flow Recycle Stream
	Kg/h
	Flow Measurement

	Flow Cooling Water *4
	Kg/h
	Flow Measurement

	Temp Tower *5
	°C
	Temperature Measurement

	Temp Reboiler
	°C
	Temperature Measurement

	Temp Crude FA
	°C
	Temperature Measurement

	Pres Tower *3
	mbar
	Pressure Measurement

	Pres HP Steam
	barg
	Pressure Measurement

	Side Reflux Ratio
	-
	Flow Measurements

	FEEDSTOCK PROPERTIES

	FA Composition
	wt%
	ISO 5508:1990

	MDT Composition
	wt%
	IHM

	PRODUCT PROPERTIES

	FA Composition
	wt%
	ISO 5508:1990

	MDT Composition
	wt%
	IHM

	Minor Componentes (side, top)
	-
	de Koning, Janssen, Brinkman 29

	Acid Value (pitch)
	mg KOH/g
	ISO 660

	Colour (side)
	Lovibond 1” Red and Yellow
	BS 684-1.14

	Colour Stability (side)
	Lovibond 1” Red and Yellow
	ASHLAND Bp-2c-68


IHM = In-House Method
MDT = Mono-, Di-, Triglycerides
2.5 [bookmark: _Ref42597736]Case Study – Modelling and Optimization
2.5.1 Building of Mechanistic Process Model
The model of the industrial fatty acid distillation was created in a commercial process simulator using standard unit operation models. A flowsheet of the process model is shown in Figure 2. The set of key components for modelling is determined using the iterative lumping approach presented in section 2.3. No variable weighting of specific components was used in the TIC equation. A threshold of 0.3 is chosen for the average TIC of the three product streams. Besides, a threshold of 0.05 for the TIC of the side fraction is used, as a proper prediction of the composition of the side fraction is required to ensure product specifications of this fraction are met when performing optimization. After obtaining results of the comparison of property methods (section 3.1), UNIQ-HOC was used for calculating VLE and other thermodynamic properties. Essential pure and binary component properties, required to use UNIQ-HOC, were estimated using regression, interpolation or estimation via UNIFAC-DMD. Although thermal breakdown of components is likely to take place, these reactions were not included due to a lack of kinetic data. 
2.5.2 Validation of Process Model
An additional validation of the process model was performed to validate its ability to predict the indicators for varying process conditions. A total of 30 campaigns with varying process conditions are used for the feedstock tallow. This validation was performed by analysing predicted-measured plots and calculating the coefficient of determination (R2) and root mean square error of prediction (RMSE) values for predicting flow side fraction (kg/h) and steam consumption (kg/h), which give a good indication for the models ability to predict yield and total heat duty. Yield and total heat duty are not used directly for validation as they are not measured at the industrial distillation. In addition, the process model is used to validate if simulated purity can be used as a proxy for colour quality of the distilled fatty acids. In a previous study, multivariate data analysis was used to identify key process parameters influencing colour quality 1. Data from this study, investigating the effect of side reflux ratio on the colour and heat stability of distilled fatty acids, were used to validate if model purity follows the same trend as fatty acid colour and heat stability.
2.5.3 Identification and Optimization of Key Process Parameters
2.5.3.1 Sensitivity Analysis
A single-parameter sensitivity analysis was performed to identify the key process parameters that have a significant effect on the three process indicators. A selection of important process parameters was chosen based on a previously performed multivariate data analysis, which investigated the effect of the variability in process parameters on product quality in fatty acid distillation 1. A list of the investigated process parameters is given in Table 2. The sensitivity of the process indicators yield, purity and total heat duty are determined for a -10% to +10% change of these selected independent variables, except if not possible due to process constraints. 
[bookmark: _Ref38445960][bookmark: _Ref46835052]Table 2. List of process parameters that were selected for sensitivity analysis. 
	
	Process Parameter
	Base Case Value

	V1
	Flow Feed (kg/h)
	14460

	V2
	Flow Top Fraction (kg/h)
	342

	V3
	Side Reflux Ratio (-)
	0.15

	V4
	Flow Heavy Fraction* (kg/h)
	0

	V5
	Temperature Reboiler outlet* (°C)
	237.6

	V6
	Temperature Dryer (°C)
	110

	V7
	Temperature Final Crude fatty acids (°C)
	204

	V8
	Temperature Top Condensor (°C)
	100

	V9
	Temperature Bottom Condensor* (°C)
	200

	V10
	Heat Duty Pitch Distiller (MW)
	0.18


*This parameter could not be varied for the full -10% to +10% range due to process constraints.
2.5.3.2 Response Surface Methodology
Response Surface Methodology (RSM) is a technique used to fit a mathematical model to the data obtained from experimental or simulation results. In this study, such a mathematical model is used to assess the effects of the changes in process parameters, alone or in combination, on the three process indicators. Generally, the model used in RSM is a full quadratic equation:

where η is the process indicator (yield, purity or heat duty), k is the number of variables, β0 is the constant term, βi represents the coefficients of the linear parameters, xi represents the variables, βij represents the coefficients of the interaction parameters, βii represents the coefficients of the quadratic parameter and ɛ is the residual associated to the experiments 30. 
Based on the performed sensitivity analysis, the process parameters that have a significant effect on the process indicators are selected and used for RSM. For each selected process parameter, the feasible ranges, due to process or equipment constraints, are determined. To determine the required set of simulation runs, a design of experiments (DOE) is performed. In this study, a Box-Behnken design (BBD) is used. BBD selects only three levels of each process parameter, which will allow estimation of the first- and second-order coefficients of the mathematical model 31. BBD is used as it avoids extreme combinations of process parameters, which otherwise may result in simulation errors. DOE and RSM were performed using Matlab R2018a. 
3. Results and Discussion
3.1 [bookmark: _Ref41562992]Selection of a Property Method for Fatty Acid Distillation
Table 3 lists the results of the validation of the thermodynamic property methods. The average I/n for both equation of state models are at least one order of magnitude higher compared to the studied activity coefficient models. This shows that PSRK and RK_SOAVE do not properly predict the VLE of fatty acids. It is therefore better to classify fatty acids as polar components when selecting a property method. However, PSRK performs better than RK_SOAVE, as it combines group contribution with the Soave–Redlich–Kwong equation of state and is therefore better able to predict VLE for polar components 32. For the activity coefficient models, the best predictions are acquired when NRTL and UNIQUAC are combined with the HOC model, followed by the combination with NTH and finally the standard property methods with the ideal gas law to describe the vapour phase. The better prediction when combining the activity coefficient models with NTH or HOC shows that the dimerization of fatty acids in the vapour phase is important for VLE calculations of fatty acids, even though the standard property methods with the ideal gas law are more often used in literature 20. Based on these results, UNIQ-HOC was chosen and used to describe VLE in the fatty acid distillation model. 
[bookmark: _Ref42074841][bookmark: _Ref46835059]Table 3. Average value and standard deviation of I/n for a selection of a. activity-coefficient based property methods and b. Equation of State methods for VLE datasets of binary fatty acid mixtures. Only datasets that passed an area consistency test (tolerance = 10%) were used.
	
	I/n
	σ

	NRTL
	8.3E+02
	1.2E+01

	NRTL-HOC
	5.9E+02
	1.7E+02

	NRTL-NTH
	5.9E+02
	3.1E+02

	UNIQ
	7.4E+02
	2.2E+02

	UNIQ-HOC
	5.6E+02
	2.4E+02

	UNIQ-NTH
	7.0E+02
	1.9E+02

	PSRK
	4.8E+03
	2.7E+03

	RK-SOAVE
	3.3E+04
	2.2E+04



3.2 [bookmark: _Ref41563239]Lumping Approach for Selection of Key Feedstock Components 
3.2.1 Tallow
The iterative lumping approach was applied to fatty acid distillation to determine a set of key components that should be included in the model to represent tallow-based crude fatty acids. The different iterations, and the splitting of lumps in each iteration, are shown in Figure 3a. Figure 3b shows the calculated TIC values for the top, side and bottom fraction for every iteration. For the first iteration, three lumps are considered and represented by a key component. The components with highest wt% in the feedstock are chosen as key component for the lump of free fatty acids (FFA) and glyceridic components, being oleic acid (42.0±0.7 wt%) and monoolein (0.45±0.26 wt%). For the lump minor components, butyric acid is chosen as key component due to the availability of physical property data for this pure component and mixtures with FFA. The TIC value of the side fraction for the first iteration (TIC1, side = 0.025) was already below the threshold of 0.05. However, the high TIC value of the top fraction (TIC1, top = 0.624) and pitch fraction (TIC1, pitch = 0.603) result in an average TIC above the threshold. The components that had the highest contribution to the high TIC value of the top fraction are lauric acid (C12:0), myristic acid (C14:0) and oleic acid (C18:1). In this first iteration, all fatty acids are lumped and represented by a single component (oleic acid). Therefore, the share of each fatty acid in the fraction of free fatty acids (FFA) in the side or top stream is considered the same as in the feed fraction. In the top fraction, this results in an overestimation of the fractions of longer chain fatty acids (≥C18) and an underestimation of shorter chain fatty acids (<C18). Therefore, in the second iteration, the lump of free fatty acids was split into longer fatty acids with equal or more than 18 carbon atoms and shorter fatty acids with less than 18 carbon atoms. The key component palmitic acid (wt% = 24.9±0.9) is selected based on having the highest wt% in the feedstock for the lump of fatty acids with carbon chains shorter than C18, while oleic acid is used for the fatty acids with equal to or more than 18 carbon atoms. As expected, this resulted in a drop of the TIC value of the top fraction (TIC2, top = 0.538), however, the average TIC value is still above the threshold (TIC2, average = 0.357). Therefore, in a third iteration the lump of shorter chain fatty acids is further split into C16+C17 FFA, represented by palmitic acid, and <C16 FFA, represented by myristic acid (wt% = 1.9 ±0.2). This resulted in a much more pronounced drop of the TIC value of the top fraction (TIC3, top = 0.090), the side fraction (TIC3, side = 0.021) and the average TIC value also dropped below 0.3 (TIC3, average = 0.219). Based on this model with six lumps, a good prediction of the composition of the side and top fractions can be made, however, the TIC value of the Pitch fraction remains high (TIC3, pitch = 0.547). 
In iteration 4, an attempt was made to improve the prediction of the pitch fraction by splitting the lump of glyceridic components into monoglycerides, represented by monoolein and di+triglycerides, represented by diolein. After this change, the model correctly predicts that almost all di- and triglycerides are found in the pitch fraction, while the monoglycerides are present in both the pitch and side fraction. The split of this lump resulted in a decrease of the TIC value of the pitch (TIC4, pitch = 0.497). In iteration 5, the lump of minor components is split into low- and high boiling impurities. Cholesterol is chosen as key component to represent all high boiling impurities, as it is the main sterol in animal fats with reported concentrations up to 1400 µg/g 33. The split of this lump resulted in a major decrease of the TIC value of the pitch (TIC5, pitch = 0.206) and the average (TIC5, average = 0.107). Further attempts to lower the TIC of the pitch fraction by adding other minor components such as squalene were unsuccessful. Most likely, at the high temperatures of the reboiler and pitch distiller, thermal breakdown and re-esterification reactions cause the formation of the high molecular weight components found in the pitch fraction. However, these reactions have not been investigated properly in literature and are therefore not included in the current model. In order to further improve the prediction of the composition of the pitch, kinetics of these side reactions could be studied and included in the model.
[image: ]
Figure 3. Results for different iterations based on the Iterative Lumiping Approach for determining the key components to include in a model of the Fatty Acid Distillation case study. A. Splitting of lumps and key components for every iteration. B. Calculated TIC values for the top, side and bottom fraction.
In iteration 6 and 7, it was assessed whether further increasing the number of lumps representing the free fatty acids resulted in an enhanced prediction of the composition of the product fractions. However, further splitting based on carbon chain length (iteration 6) only resulted in a small decrease of the TIC values of the top and a small increase for the average (TIC6, average = 0.118). Taking into account the saturation of C18 fatty acids in iteration 7 even resulted in an increase of the TIC value (TIC7, average = 0.188), as less data was available on the properties of these components. Based on these results, the composition after iteration 6, containing 11 lumps and key components, was used for optimization of the industrial fatty acid distillation for the feedstock tallow. 
3.2.2 Vegetable oil based feedstocks
The optimal set of key components is likely different for every lipid feedstock. However, for simplicity, it was investigated first if other lipid feedstocks, used in the distillation process, can be represented using the same key components found for tallow. Table 4 shows the calculated TIC values when using the 11 key components (iteration 6 for tallow) to simulate the process for three vegetable oil-based feedstocks. For both palm- and PFAD-based fatty acids, the TIC of the side fraction and the average TIC are already below the threshold, indicating a proper prediction of the product compositions for those feedstocks when using the same key components found for tallow. However, for canola-based fatty acids, while the TIC of the side (TICside = 0.02) is also below the threshold (0.05), the average TIC (TICaverage = 0.37) is higher than the threshold (0.30) due to a bad prediction of both the top and pitch fraction. Crude fatty acids derived from canola oil contain a higher % of low boiling minor components, likely due to the oxidation of unsaturated fatty acids and the breakdown of polyunsaturated fatty acids during hydrolysis 1. Therefore, in a new iteration, the lump of low boiling minor components was split into alcohols, aldehydes and ketones. Alcohols are represented by the key component 1-Decanol, aldehydes by 1-Dodecanal and ketones by 2-heptanone, as similar components were identified in samples of the canola top fraction. The split of this lump resulted in an average TIC below the threshold (TICaverage = 0.26) for the distillation of canola-based fatty acids. 
[bookmark: _Ref44425304][bookmark: _Ref46835063]Table 4. Calculated TIC values for the top, side and bottom fraction using the 11 key components selected to represent a tallow feedstock, for the crude palm, palm fatty acid distillate (PFAD) and canola-based fatty acids. 
	
	Palm
	PFAD
	Canola

	TICside
	0.01
	0.01
	0.02

	TICtop
	0.19
	0.12
	0.43

	TICpitch
	0.52
	0.47
	0.65

	TICaverage
	0.24
	0.20
	0.37



Based on these results, for tallow, palm and PFAD samples, both glyceridic components and minor components can by represented by only 2 key components, while for fatty acids, 7 key components are recommended. For rapeseed, an additional 3 key components for minor components are required to reach an acceptable prediction of product compositions. The need for 7 key components to represent fatty acids shows that lumping all fatty acids, as is often done in literature, should be avoided. Simultaneously, including all fatty acid species in the model is unnecessary and may even lead to worse predictions due to a lack of proper pure and binary component data. 
In future research, the iterative lumping approach can be extended by including specific guidelines for picking representative key components for every lump. In addition, the iterative lumping approach should be tested on other (oleo-) chemical processes and processes with (complex) reaction schemes.
3.3 Optimization of Industrial Fatty Acid Distillation
3.3.1 Validation of Process Model
Parity diagrams with predicted-measured values for total side flow (kg/h) and steam consumption (kg/h) are shown Figure C.1 a-b of the supporting information. The R2 (0.91 for total side flow and 0.73 for steam consumption) and RMSE (450 kg/h for total side flow and 376 kg/h for steam consumption) values indicate that the mechanistic process model adequately reproduces both parameters, showing that the process model can be used to assess the effect of process parameters on both process indicators. As can be seen in Figure C-1 c of the supporting information, modelled purity of the side fraction follows a similar trend as the measured fatty acid quality (colour and heat stability). Therefore, the process model can also be used to investigate the effect of process parameters on the quality of the side fraction by looking at the modelled purity as a proxy for colour quality. However, in future research, the prediction of fatty acid quality could be further improved by including specific components and side reactions related to colour formation. 
3.3.2 Sensitivity Analysis for the identification of key Process Parameters
The results of the sensitivity analysis are shown in Figure 4. The process parameter for which both purity (Figure 4a) and yield (Figure 4b) are most sensitive is the reboiler outlet temperature (V5). A lower reboiler outlet temperature (-3°C) causes a smaller boil-up ratio, resulting in a smaller side fraction and a larger pitch fraction, and therefore a lower yield (-3%). However, the purity of the side fraction increases (+0.1%) as the evaporated fraction of monoglycerides goes down. Other parameters with a significant impact on purity are the temperature of the pitch distiller (V10), side reflux ratio (V3) and flow heavy fraction (V4). Flow heavy fraction is also important for the yield, as an increase of the heavy fraction, withdrawn as a separate product, results in a reduction of the side fraction. 
Total heat duty (Figure 4c) is most sensitive to the feed flow rate (V1), with an increase in feed flow rate (+1460 kg/h) resulting in an equivalent increase of the heat duty (+0.19 MW). The feed rate also has a limited effect on purity and yield, showing that an optimal set op process parameters should be determined for varying feed rates. Heat duty is the only indicator sensitive to changes in the temperature of the bottom condenser (V9). After the bottom condenser, the cooled heavy fraction is recycled to the column and reheated in the reboiler. Therefore, a lower temperature of the bottom condenser results in an increase of the reboiler duty. However, the temperature of bottom condenser also cannot exceed 204°C in order to prevent fatty acids being withdrawn in the vacuum system. Total heat duty is also sensitive for changes in side reflux ratio (V3), flow heavy fraction (V4), reboiler outlet temperature (V5) and heat duty pitch distiller (V10). 
Based on the results of this sensitivity analysis, parameters V3, V4, V5 and V10 are included in the DOE, used to determine parameter settings for a set of simulation runs, to study their combined effects on the three process indicators using RSM. 
[image: ]
Figure 4. Results of the sensitivity analysis performed to determine the effect of a 10% increase/decrease of a process parameter on a. the purity of the side fraction b. yield of the side fraction and c. Total heat duty.  (V1 = Flow Feed, V2 = Flow Top Fraction, V3 = Side Reflux Ratio, V4 = Flow Heavy Fraction, V5 = Temperature Reboiler Outlet, V6 = Temperature Dryer, V7 = Temperature Final Crude FA, V8 = Temperature Top Condensor, V9 = Temperature Bottom Condensor, V10 = Heat Duty Pitch Distiller)
3.3.3 Optimization of key Process Parameters
The simulation results obtained for the DOE are given in Table D.1 of the supporting information. Three second-order models were obtained to predict purity, yield and heat duty as a function of side reflux rate (V3), flow heavy fraction (V4), temperature reboiler outlet (V5) and heat duty of the pitch distiller (V10). The regression coefficients of the quadratic polynomial models fitted to this data are given in Table 5. Analysis of these coefficients with the t-test indicated that, except V4 on purity, all linear terms had a significant effect on the three indicators. However, most interaction and quadratic terms were found to be non-significant. Thereby it can be concluded that the linear effects are the primary determining factors of the responses. 
[bookmark: _Ref39055825][bookmark: _Ref46835066]Table 5. Regression coefficients of predicted quadratic polynomial model for purity, yield and heat duty. (V3 = Side reflux rate, V4 = Flow heavy fraction , V5 = temperature reboiler outlet, V10 = heat duty pitch distiller)
	Terms
	Coefficients

	
	Purity (%)
	Yield (%) 
	Heat Duty (MW)

	β0
	99.64 ±0.03**
	82.5±0.5**
	2.15±0.01**

	Linear

	βV3
	0.16±0.01**
	-2.6±0.2**
	0.232±0.002**

	βV4
	0.02±0.01
	-2.5±0.2**
	-0.032±0.002**

	βV5
	-0.1±0.01**
	5.6±0.2**
	0.053±0.002**

	βV10
	-0.08±0.01**
	6.3±0.2**
	0.197±0.002**

	Quadratic

	βV3 βV3
	-0.04±0.02
	-0.1±0.4
	-0.010±0.006

	βV4 βV4
	-0.01±0.02
	0.2±0.3
	0.002±0.004

	βV5 βV5
	0.01±0.02
	-2.4±0.3**
	-0.023±0.004**

	βV10 βV10
	-0.05±0.02*
	0.2±0.3
	0.003±0.004

	Interaction

	βV3 βV4
	-0.00±0.02
	0.1±0.3
	-0.008±0.004

	βV3 βV5
	0.01±0.02
	0.5±0.3
	0.022±0.004**

	βV3 βV10
	0.03±0.02
	0.2±0.3
	0.023±0.004**

	βV4 βV5
	0.01±0.01
	-0.2±0.3
	-0.002±0.003

	βV4 βV10
	0.02±0.02
	-0.9±0.3*
	-0.011±0.004*

	βV5 βV10
	-0.06±0.01*
	-0.1±0.4
	-0.005±0.004


** Significant at 0.01 level
* Significant at 0.05 level
The response surface plots, showing the combined effect of V3/V5 and V4/V10, are given in Figure 5. Working at a lower reboiler temperature (230°C) and with a higher side reflux ratio (0.5) would result in a significant increase of purity, from 99.3 to 99.8%. However, this also results in a significant drop of the yield of the side fraction, from 93 to 71%, and a rise in total heat duty from 2.1 to 2.3 MW. Increasing the side reflux ratio (0.4) while maintaining a higher reboiler outlet temperature (239°C) shows more potential, as the increase in quality remains high, from 99.2 to 99.7%, but the effect on yield is reduced, from 93 to 85%. The effect of withdrawing a separate heavy fraction on the purity is limited. However, reducing the heat duty of the pitch distiller from 0.18 to 0 MW (case with a flesh vessel instead of a pitch distiller) results in an increase of the purity from 99.3 to 99.7%. This change results in a higher loss of yield, from 93 to 78%, but a reduction of the total heat duty from 2.1 to 1.9 MW. 
[image: ]
[bookmark: _GoBack]Figure 5. Response Surface Plots to investigate the effect of Side Reflux Ratio (V3) and Reboiler Outlet Temperature (V5) and of flow heavy fraction (V4) and heat duty of the pitch distiller (V10) on the purity of the side fraction, yield of the side fraction and the total heat duty.
Depending on the economic value of the different product streams and the price of steam for heating, the process parameters resulting in the highest economic benefit can be determined using the acquired process model for the distillation of crude tallow fatty acids. When performing this final step, it is recommended to also take into account the environmental sustainability of the process. From both an economic and environmental perspective, it would be interesting to use lower quality feedstocks for the production of fatty acids 28. 
Conclusions
For predicting vapour-liquid equilibria of fatty acids, the best results were acquired using the property method UNIQ-HOC. This shows the importance of fatty acid dimerization in the vapour phase. 
The proposed iterative lumping approach effectively determined a set of key components for fatty acid distillation simulation. For a tallow-based feedstock, a total of 11 key components resulted in the best predictions of product compositions, with glyceridic components and minor components each represented by 2 key components, and fatty acids by 7. The need for 7 key components to represent fatty acids shows that lumping all fatty acids should be avoided. Simultaneously, including all fatty acid species in the model is unnecessary and may even lead to worse predictions due to a lack of proper pure and binary component data. Palm and PFAD based feedstocks could be represented by the same key components as tallow, while for rapeseed-based feedstocks, an additional 3 minor components are required to reach an acceptable prediction of product compositions. In future research, the prediction of fatty acid quality could be further improved by including specific components and side reactions related to colour formation.
Important parameters of fatty acid distillation are side-reflux-ratio, reboiler-outlet-temperature and heat-duty of the pitch-distiller. To increase the purity (99.7%), an increase of side-reflux-ratio (0.4) and reboiler-outlet-temperature (239°C) is recommended. The model could be used to tackle the challenge of feedstock diversity by model predictive control. In that case, reflux ratio, reboiler outlet temperature and heat duty of the pitch distiller can be changed for compositional variability of the incoming feedstock. The model could be used to investigate if high quality fatty acids can be produced from lower quality feedstocks, and determine the optimal process parameters to do so
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