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Abstract

“ The dynamic of fractional covid-19 epidemic model with a convex incidence rate is studied in this article. Under
Caputo operator, existence and uniqueness for the solutions of the fractional covid-19 epidemic model have been ana-
lyzed using fixed point theorems. We study all the basic properties and results including local and global stability. We
show the global stability of disease free equilibrium using the method of Lyapunov function theory while for disease
endemic, we use the method of geometrical approach. Moreover, sensitivity analysis complemented by simulations are
performed to determine how changes in parameters affect the dynamical behavior of the system. ”
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1 Introduction

“ In December 2019, the capital of Hubei Province i.e. Wuhan city gains attention worldwide, at the end of 2019 as
an unknown virus attack people and start killing. Later on, the causative agent was identified as a novel corona virus
and now named as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). Chinese government did its best to
minimize the spread but unluckily the virus spreads to other countries. The latency period of covid-19 is from 11 to 14
days whereas myalgia, diarrhea, cough, fever, and shortness of breath are the common symptoms. Aged people are highly
exposed to covid-19 as well as patients having comorbid conditions. Covid-19 transmission rate is very high and the basic
reproduction number lies between 2.2 and 3.58. That’s why it spread throughout the world and affected 213 countries.
Hence, the world health organization (WHO) declared covid-19 as one of the global pandemic on January 30, 2020. The
two main routes of transmission is direct physical contact with the infected person and respiratory droplet coming out
from covid-19 patient [1].

At first, Iran and Italy were the highly exposed countries to covid-19 after China. Iran is the neighboring country of
Pakistan and every year thousands of people came from Pakistan to Iran for religious ceremonies. While coming back
from Iran some of these people were infected and they become the cause for spreading covid-19 in Pakistan. Although
the government closed the Pakistan-Iran border but yet the first case was confirmed officially on February 26, 2020 from
Karachi. Avoiding the spread and causalities government decided to quarantine most of the people at home [1].

The primary step taken by most of the governmental agencies to control COVID-19 is the implementation of lockdown
to maintain social distance. This procedure is an excellent measure to control the spreading of the disease. Still, from an
economic point of view, the complete lockdown may be the cause of a significant financial crisis for the near future. In
particular, lockdown in high dense countries may reduce the disease transmission rate, although complete control may not
be achievable. Hence to alive the economic status of a country, a full lockdown for an indefinite period is not desirable
at all in any circumstances. Therefore there should be a suitable balance between the two different characteristics of
governmental policies complete lockdown and healthy free conditions.

Mathematical modeling is considered as an effective tool for describing the dynamical behavior of infections [2–6].
Mathematicians frequently using the tools of mathematical modeling from the last century. More recently, the field of
mathematical modeling got considerable attention and a number of authors put their valuable contributions in this area.
For realizing and controlling the outbreak of transmissible diseases in a group, many researchers have formulated models.
The second leading source of death around the globe is infectious diseases. The application of mathematical modeling has
been in vogue for the study of transmissible infectious diseases. Many scholars have been discussing over the last few years
about infectious diseases and their dynamics using the various approaches. To study the dynamics of various infectious
diseases, mathematical modeling is considered as one of the best techniques to formulate the phenomenon in the system of
equations. Several researchers have worked on different infectious diseases. They have developed different mathematical
models for these epidemic diseases, and then studied the stability analysis and optimal control of these epidemic models
(see e.g., [7–12]), which not only helps in the control/spread of infectious diseases but also helps in prevention of these
diseases in daily life. Many researchers have worked on epidemic models to analyze and control different diseases for
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example hepatitis B, avian influenza, leishmaniasis, tuberculosis etc. Modeling of epidemic models is helpful to academia
as well as to daily life. Mathematical modeling has a rich literature on the transmission dynamics of the infection diseases.

Since the nature and destruction of COVID-19 depends on various parameters (namely personal immunity, history
of visiting into a COVID-19 pandemic country, maintaining the required hygiene, etc.) of the affected system, using a
single model we cannot de- scribe the whole disease system throughout the globe. Addition of detail and complexity can
make models more accurate but this also complicates their mathematics. However, even this kind of simple model is very
helpful when formal vaccination or proper treatment control is not available. Motivated by this, in the present paper,
we propose a mathematical model introducing a quarantine class and governmental intervention measures like lockdown,
media coverage on social distancing, and improvement of public hygiene, etc to mitigate disease transmission.”

2 Model Formulation

“ In this section, we formulate a mathematical model on COVID-19 based on some realistic assumptions. At any time
instant t, the human populations are subdivided into five time-dependent classes, namely Susceptible S(t), Exposed E(t),
Hospitalized infected I(t), Quarantine Q(t) and Recovered or Removed R(t). Based on those five state variables, we
aim to form an autonomous system using first-order differential equations. Let A be the constant recruitment rate to
the susceptible population, and β be the disease transmission rate. However the disease transmission from vulnerable to
infected persons (here the class E) depends on several parameters, namely, precautions (use of face mask, social distancing,
not rubbing face and nose using hand, etc.) and hygienic environment (use of soap and sanitizer, hand washing, cleaning,
etc.) taken by both susceptible as well as infected persons. Since here, we have assumed that the virus of COVID-19 is
spreading when a vulnerable person comes into contact with an exposed person; therefore we think that ρ1(0 < ρ1 < 1)
portion of susceptible human would maintain proper precaution measure and ρ2(0 < ρ2 < 1) portion of the exposed class
would take proper precaution measure for disease transmission (i.e., use of face mask, social distancing and implementing
hygiene). Therefore the disease can only be transmitted to the (1 − ρ1)S portion of susceptible individuals due to the
contact of (1− ρ2)E portion of exposed individuals with a bi-linear disease transmission rate β. We know that a person
is whether infected by the SARS-CoV-2 virus or not can be clinically detected using RT-PCR examination and a person
with negative results in the RT-PCR test may still be COVID-19 positive a sit may take some days (from 7 to 21 days) to
express infection. Therefore, the portion with positive COVID-19 of the class of population E is considered as infected,
and they are hospitalized. Letα and b2 be the portions of the exposed class goes to the infected class and quarantine
class, respectively. It should be noted that 0 < α + b2 < 1 since it would take quite along time to get the out put of the
RT-PCR test, and sometimes it requires more than one RT-PCR analysis for a single person for confirmation of COVID-
19. Let among the quarantine classes of populations, cQ portion of communities move to infected level, and the b1Q part
would become susceptible to the disease after the quarantine period. Let η and σ be respectively recovery rate of the
hospitalized infected populations I and exposed class E. Let d be the natural death rate, which is common to all classes
of communities and δ be the COVID-19 induced death rate. Also, it is statistically observed a person once recovered
from the disease COVID-19 has very little chance to become infected again for the same disease. Hence, we assume that
no portion of the recovered population moves to the susceptible class back. Also, in the formulation of a mathematical
model, we understand that the people of the hospitalized infected class (i.e., I(t)) would not be spreading the disease or
spreading an eligible amount of disease since they are kept completely isolated from the susceptible individuals. However,
to control the pandemic COVID-19, suitable governmental measures (like complete or semi lock-down, rationing system,
continue media coverage on social isolation and improvement of public hygiene, home deliveries of essential commodities,
to make an alternate source of income for job-losers during the lockdown, etc.) have been implemented by the various
governmental and non-governmental agencies. Thus this policy may be considered as one of the effective control tools, and
mainly the susceptible population of COVID-19 cases would be benefited due to this policy. Mathematically we represent
this policy by the parameter M and let this policy be implemented at a rate p. Therefore due to the implementation of
this policy, the portion, pSM moves from susceptible to the recovered or removed class (R(t)). It should be noted that
usually, the parameter M should be time-dependent as for the optimum result, the policy should be applied according to
the necessity of the situation and keeping a proper balance between two different states, namely lockdown and complete
free state. However, in the qualitative analysis of this model, we assume the parameter M as time-independent, but in
formulating an optimal control problem to keep the infected individuals at the minimum level, M is assumed as a time-
dependent control M(t), where indeed 0 ≤ M(t) ≤ 1. Further, based on the above-stated assumptions, we reformulated
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an autonomous dynamical system consisting of five first-order differential equations shown as below [26]:”

CDχ0,tS(t) = Aχ − βχ(1− ρ1)(1− ρ2)SE + bχ1Q− dχS − pχSMχ,

CDχ0,tE(t) = βχ(1− ρ1)(1− ρ2)SE − bχ2E − αχE − σχE − dχE,

CDχ0,tQ(t) = bχ2E − bχQ− cχQ− dχQ,

CDχ0,tI(t) = αχE + cχQ− (ηχ + dχ + δχ)I,

CDχ0,tR(t) = ηχI + σχE − dχR+ pχSMχ.

(1)

with

S(t), E(t), Q(t), I(t), R(t) ≥ 0.

3 Existence and uniqueness of solutions for the Caputo model

The existence and uniqueness of the solution with regard to Caputo will be provided herein for the (1). Assume that
a continuous real-valued function denoted by B(J) containing the sup norm property is a Banach space on J = [0, b]
and P = B(J) × B(J) × B(J) × B(J) × B(J) with norm ‖(S,E,Q, I,R)‖ = ‖S‖ + ‖E‖ + ‖Q‖ + ‖I‖ + ‖R‖, where
‖S‖ = supt∈J |S(t)|, ‖E‖ = supt∈j |E(t)|, ‖Q‖ = supt∈j |Q(t)|, ‖I‖ = supt∈j |I(t)|, ‖R‖ = supt∈j |R(t)|, Applying the
Caputo fractional integral operator to the both sides of Eq.(1), we obtain

S(t)− S(0) = CDχ0,tS(t) {Aχ − βχ(1− ρ1)(1− ρ2)SE + bχ1Q− dχS − pχSMχ} ,

E(t)− E(0) = CDχ0,tE(t) {βχ(1− ρ1)(1− ρ2)SE − bχ2E − αχE − σχE − dχE} ,

Q(t)−Q(0) = CDχ0,tQ(t) {bχ2E − bχQ− cχQ− dχQ} ,

I(t)− I(0) = CDχ0,tI(t) {αχE + cχQ− (ηχ + dχ + δχ)I} ,

R(t)−R(0) = CDχ0,tR(t) {ηχI + σχE − dχR+ pχSMχ} .

(2)

And this leads to the following:

S(t)− S(0) = M(χ)
∫ t

0
(t− ϑ)−χK1(χ, ϑ, S(ϑ))dϑ,

E(t)− E(0) = M(χ)
∫ t

0
(t− ϑ)−χK2(χ, ϑ,E(ϑ))dϑ,

Q(t)−Q(0) = M(χ)
∫ t

0
(t− ϑ)−χK3 (χ, ϑ,Q(ϑ)) dϑ,

I(t)− I(0) = M(χ)
∫ t

0
(t− ϑ)−χK4 (χ, ϑ, I(ϑ)) dϑ,

R(t)−R(0) = M(χ)
∫ t

0
(t− ϑ)−χK5(χ, ϑ,R(ϑ))dϑ,

(3)

where
K1(χ, t, S(t)) = Aχ − βχ(1− ρ1)(1− ρ2)SE + bχ1Q− dχS − pχSMχ,
K2(χ, t, E(t)) = βχ(1− ρ1)(1− ρ2)SE − bχ2E − αχE − σχE − dχE,
K3 (χ, t,Q(t)) = bχ2E − bχQ− cχQ− dχQ,
K4 (χ, t, I(t)) = αχE + cχQ− (ηχ + dχ + δχ)I,
K5(χ, t, R(t)) = ηχI + σχE − dχR+ pχSMχ.

(4)

The symbols K1,K2,K3,K4 and K5 have to hold for the Lipschitz condition only if S(t), E(t), Q(t), I(t) and R(t) possess
an upper bound. Surmising that S(t) and S∗(t) are couple functions, we reach

‖K1(χ, t, S(t))−K1 (χ, t, S∗(t))‖ = ‖− (βχ(1− ρ1)(1− ρ2)E + dχ + pχMχ) (S(t)− S∗(t))‖ . (5)

Taking into account

η1 := ‖− (βχ(1− ρ1)(1− ρ2)E + dχ + pχMχ)‖ ,

one reaches
‖K1(χ, t, S(t))−K1 (χ, t, S∗(t))‖ ≤ η1 ‖S(t)− S∗(t)‖ . (6)
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Continuing in the same way, one gets

‖K2(χ, t, E(t))−K2 (χ, t, E∗(t))‖ ≤ η2 ‖E(t)− E∗(t)‖ ,
‖K3 (χ, t,Q(t))−K3 (χ, t,Q∗(t))‖ ≤ η3 ‖Q(t)−Q∗(t)‖ ,
‖K4 (χ, t, I(t))−K4 (χ, t, I∗(t))‖ ≤ η4 ‖I(t)− I∗(t)‖ ,
‖K5(χ, t, R(t))−K5 (χ, t, R∗(t))‖ ≤ η5 ‖R(t)−R∗(t)‖ .

(7)

Where

η2 = ‖− (βχ(1− ρ1)(1− ρ2)S − (bχ2 + αχ + σχ + dχ))‖ ,
η3 = ‖−(bχ + cχ + dχ)‖ ,
η4 = ‖−(ηχ + dχ + δχ)‖ ,
η5 = ‖−dχ‖ .

This implies that the Lipschitz condition has held for all the five functions. Going in a recursive manner, the expressions
in (3) yields

Sn(t) = M(χ)
∫ t

0
(t− ϑ)−χK1 (χ, ϑ, Sn−1(ϑ)) dϑ,

En(t) = M(χ)
∫ t

0
(t− ϑ)−χK2 (χ, ϑ,En−1(ϑ)) dϑ,

Qn(t) = M(χ)
∫ t

0
(t− ϑ)−χK3 (χ, ϑ,Qn−1(ϑ)) dϑ,

In(t) = M(χ)
∫ t

0
(t− ϑ)−χK4 (χ, ϑ, In−1(ϑ)) dϑ,

Rn(t) = M(χ)
∫ t

0
(t− ϑ)−χK5 (χ, ϑ,Rn−1(ϑ)) dϑ,

(8)

together with S0(t) = S(0), E0(t) = E(0), Q0(t) = Q(0), I0(t) = I(0) and R0(t) = R(0). When the successive terms
difference is taken, we get

ΞS,n(t) =Sn(t)− Sn−1(t)

=M(χ)

∫ t

0

(t− ϑ)−χ (K1 (χ, ϑ, Sn−1(ϑ)) −K1 (χ, ϑ, Sn−2(ϑ))) dϑ,

ΞE,n(t) =En(t)− En−1(t)

=M(χ)

∫ l

0

(t− ϑ)−χ (K2 (χ, ϑ,En−1(ϑ)) −K2 (χ, ϑ,En−2(ϑ))) dϑ,

ΞQ,n(t) =I1n(t)−Qn−1(t)

=M(χ)

∫ t

0

(t− ϑ)−χ (K3 (χ, ϑ,Qn−1(ϑ)) −K3 (χ, ϑ,Qn−2(ϑ))) dϑ,

ΞI,n(t) =I2n(t)− In−1(t)

=M(χ)

∫ t

0

(t− ϑ)−χ (K4 (χ, ϑ, In−1(ϑ)) −K4 (χ, ϑ, In−2(ϑ))) dϑ,

ΞR,n(t) =Fn(t)−Rn−1(t)

=M(χ)

∫ t

0

(t− ϑ)−χ (K5 (χ, ϑ,Rn−1(ϑ)) −K5 (χ, ϑ,Rn−2(ϑ))) dϑ.

(9)

It is vital to observe that Sn(t) =
∑n
i=0 ΞS,i(t), En(t) =

∑n
i=0 ΞE,i(t), Qn(t) =

∑n
i=0 ΞQ,i(t),

In(t) =
∑n
i=0 ΞI,i(t), Rn(t) =

∑n
i=0 ΞR,i(t). Additionally, by using Eqs. (6)-(7) and considering that ΞS,n−1(t) =

Sn−1(t)− Sn−2(t), ΞE,n−1(t) = En−1(t)− En−2(t), ΞQ,n−1(t) = Qn−1(t)−Qn−2(t),
ΞI,n−1(t) = In−1(t)− In−2(t), ΞR,n−1(t) = Rn−1(t)−Rn−2(t), we reach

‖ΞS,n(t)‖ ≤M(χ)η1

∫ t
0
(t− ϑ)−χ ‖ΞS,n−1(ϑ)‖ dϑ,

‖ΞE,n(t)‖ ≤M(χ)η2

∫ t
0
(t− ϑ)−χ ‖ΞE,n−1(ϑ)‖ dϑ,

‖ΞQ,n(t)‖ ≤M(χ)η3

∫ t
0
(t− ϑ)−χ ‖ΞQ,n−1(ϑ)‖ dϑ,

‖ΞI,n(t)‖ ≤M(χ)η4

∫ t
0
(t− ϑ)−χ ‖ΞI,n−1(ϑ)‖ dϑ,

‖ΞR,n(t)‖ ≤M(χ)η5

∫ t
0
(t− ϑ)−χ ‖ΞR,n−1(ϑ)‖ dϑ.

(10)

Now, the following theorem will be proved.
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Theorem 1. Surmising that the following condition holds

M(χ)

χ
bχηi < 1, i = 1, 2, . . . , 5. (11)

Then, (1) has a unique solution for t ∈ [0, b].

Proof It is shown S(t), E(t), Q(t), I(t) and R(t) are bounded functions. In Addition, as can be seen from Eqs. (6)
and (7), the symbols K1,K2,K3,K4 and K5 hold for Lipchitz condition. Therefore, utilizing Eq. (10) together with a
recursive hypothesis, we arrive at

‖ΞS,n(t)‖ ≤ ‖S0(t)‖
(
M(χ)
χ bχη1

)n
,

‖ΞE,n(t)‖ ≤ ‖E0(t)‖
(
M(χ)
χ bχη2

)n
,

‖ΞQ,n(t)‖ ≤ ‖Q0(t)‖
(
M(χ)
χ bχη3

)n
,

‖ΞI,n(t)‖ ≤ ‖I0(t)‖
(
M(χ)
χ bχη4

)n
,

‖ΞR,n(t)‖ ≤ ‖R0(t)‖
(
M(χ)
χ bχη5

)n
.

(12)

Thus, one can see that sequences satisfy and exist
‖ΞS,n(t)‖ → 0, ‖ΞE,n(t)‖ → 0, ‖ΞQ,n(t)‖ → 0, ‖ΞI,n(t)‖ → 0, ‖ΞR,n(t)‖ → 0 as n→∞. Moreover, from Eq. (12)
and imposing the triangle inequality, for any k, we have

‖Sn+k(t)− Sn(t)‖ ≤
∑n+k
j=n+1 r

j
1 =

rn+1
1 −rn+k+1

1

1−r1 ,

‖En+k(t)− En(t)‖ ≤
∑n+k
j=n+1 r

j
2 =

rn+1
2 −rn+k+1

2

1−r2 ,

‖Qn+k(t)−Qn(t)‖ ≤
∑n+k
j=n+1 r

j
3 =

rn+1
3 −rn+k+1

3

1−r3 ,

‖In+k(t)− In(t)‖ ≤
∑n+k
j=n+1 r

j
4 =

rn+1
4 −rn+k+1

4

1−r4 ,

‖Rn+k(t)−Rn(t)‖ ≤
∑n+k
i=n+1 r

j
5 =

rn+1
5 −rn+k+1

5

1−r5 ,

(13)

with ri = M(χ)
χ bχηi < 1 by hypothesis. Therefore, Sn, En, Qn, In and Rn can be seen as a Cauchy sequences in the

Banach space B(J). This has shown that they are uniformly convergent [22]. Imposing the limit theorem in Eq. (9) as
n → ∞ affirms that the limit of these sequences is the unique solution of (1). This guarantee the existence of a unique
solution for Eq. (1) under the condition (11).

3.1 Basic reproductive number R0

The disease free equilibrium point of system (1) is denoted by E0, i.e

E0 = (S0, E0, Q0, I0, R0) =

(
Aχ

dχ + pχMχ
, 0, 0, 0,

AχpχMχ

dχ(dχ + pχMχ)

)
. (14)

The spread and control of the disease is basically linked with the basic reproduction number. This quantity shows
the disease spread and control. If this threshold quantity R0 < 1, the disease dies out from the population and the
disease-free equilibrium exists which is stable locally as well as globally. It helps to control the outbreak of an epidemic
through preventive measures. But if vice versa i.e. R0 > 1 then the endemic equilibria are stable locally as well as globally
under certain conditions. The disease takes the epidemic shape and permanently resides in the society. To find the basic
reproduction number for our model.

Let (E,Q, I) is our infected compartment, then it follows from system (1):
CDχ0,tE(t) = βχ(1− ρ1)(1− ρ2)SE − bχ2E − αχE − σχE − dχE,

CDχ0,tQ(t) = bχ2E − b
χ
1Q− cχQ− dχQ,

CDχ0,tI(t) = αχE + cχQ− (ηχ + dχ + δχ)I.

(15)

Using the next generation matrix approach, the Jacobian matrix J for the above system at the disease free equilibrium
point E0 is given by

J =

βχ(1− ρ1)(1− ρ2)S0 − (bχ2 + αχ + σχ + dχ) 0 0
bχ2 −(bχ + cχ + dχ) 0
αχ cχ −(ηχ + dχ + δχ)

 .
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Now decomposing the matrix J in terms of F and V i.e J = F − V we get

F =

βχ(1− ρ1)(1− ρ2)S0 0 0
0 0 0
0 0 0

 ,

and

V =

(bχ2 + αχ + σχ + dχ) 0 0
−bχ2 (bχ + cχ + dχ) 0
−αχ −cχ +(ηχ + dχ + δχ)

 .

The basic reproduction number (R0) is the spectral radius of the matrix (FV −1) and for the present model it is given
by

R0 =
Aχβχ(1− ρ1)(1− ρ2)

(dχ + pχMχ)(bχ2 + αχ + σχ + dχ)
.

3.2 Invariant Region

Let the total population at time t is represented by N(t), which satisfied,

N(t) = S(t) + E(t) +Q(t) + I(t) +R(t).

The equation (1) gives
dN

dt
= bχ − µχN − δχI ≤ bχ − µχN.

Now as t→∞, we obtain N ≤ bχ

µχ . We study (1) in the following closed set

Γ =

{
(S,E,Q, I,R) ∈ R5

+ : 0 < S,E,Q, I,R ≤ bχ

µχ

}
.

3.2.1 Endemic equilibrium point

“The endemic equilibrium point for the system (1) is denoted by E∗ = (S∗, E∗, Q∗, I∗, R∗) for which the disease is
endemic in the population (i.e. at least one of E∗, Q∗ and I∗ is nonzero), Equations of system (1) are rearranged to get
S∗, E∗, Q∗, I∗ and R∗. This gives

S∗ =
(bχ2 + αχ + σχ + dχ)

βχ(1− ρ1)(1− ρ2)
,

E∗ =
(bχ1 + cχ + dχ)[Aχβχ(1− ρ1)(1− ρ2)− (dχ + pχMχ)(bχ2 + αχ + σχ + dχ)]

βχ(1− ρ1)(1− ρ2)[bχ2 (cχ + dχ) + (bχ1 + cχ + dχ)(αχ + σχ + dχ)]
,

Q∗ =
bχ2 [Aχβχ(1− ρ1)(1− ρ2)− (dχ + pχMχ)(bχ2 + αχ + σχ + dχ)]

βχ(1− ρ1)(1− ρ2)[bχ2 (cχ + dχ) + (bχ1 + cχ + dχ)(αχ + σχ + dχ)]
,

I∗ =
[αχ(bχ1 + cχ + dχ) + bχ2 c

χ][(dχ + pχMχ)(bχ2 + αχ + σχ + dχ)(R0 − 1)]

βχ(1− ρ1)(1− ρ2)[bχ2 (cχ + dχ) + (bχ1 + cχ + dχ)(αχ + σχ + dχ)]
,

R∗ =
ηχI∗ + σχE∗ + pχMχS∗

dχ
.

(16)

For R0 > 1 the positivity of the above equilibrium point (16) is assured.

4 Local Stability

We establish the local stability of the system (1) in this section at corona free point E0 as well as at corona present
equilibrium point E∗.
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4.1 Corona free equilibrium local stability

Theorem 2. The corona free equilibrium (CFE) point E0 of the system (1) is locally asymptotically stable if R0 < 1.

Proof. Jacobian matrix of the system (1) at E0 is

J(E0) =


−(dχ + pχMχ) βχ(1− ρ1)(1− ρ2)S0 bχ1 0 0

0 a22 0 0 0
0 bχ2 −(bχ1 + cχ + dχ) 0 0
0 αχ cχ −(ηχ + dχ + δχ) 0

pχMχ σχ 0 ηχ −dχ

 , (17)

where a22 = βχ(1− ρ1)(1− ρ2)S0 − (bχ2 + αχ + σχ + dχ).

The characteristic equation of J(E0) takes the following form:

[ω1 + dχ][ω2 + (ηχ + dχ + δχ)][ω3 + (dχ + pχMχ)](Aω2 +Bω + C) = 0,

where

A =1,

B =(bχ1 + cχ + dχ)− βχ(1− ρ1)(1− ρ2)S0 + (bχ2 + αχ + σχ + dχ),

=(bχ1 + cχ + dχ) + (bχ2 + αχ + σχ + dχ)(1−R0),

C =− (bχ1 + cχ + dχ)[βχ(1− ρ1)(1− ρ2)S0 − (bχ2 + αχ + σχ + dχ)],

=(bχ1 + cχ + dχ)(bχ2 + αχ + σχ + dχ)[1−R0].

(18)

It is clear from the characteristic equation that the first three eigenvalues are negative whereas for the remaining factors
we need to find condition under which the real parts of the two eigenvalues are negative.
We see that A > 0, B > 0, and the value of C can either be positive or negative. Therefore, considering the value of C we
have the following cases.
1: When C < 0 , then the nature of the roots is real with one root positive and the other is negative. Thus CFE is
unstable.
2: When C = 0, then the root are real, negative and zero, CFE is stable ( not asymptotically ), some trajectories will
not be heading to the equilibrium point of CFE for t→∞.

3: When B2 − 4AC = 0 (C = B2

4A ) then the roots are real, negative and repeated, CFE asymptotically stable.

4: When B2 − 4AC > 0 (0 < C < B2

4A ) we obtain two real and negative roots, hence the CFE asymptotically stable.

5: WhenB2−4AC < 0 (C > B2

4A ) then the roots are complex conjugate with negative real part, hence CFE asymptotically
stable.
Again from the five cases we can decide that when C < 0 then CFE is stable, when C = 0, the CFE is stable (not
asymptotically), and if C > 0 ( cases 3, 4, 5 ) then the CFE is asymptotically stable. All the trajectory towards the CFE.
So the stability of the the CFE point depends only on the value of C.
Furthermore, the value of C > 0 if

(bχ1 + cχ + dχ)(bχ2 + αχ + σχ + dχ)[1−R0] > 0.

This shows that for R0 < 1 the corona free equilibrium point is asymptotically stable.

4.2 At corona present equilibrium point

Now we study the local asymptotic stability of the endemic equilibrium E∗.

Theorem 3. If R0 > 1, then the corona present equilibrium E∗ of the system (1) is locally asymptotically stable..

Proof. Suppose R0 > 1; then the existence of the endemic equilibrium point is assured. The Jacobian matrix of the system
(1) at E∗ is

J |∗| =


a11 −βχ(1− ρ1)(1− ρ2)S∗ bχ1 0 0

βχ(1− ρ1)(1− ρ2)E∗ a22 0 0 0
0 bχ2 −(bχ1 + cχ + dχ) 0 0
0 αχ cχ −(ηχ + dχ + δχ) 0

pχMχ σχ 0 ηχ −dχ

 . (19)



8

where a11 = −βχ(1− ρ1)(1− ρ2)E∗ − (dχ + pχMχ), a22 = βχ(1− ρ1)(1− ρ2)S∗ − (bχ2 + αχ + σχ + dχ).

Clearly two eigenvalues of the Jacobian matrix J |∗| are negative, i.e ω1 = −dχ and ω2 = −(ηχ + dχ + δχ). For more
three eigenvalues we have the following reduced matrix:

J
|∗|
1 =

 a11 −βχ(1− ρ1)(1− ρ2)S∗ bχ1
βχ(1− ρ1)(1− ρ2)E∗ a22 0

0 bχ2 −(bχ1 + cχ + dχ)

 .

The characteristic equation of J
|∗|
1 takes the following form:

(ω3 +A1ω
2 +A2ω +A3) = 0,

where

A1 =2dχ + bχ1 + c+ pχMχ + βχ(1− ρ1)(1− ρ2),

A2 =((bχ1 + cχ + dχ)(dχ + pχMχ + βχ(1− ρ1)(1− ρ2)E∗) + (bχ2 + αχ

+ σχ + dχ)βχ(1− ρ1)(1− ρ2)),

A3 =[(bχ2 + αχ + σχ + dχ)(bχ1 + cχ + dχ)− bχ1 b
χ
2 ]βχ(1− ρ1)(1− ρ2)E∗.

(20)

It is observe that here A1, A2, A3 and A1A2 − A3 all are positive for any parametric value. Hence following the Routh
Hurwitz criterion we may conclude that the system (1) is locally asymptotically stable around its endemic equilibrium
point E∗.

5 Global Asymptotic Stability

Here we discuss the global stability analysis of model (1) for both disease-free and endemic equilibrium. We use the
method of Castillo Chavez [19] to establish the global stability for disease-free equilibrium, whereas, for the global stability
of endemic equilibrium, the generalization of Lyapunov theory [20] is used.

5.1 Corona free equilibrium global stability

We decompose (1) into two subsystems

dχ1

dt
= G(χ1, χ2),

dχ2

dt
= H(χ1, χ2), (21)

where χ1 and χ2 are the number of uninfected and infected individuals respectively. Thus χ1 = (S,R) ∈ R2 and
χ2 = (E,Q, I) ∈ R3. Let us denote the disease-free equilibrium by E0 and define as E0 = (χ0

1, 0). For disease-free
equilibrium the existence of global stability depends on

1. If dχ1

dt = G(χ1, 0), χ0
1 is globally asymptotically stable.

2. H(χ1, χ2) = Bχ2 − H̄(χ1, χ2), where H̄(χ1, χ2) ≥ 0 for (χ1, χ2) ∈ ∆,

where B = Dχ2H(χ0
1, 0) is an M -matrix having the positive off-diagonal entries and ∆ represents the feasible region. Thus

the following statement holds.

Lemma 1. The equilibrium point E0 = (χ0
1, 0) of the system (1) is globally asymptotically stable, if the above conditions

are satisfied and R0 < 1.

Now for proving the global stability of (1) at disease-free equilibrium, we apply the above technique. Therefore, we
have the following result.

Theorem 4. At corona free equilibrium E0, the model (1) is globally asymptotically stable if R0 < 1 and unstable
otherwise.”
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Proof: Consider χ1 = (S,R), χ2 = (E, I) and define E0 = (χ0
1, 0), where

χ0
1 =

(
Aχ

dχ + pχMχ
,

AχpχMχ

dχ(dχ + pχMχ)

)
. (22)

From the model (1), we have

dχ1

dt
= G(χ1, χ2),

dχ1

dt
=

(
Aχ − βχ(1− ρ1)(1− ρ2)SE + bχ1Q− dχS − pχSMχ

ηχI + σχE − dχR+ pχSMχ.

)
. (23)

For S = S0, R = R0, and G(χ1, 0) = 0 , we get

G(χ1, 0) =

(
Aχ − (dχ + pχMχ)S0

−dχR0 + pχMχS0.

)
= 0. (24)

From equation (24) as t→∞, χ1 → χ0
1. Thus χ1 = χ0

1 is globally asymptotically stable.
To show the second condition, i.e.

H(χ1, χ2) = Bχ2 − H̄(χ1, χ2), where H̄(χ1, χ2) ≥ 0 for (χ1, χ2) ∈ ∆,
we have

Bχ2 =

 a11 0 0
bχ2 −(bχ + cχ + dχ) 0
αχ cχ −(ηχ + dχ + δχ)

 E
Q
I

 , (25)

where a11 = βχ(1− ρ1)(1− ρ2)S0 − (bχ2 + αχ + σχ + dχ). Since from second condition
H(χ1, χ2) = Bχ1 − H̄(χ1, χ2), or H̄(χ1, χ2) = Bχ2 −H(χ1, χ2), and

H(χ1, χ2) =

 βχ(1− ρ1)(1− ρ2)SE − (bχ2 + αχ + σχ + dχ)E
bχ2E − bχQ− cχQ− dχQ

αχE + cχQ− (ηχ + dχ + δχ)I

 . (26)

Then, we can calculate H̄(χ1, χ2) = Bχ2 −H(χ1, χ2),

H̄(χ1, χ2) =

 βχ(1− ρ1)(1− ρ2)S0E − βχ(1− ρ1)(1− ρ2)SE
0
0

 ≥ 0. (27)

Thus H̄(χ1, χ2) is positive definite.
The matrix B is given by

B =

 a11 0 0
bχ2 −(bχ + cχ + dχ) 0
αχ cχ −(ηχ + dχ + δχ)

 . (28)

As from the model (1), the total population is bounded by S0, that is S,E,Q, I,R ≤ S0, so βχ(1− ρ1)(1− ρ2)SE ≤
βχ(1−ρ1)(1−ρ2)S0E which implies that H̄(χ1, χ2) is positive definite. Also from equation (28), it is clear that the matrix
B is M -matrix that is the off diagonal element are non-negative. Thus condition 1 and 2 are satisfied, so by Lemma 1,
the disease free equilibrium point E0 is globally asymptotically stable.

5.2 Endemic equilibrium (global stability)

“For the global stability of (1) at endemic equilibrium E∗, we use the geometrical approach [20]. Thus we investigate the
sufficient condition through which the E∗ is globally asymptotically stable. Therefore, consider the differential equation

ẋ = f(x), (29)

where the open set U ⊂ Rn is simply connected and f : U → Rn is a function such that f ∈ C1(U). Assuming that
f(x∗) = 0 is the solution of equation (29) and for x(t, x0), the following are true.



10

3. There exist a compact absorbing set K ∈ U.

4. System (29) has a unique equilibrium.

The solution x∗ is said to be globally asymptotically stable in U, if it is locally asymptotically stable and all trajectories
in U converges to the equilibrium x∗. For n ≥ 2, a condition satisfied for f, which precludes the existence of non-constant
periodic solution of equation (29) known is Bendixson criteria. The classical Bendixson criteria divf(x) < 0 for n = 2
is robust under C1 [20]. Furthermore a point x0 ∈ U is wandering for equation (29), if there exist a neighborhood N of
x0 and τ > 0, such that N ∩ x(t,N) is empty for all t > τ . Thus the following global stability principle established for
autonomous system in any finite dimension.

Lemma 2. If the conditions (3) − (4) and Bendixson criterion are satisfied for equation (29)
(
i.e. robust under C1

local perturbation of f at all non equilibrium, non wandering point for equation (29)
)
, then x∗ is globally asymptotically

stable in U provided it is stable.

Define a matrix valued function P on U by

P (x) =

(
n

2

)
×
(
n

2

)
. (30)

Equation (30) is a matrix valued function on U . Further assume that P−1 exist and is continuous for x ∈ K. Now define
a quantity define, such that

q̄ = limt→∞ sup sup
1

t

∫ t

0

[µ(B(x(s, x0)))]ds, (31)

where J [2] is the second additive compound matrix of J i.e. J(x) = Uf(x) and B = PfP
−1 + PJ [2]P−1. Let `(B) be the

Lozinski measure of the matrix B with respect to the norm ‖.‖ in Rn [21] defined by

`(B) = limx→0
|I +Bx| − 1

x
. (32)

Hence if q̄ < 0, which shows that the presence of any orbit that give rise to a simple closed rectifiable curve, such as
periodic orbits and heterocyclic cycles.

Lemma 3. Let U is simply connected and the condition (3)−(4) are satisfied, then the unique equilibrium x∗ of equation
(29) is globally asymptotically stable in U , if q̄ < 0.

Now we apply the above techniques to prove the global stability of model (1) at endemic equilibrium. Thus we have
the following stability

Theorem 5. If R0 > 1, then the model (33) is globally asymptotically stable at endemic equilibrium E∗ and unstable
otherwise.”

Proof: Now examine the sub-system of (1), that is

CDχ0,tS(t) = Aχ − βχ(1− ρ1)(1− ρ2)SE + bχ1Q− dχS − pχSMχ,

CDχ0,tE(t) = βχ(1− ρ1)(1− ρ2)SE − bχ2E − αχE − σχE − dχE,

CDχ0,tQ(t) = bχ2E − bχQ− cχQ− dχQ.

(33)

The Jacobian matrix of system (33) is

J =

 −k11 −βχ(1− ρ1)(1− ρ2)S∗ bχ1
βχ(1− ρ1)(1− ρ2)E∗ k22 0

0 bχ2 −(bχ + cχ + dχ)

 ,

where k11 = (βχ(1−ρ1)(1−ρ2)E∗+dχ+pχMχ), k22 = βχ(1−ρ1)(1−ρ2)S∗− (bχ2 +αχ+σχ+dχ). The second additive
compound matrix is
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J [2] =

 −k11 + k22 0 −bχ1
bχ2 −k11 − (bχ + cχ + dχ) −βχ(1− ρ1)(1− ρ2)S∗

0 βχ(1− ρ1)(1− ρ2)E∗ k22 − (bχ + cχ + dχ)

 ,

The function P (χ) = P (S,E,Q) = diag
(

1, EQ ,
E
Q

)
, then

Pf = diag

(
0,
E′Q−Q′E

Q2
,
E′Q−Q′E

Q2

)
.

So, it follows

PfP
−1 = diag

(
0,
E′

E
− Q′

Q
,
E′

E
− Q′

Q

)
,

PJ [2]P−1 =

 −k11 + k22 0 − b
χ
1Q
E

bχ2E
Q −k11 − (bχ + cχ + dχ) −βχ(1− ρ1)(1− ρ2)S∗

0 βχ(1− ρ1)(1− ρ2)E∗ k22 − (bχ + cχ + dχ)


The matrix B = PJ [2]P−1 + PfP

−1, can be express in matrix form

B =

(
B11 B12

B21 B22

)
,

where

B11 = −K11 +K22,

B12 =
(

0 − b
χ
1Q
E

)
,

B21 =

(
bχ2E
Q

0

)
,

B22 =

(
E′

E −
Q′

Q − k11 − (bχ + cχ + dχ) −βχ(1− ρ1)(1− ρ2)S∗

βχ(1− ρ1)(1− ρ2)E∗ E′

E −
Q′

Q + k22 − (bχ + cχ + dχ)

)
.

k11 = (βχ(1− ρ1)(1− ρ2)E∗ + dχ + pχMχ), k22 = βχ(1− ρ1)(1− ρ2)S∗ − (bχ2 + αχ + σχ + dχ).
Suppose (k1, k2, k3) be a vector in R3, with the norm ‖.‖ defined by

max{|k1|, |k2|, |k3|} = ‖(k1, k2, k3)‖.

Let µ(B) be the Lozinski measure with respect to this norm, we choose

µ(B) ≤ sup{g1, g2},

where
g1 = |B12|+ µ1(B11), µ1(B22) + |B21| = g2,

|B12|, |B21| are matrix norms with respect to the l1 vector norm, and µ1 refers the Lozinski measure with respect to
this l1 norm, then

µ1(B11) = −K11 +K22, |B21| =
bχ2E

Q
,

|B12| = max

{
0, −b

χ
1Q

E

}
= 0,
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and

µ1(B22) =

{
E′

E
− Q′

Q
+ k22 − (bχ + cχ + dχ)

}
.

Hence, we have

g1 = −K11 +K22,

g2 =
bχ2E
Q + E′

E −
Q′

Q + k22 − (bχ + cχ + dχ).
(34)

From (1), we get
E′

E = βχ(1− ρ1)(1− ρ2)S∗ − (bχ2 + αχ + σχ + dχ),

Q′

Q =
bχ2E
Q − (bχ + cχ + dχ)

Thus, we have

g1 = −(βχ(1− ρ1)(1− ρ2)E∗ + dχ + pχMχ) + βχ(1− ρ1)(1− ρ2)S∗ − (bχ2 + αχ + σχ + dχ)

g2 = E′

E + βχ(1− ρ1)(1− ρ2)S∗ − (bχ2 + αχ + σχ + dχ) (35)

By using S∗ =
(bχ2 +αχ+σχ+dχ)
βχ(1−ρ1)(1−ρ2) , we get

g1 = −(βχ(1− ρ1)(1− ρ2)E∗ + dχ + pχMχ) + βχ(1− ρ1)(1− ρ2)S∗ − (bχ2 + αχ + σχ + dχ)

≤ −(βχ(1− ρ1)(1− ρ2)E∗ + dχ + pχMχ),

g2 = E′

E + βχ(1− ρ1)(1− ρ2)S∗ − (bχ2 + αχ + σχ + dχ)

≤ E′

E .

(36)

Moreover, we get

µ(B) ≤ sup{g1, g2} ≤
E′

E
,

then
1

t

∫ t

0

µ(B)ds ≤ 1

t

∫ t

0

(
E′

E
)ds =

1

t
ln
E(t)

E(0)
,

which implies q = 0, Therefore, the Bendixson criterion is verified. We prove that positive equilibrium (S∗, E∗, Q∗) is
globally asymptotically stable.

Examine the sub system of system (1)

CDχ0,tI(t) = αχE + cχQ− (ηχ + dχ + δχ)I,

CDχ0,tR(t) = ηχI + σχE − dχR+ pχSMχ,
(37)

Now rewrite the system of the form

CDχ0,tI(t) + (ηχ + dχ + δχ)I = αχE∗ + cχQ∗,

CDχ0,tR(t) + dχR = ηχI∗ + σχE∗ + pχS∗Mχ.
(38)

The integrating factors for the system is et(η
χ+dχ+δχ) and et(d

χ).
Using the integrating factors and solve the system .
So for large time t that is t → ∞, I → I∗ and R → R∗, which is sufficient to prove that the endemic equilibrium point
E∗ is globally asymptotically stable.
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6 Sensitivity Analysis

Parameters S.Index Value Parameters S.Index Value
β Sβ 1.00000000 d Sd -0.4999885937
σ Sσ -0.7142914285 b2 Sb2 -0.3711929652
A SA 1.00000000 ρ1 Sρ1 -0.7213098196
ρ2 Sρ1 -0.4285717142 α Sα 0.31632629344
M SM 0.1245906249 p Sp -0.2446571428

Table 1: Sensitivity indices of the reproduction number R0 against mentioned parameters.

“ Determining the parameters which are helpful in decreasing the spread of infectious disease is carried out by sensitivity
analysis. Forward sensitivity analysis is considered as vital component of disease modeling although its computation
become tedious for complex biological model. Sensitivity analysis of R0 have received much attention from the ecolo-
gist and epidemiologist. The basic reproduction number R0 is the normalized forward sensitivity index that depends
differentiability on a parameter ω is defined as

Sω =
ω

R0

∂R0

∂ω
(39)

Three methods are normally used to calculate the sensitivity indices, (i) by direct differentiation, (ii) by a Latin hypercube
sampling method (iii) by linearizing system (1) and then solving the obtain set of linear algebraic equations. We will
apply the direct differentiation method as it gives analytical expressions for the indices. The indices not only shows us
the influence of various aspects associated with the spreading of infectious disease but also gives us important information
regarding the comparative change between R0 and different parameter. Consequently, it helps in developing the control
strategies.
Table 1 shows that the parameters β, A, M and α have a positive influence on the reproduction number R0, which describe
that the growth or decay of these parameters say by 10 percent will increase or decrease the reproduction number by 10
percent, 10 percent, 1.2 percent and 3.1 percent, respectively. But on the other hand, the index for parameters d, b2,
σ, ρ1, ρ2 and p illustrates that increasing their values by 10 percent will decrease the values of reproduction number R0

by 4.9 percent, 3.7 percent, 7.4 percent, 7.2 percent, 4.2 percent and 2.4 percent, respectively. The sensitivity of various
parameters with R0 is highlighted in Fig 1, Fig 2, Fig 3, Fig 4 and Fig 5.”
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Figure 1: The plot demonstrates the variation of R0 against M and A.
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Figure 2: The plot demonstrates the variation of R0 against β and d.
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Figure 3: The plot demonstrates the variation of R0 against ρ2 and d.
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Figure 4: The plot demonstrates the variation of R0 against M and d.
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Figure 5: The plot demonstrates the variation of R0 against β and A.

7 Numerical Simulations and Discussion

“ Herein, the fractional variant of the model under consideration via Caputo fractional operator is numerically simulated via
first order convergent numerical techniques as proposed in [23–25]. These numerical techniques are accurate, conditionally
stable, and convergent for solving fractional-order both linear and nonlinear system of ordinary differential equations.

Consider a general Cauchy problem of fractional order having autonomous nature

?Dχ
0,t

(
y(t)

)
= g
(
y(t)

)
, χ ∈ (0, 1], t ∈ [0, T ], y(0) = y0, (40)

where y = (a, b, c, w) ∈ R4
+ is a real-valued continuous vector function which satisfies the Lipchitz criterion given as

||g(y1(t))− g(y2(t))|| ≤M ||y1(t)− y2(t)||, (41)

where M is a positive real Lipchitz constant.



16

Parameters Description Values/Ranges
A Total recruitment 50
β Disease transmission rate [0.5,2.3]
ρ1 Portion of S contact with E (0,1)
ρ2 Portion of E contact with S (0,1)
d Natural death rate 0.2
b1 The rate that Q becomes S 0.25
b2 The rate that E becomes quarantine 0.8
α The rate that E becomes I 0.3
η The rate that I becomes R naturally 0.25
σ The rate that E becomes R naturally 0.2
c The rate that Q becomes I 0.12
δ The mortality rate for I 0.25
M Policy parameter 0.8
p Implementation rate of policy 0.78

Using the fractional-order integral operators, one obtains

y(t) = y0 + Jχ0,tg(y(t)), t ∈ [0, T ], (42)

where JΩ
0,t is the fractional-order integral operator in Riemann-Liouville. Consider an equi-spaced integration intervals

over [0, T ] with the fixed step size h (= 10−2 for simulation) =
T

n
, n ∈ N. Suppose that yp be the approximation of y(t)

at t = tp for p = 0, 1, . . . n. The numerical technique for the governing model under Caputo fractional derivative operator
takes the form

cSp+1 = a0 +
hχ

Γ(χ+ 1)

p∑
k=0

(
(p− k + 1)χ − (p− k)χ

)(
Aχ − βχ(1− ρ1)(1− ρ2)SE + bχ1Q− dχS − pχSMχ

)
,

cEp+1 = b0 +
hχ

Γ(χ+ 1)

p∑
k=0

(
(p− k + 1)χ − (p− k)χ

)(
βχ(1− ρ1)(1− ρ2)SE − bχ2E − αχE − σχE − dχE

)
,

cQp+1 = d0 +
hχ

Γ(χ+ 1)

p∑
k=0

(
(p− k + 1)χ − (p− k)χ

)(
bχ2E − bχQ− cχQ− dχQ

)
,

cIp+1 = e0 +
hχ

Γ(χ+ 1)

p∑
k=0

(
(p− k + 1)χ − (p− k)χ

)(
αχE + cχQ− (ηχ + dχ + δχ)I

)
,

cRp+1 = f0 +
hχ

Γ(χ+ 1)

p∑
k=0

(
(p− k + 1)χ − (p− k)χ

)(
ηχI + σχE − dχR+ pχSMχ

)
.

(43)

Now we discuss the obtained numerical outcomes of the governing model in respect of the approximate solutions.
To this aim, we employed the effective Euler method under the Caputo fractional operator to do the job. The initial
conditions and the parameters values are used as described in the table above. The initial conditions as well as the values
of the parameters that are used in carrying out the simulating results are as described in subsection 2.1. The physical
perspective of the model’s individual state variables under the Caputo fractional operator is shown in Figure 6. In figure
7, it can be noticed that the fractional order χ = is varied for 1, 0.888, 0.666. One can easily see the robust nature of the
Caputo operator than the integer variant of the model. For a decreasing varying values of β (desease transmission rate)
as shown in figures 8, I(t) is also increasing. Similarly, in figures 9, the effect of mortality rate δ on I(t) has been shown.
For an increasing values of δ as in figure 9(a), an increasing patterns in I(t) is noticed. Similarly for a decreasing values
of δ, a decreasing patterns in I(t) is noticed. An increasing-decreasing patterns are shown in this case.”
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Figure 6: Profiles for behavior of each state variable for the Caputo version of the fractional model using the values of the
parameters.



18

0 5 10 15 20 25 30 35 40

time

0

10

20

30

40

50

60

70

80

90

100

S
(t

)

=1

=0.888

=0.666

0 5 10 15 20 25 30 35 40

time

0

5

10

15

20

25

30

35

40

45

E
(t

)

=1

=0.888

=0.666

0 5 10 15 20 25 30 35 40

time

0

10

20

30

40

50

60

Q
(t

)

0 5 10 15 20 25 30 35 40

time

0

50

100

150

200

250

300

I(
t)

=1

=0.888

=0.666

0 5 10 15 20 25 30 35 40

time

20

30

40

50

60

70

80

90

100

110

120

R
(t

)

=1

=0.888

=0.666

Figure 7: The dynamics of each state variable for different χ values.
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Figure 8: Behavior of the infectious class I(t) for (a) decreasing values of β (disease transmission rate) and (b) increasing
values of β (disease).
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Figure 9: Behavior of the infectious class I(t) for (a) increasing values of δ (mortality rate) and (b) decreasing values of
δ (mortality rate).
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