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Abstract

This paper is concerned with sublinear perturbations of resonant linear polyharmonic
problems. We establish some a priori bounds and use these together with Leray-Schauder
continuation and bifurcation arguments to obtain extensions of some known results of Mawhin
and Schmitt on the multiplicity of solutions of nonlinear elliptic eigenvalue problems with
the parameter near resonance.
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1 Introduction

Let Ω be a bounded open subset of RN (N ≥ 1) with smooth boundary ∂Ω. We study the

existence and multiplicity of solutions to the nonlinear polyharmonic problem

(−∆)mu− (λ1 + λ)u+ f(x, u) = h x ∈ Ω,

u =
∂u

∂ν
= · · · = ∂m−1u

∂νm−1
= 0 x ∈ ∂Ω,

(1.1)λ

where λ1 is principal eigenvalue of (−∆)m with Dirichlet boundary condition. Let ψ be the

corresponding eigenfunction of λ1 with

ψ(x) > 0 x ∈ Ω;

∫
Ω
ψ2(x)dx = 1.

The case m = 1 has been extensively studied, see J. Mawhin, K. Schmitt [13, 14], R.

Chiappinelli, J. Mawhin, R. Nugari [1], Ma [12] and the references therein. The linear problem

associated with (1.1)λ reads

−∆u− (λ1 + λ)u = h x ∈ Ω,

u = 0 x ∈ ∂Ω,
(1.2)

and the corresponding existence results are well known from the linear theory; namely, if λ 6= 0,

then (1.2) has a unique solution for each given h (provided of course λ1 +λ does not touch other

eigenvalues) while for λ = 0, a solution exists if, and only if∫
Ω
h(x)ψ(x)dx = 0. (1.3)
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A similar situation arises when introducing a sufficiently “small” nonlinearity f . Assume

|f(x, s)| ≤ c (x, s) ∈ Ω̄× R (1.4)

for some c ≥ 0, it is easy to see (e.g. by the Schauder fixed point theorem) that if λ 6= 0, (1.1)λ

again has a solution for each given h. If λ = 0, a by now classical result due to Landesman and

Lazer [10] states that (1.1)λ is solvable if h satisfies the condition∫
Ω
f+(x)ψ(x)dx <

∫
Ω
h(x)ψ(x)dx <

∫
Ω
f−(x)ψ(x)dx, (1.5)

or ∫
Ω
f−(x)ψ(x)dx <

∫
Ω
h(x)ψ(x)dx <

∫
Ω
f+(x)ψ(x)dx, (1.5′)

where

f±(x) = lim sup
s→±∞

f(x, s), f±(x) = lim inf
s→±∞

f(x, s),

and ψ is the eigenfunction corresponding to λ1.

In [13], J. Mawhin, K. Schmitt used that f is subject to the growth restriction

|f(x, s)| ≤ a|s|α + b x ∈ Ω, s ∈ R (1.6)

where 0 ≤ α < 1 and a, b are positive constants. They considered the problem of multiplicity

of solutions to (1.1)λ with m = 1 for λ near 0. Using degree theory together with results on

bifurcation from infinity at the simple eigenvalue λ1, they showed that under condition (1.5),

(1.1)λ with m = 1 has near λ1, at least one solution for λ ≥ 0, and at least two solutions for

λ < 0; a similar result holds under (1.5′) if we “reverse the sides” of λ with respect to 0. This

fact follows in [13] from a more general result which involves nonlinear perturbations of linear

operators having an isolated eigenvalue of odd multiplicity. Further applications to boundary-

value problems for ordinary differential equations can be found in J. Mawhin, K. Schmitt [14].

One crucial step in [13] consists in obtaining a priori bounds for the solutions of (1.1)λ,

which are to be uniform in λ for λ on one side of 0. More precisely, one shows that if, e.g. (1.3)

holds, then there exist R > 0 and δ > 0 so that

||u|| < R for all possible solutions of (1.1)λ with 0 ≤ λ ≤ δ,

where the norm of u is taken in a suitable function space. This first gives, by degree and

continuation arguments, the existence of one solution in BR = {u : ||u|| < R} for all λ near

0. Furthermore, it implies that the bifurcation branch of solutions of (1.1)λ arising at λ1 and

containing solutions of large norm has to lie (at least locally, i.e. “near (λ1,∞)”) in the region

λ < 0, it is then easy to deduce the existence, for λ < 0, of a second solution which lies outside

BR.
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It is the purpose of this paper to study the existence and multiplicity of solutions of the

nonlinear polyharmonic problem (1.1)λ with m ≥ 1 under the Landesman-Lazer conditions

(1.5) or (1.5′) and the sublinear condition

lim
|s|→∞

f(x, s)

s
= 0. (1.7)

Notice that (1.7) above is precisely the condition guaranteeing that bifurcation from infinity

occurs [17].

Remark 1.1. it is worth remarking that (1.7) is weaker that (1.6).

In fact. Let us consider

ψ(s) := s ln(1 + s) s ∈ [0,∞).

Obviously, we have for any p > 1,

lim
s→∞

s ln(1 + s)

sp
= lim

s→∞

ln(1 + s) + s
1+s

psp−1

= lim
s→∞

ln(1 + s)

psp−1
+ lim
s→∞

s
1+s

psp−1

= lim
s→∞

1
1+s

p(p− 1)sp−2
= 0.

Let q = 1/p. Let g∗ : [0,∞) → [0,∞) be the inverse function of ψ. Then g∗ is increasing in

[0,∞) and

lim
x→∞

g∗(x)

xq
=∞

for any q ∈ (0, 1).

Therefore, g∗ satisfies (1.7), but g∗ does not satisfy (1.6) for any q ∈ (0, 1). �

2 Preliminaries

2.1 Principal eigenvalue

The biharmonic eigenvalue problem with Dirichlet boundary conditions is the following:

∆2ϕ = λϕ in Ω,

ϕ =
∂ϕ

∂ν
= 0 on ∂Ω.

(2.1)

The famous conjecture for this problem was as follows; by now it has numerous counterexamples.

Conjecture 1 (Szegö, 1950) If Ω is a nice domain (convex), then the first eigenfunction for

(2.1) is of fixed sign.

Szegö conjecture proved to be wrong, see Duffin and others ([3, 4, 11, 2] and [18]). Coffman in

[2] proved that the first eigenfunction on a square changes sign. Sign changing first eigenfunctions

are also found in [16].
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For the domains

Aε = {(x, y) ∈ R2 : ε2 < x2 + y2 < 1} with 0 < ε < 1.

For these domains, Coffman-Duffin-Shaffer proved the following somehow surprising statement.

Lemma 2.1. ([5, Theorem 3.9.]) Let Ω = Aε for some ε ∈ (0, 1) and consider problem (2.1).

There exists ε0 > 0 such that the following holds.

1. If ε < ε0, then the first eigenvalue has multiplicity two. There exist two independent

eigenfunctions for this first eigenvalue with diametral nodal lines.

2. If ε = ε0, then the first eigenvalue has multiplicity three. There exists a positive eigen-

function for this eigenvalue and there are two independent eigenfunctions with diametral nodal

lines.

3. If ε > ε0, then the first eigenvalue has multiplicity one and the corresponding eigenfunction

is of fixed sign.

In the following, we consider the eigenvalue problem

(−∆)mu = λâ(x)u in Ω,

Dαu|∂Ω = 0 for |α| ≤ m− 1,
(2.2)

where â ∈ C(Ω̄, (0,∞)). The first eigenvalue of (2.2) is defined as

λ1 =


min

u∈Hm
0 (Ω)\{0}

||∆
m
2 u||2L2

||â
1
2u||2

L2

, for m even,

min
u∈Hm

0 (Ω)\{0}

||∇∆
m−1

2 u||2L2

||â
1
2u||2

L2

, for m odd,

(2.3)

where Hm
0 (Ω) is the closure of C∞c (Ω) with respect to the normal || · ||Wm,2 . We will show that

if Ω is good enough, then λ1 is simple and its corresponding eigenfunction is of one-sign.

Lemma 2.2. There exists ε0 > 0 such that if the following holds:

(i) Ω = B, or

(ii) Ω ⊂ R2 is a bounded domain of class C2m,α(Ω̄) which is ε-close in C2m,α sense to B for

any ε ∈ (0, ε0].

Then

(1) the first eigenvalue λ1 of (2.2) is simple;

(2) the corresponding eigenfunction ψ is of one sign;

(3) (−1)m∂mψ
∂νm > 0 x ∈ ∂Ω.

Proof. (1) can be deduced from [7].

(2) From [6] and [8], there exists ε0 > 0, such that if Ω of class C2m,α which is ε-close in

C2m,α sense to B for any ε ∈ (0, ε0], then the Green function G(x, y) of (−∆)m for Dirichlet

problem in Ω is positive, and subsequently,

(−∆)mu = f in Ω,

Dαu|∂Ω = 0 for |α| ≤ m− 1,
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is sign-preserving, that is,

f ≥ 0 =⇒ u ≥ 0.

Applying this and the standard Krein-Rutman type argument, we may get (1) and (2). (3) is

an immediate consequence of F. Gazzola, H.-Ch. Grunau, G. Sweers [8, Theorem 3.2], [6] and

[7]. �

Remark 2.3. If Ω = B, then Lemma 2.2 reduces to Gazzola, Grunau and Sweers [5, Theorem

3.7].

Remark 2.4. The similar result for Lemma 2.2 with N = 1 and m = 2 has been investigated

by Ma et al. [15].

2.2 A priori bounds

Let X = C(Ω̄) with its usual norm || · ||. We first shall establish some boundedness criteria

for solutions of (1.1)λ.

Let L be the closed Fredholm operator

Lu = (−∆)mu− λ1u u ∈ D(L), (2.4)

where

D(L) = {u ∈W 2m,p(Ω) ∩Wm,p
0 (Ω) : u satisfies boundary conditions in (1.1)λ}.

Then 0 is an isolated and simple eigenvalue of L and∫
Ω
z(x)ψ(x)dx = 0 ∀ z ∈ R(L),

where R(L) and N(L) are the range and kernel (null space) of L, respectively.

Let P : X → X be a continuous linear projection onto N(L). We observe that

LP : D(L) ∩N(P )→ R(L)

defined by

LP = L|D(L)∩N(P )

is an invertible linear operator with continuous inverse, L−1
P . Let Q : X → X is a linear

projection with N(Q) = R(L). Let

(F (u))(x) = f(x, u(x)) x ∈ Ω.

Let h ∈ X be such that for each y ∈ N(L), ||y|| = 1, each sequence {tn} with tn → ∞,

each sequence {yn} ⊂ N(L), ||yn|| = 1 with yn → y as n → ∞ and each bounded sequence

{zn} ⊂ N(P ) one has

〈h, y〉 > lim inf
n→∞

〈F (tnyn + tnρ(tn)zn), y〉 (2.5)
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or

〈h, y〉 < lim sup
n→∞

〈F (tnyn + tnρ(tn)zn), y〉 (2.6)

where ρ : [0,∞)→ [0,∞) is a decreasing function, such that

f∗(x, s)

s
≤ ρ(s) s > 0; lim

s→∞
ρ(s) = 0, (2.7)

f∗(x, s) = max{f(x, t) : 0 ≤ t ≤ s} s ∈ [0,∞). (2.8)

Lemma 2.5. Let ε0 be as in Lemma 2.2. Let Ω = B, or N = 2 and Ω is a bounded domain of

class C2m,α(Ω̄) which is ε-close in C2m,α sense to B for any ε ∈ (0, ε0]. Assume that (2.5) holds,

then there exist R0 > 0 and δ0 > 0 such that any solution u of (1.1)λ satisfies

||u|| < R0 (2.9)

as long as

0 ≤ λ ≤ δ0 =
1

2||L−1
P ||

. (2.10)

Proof. Let u be a solution of (1.1)λ and write

u = sψ + w, sψ ∈ N(L), w ∈ N(P ).

Then ∫
Ω

(
− λsψ + f(x, sψ + w)− h

)
ψdx = 0 (2.11)

and

Lw − λw + (I −Q)f(x, sψ + w) = (I −Q)h. (2.12)

Since L− λI : D(L) ∩N(P )→ R(Q) is invertible for |λ| ≤ δ0, we have, if ||sψ|| 6= 0

||w|| ≤ ||(L− λI)−1(I −Q)(f(·, aψ + w)− h)||

≤ 2||L−1
P || ||I −Q|| ||f(·, sψ + w)− h||

≤ 2||L−1
P || ||I −Q|| ||f

∗(·, ||sψ||+ ||w||)− h||

≤ 2||L−1
P || ||I −Q||

(
ρ(||sψ||+ ||w||) (||sψ||+ ||w||) + ||h||

)
≤ 2||L−1

P || ||I −Q|| (ρ(||sψ||) (||sψ||+ ||w||) + ||h||)

||w||
||sψ||

≤ 2||L−1
P || ||I −Q|| (ρ(||sψ||) (1 +

||w||
||sψ||

) +
||h||
||sψ||

). (2.13)

Obviously, this implies

lim
s→∞

||w||
||sψ||

= 0, (2.14)

and there exist two constants C1, C2 ∈ (0,∞), such that

||w|| ≤ C1ρ(||sψ||)||sψ|| as long as ||sψ|| > C2. (2.15)
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If we now assume that the conclusion of the lemma is false, we obtain a sequence {λn},
0 ≤ λn ≤ δ0, λn → 0+, and a sequence of corresponding solutions {un} of (1.1)λ such that

||un|| → ∞, un = snψ + wn.

It follows from the calculations leading to (2.15) that necessarily ||snψ|| ≥ C2 and we may hence

assume that

||wn|| ≤ C1ρ(||snψ||)||snψ||.

Letting snψ = tnyn, tn = ||snψ||, yn = snψ
||snψ|| , wn = ρ(tn)tnzn, we have from (2.15) that

||zn|| ≤ C3.

By passing to a subsequence, we may assume that yn → y ∈ N(L), ||y|| = 1. Hence from (2.11)

we obtain ∫
Ω

(−λntnyny)dx+

∫
Ω
F (tnyn + tnρ(tn)zn) ydx =

∫
Ω
hydx

and since ∫
Ω
ynydx =

∫
Ω
yydx+

∫
Ω

(yn − y)ydx > 0

for n large, we get ∫
Ω
hydx ≤

∫
Ω
F (tnyn + tnρ(tn)zn) ydx

and ∫
Ω
hydx ≤ lim inf

n→∞

∫
Ω
f∗(x, tnyn + tnρ(tn)zn)ydx.

contradicting (2.5). �

Using a similar argument we may establish the next lemma.

Lemma 2.6. Let ε0 be as in Lemma 2.2. Let Ω = B, or N = 2 and Ω is a bounded domain of

class C2m,α(Ω̄) which is ε-close in C2m,α sense to B for any ε ∈ (0, ε0]. Assume that (2.6) holds,

then there exist R0 > 0 and δ0 > 0 such that any solution u of (1.1)λ satisfies

||u||∞ < R0

as long as

−δ0 ≤ λ ≤ 0.

By the same method used in J. Mawhin and K. Schmitt [13], with obvious changes, we may

get the following results.

Lemma 2.7. Let ε0 be as in Lemma 2.2. Let Ω = B, or N = 2 and Ω is a bounded domain of

class C2m,α(Ω̄) which is ε-close in C2m,α sense to B for any ε ∈ (0, ε0]. Assume that (2.5) holds,

then there exists R1 ≥ R0 such that for 0 ≤ λ ≤ δ0 and R > R1, one has

deg(L− λI + F − h,B(R), 0) = deg(L− δ0I,B(R), 0) = ±1,
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where B(R) = {u ∈ X : ||u|| < R}, and “deg” denotes Leray-Schauder degree when λ 6= 0 and

coincidence degree when λ = 0 (see [9]). Therefore (1.1)λ has a solution in B(R) for 0 ≤ λ ≤ δ0.

Lemma 2.8. Let ε0 be as in Lemma 2.2. Let Ω = B, or N = 2 and Ω is a bounded domain of

class C2m,α(Ω̄) which is ε-close in C2m,α sense to B for any ε ∈ (0, ε0]. Assume that (2.6) holds,

then there exists R1 ≥ R0 such that for −δ0 ≤ λ ≤ 0 and R > R1, one has

deg(L− λI + F − h,B(R), 0) = deg(L+ δ0I,B(R), 0) = ±1.

Therefore (1.1)λ has a solution in B(R) for −δ0 ≤ λ ≤ 0.

Lemma 2.9. Let ε0 be as in Lemma 2.2. Let Ω = B, or N = 2 and Ω is a bounded domain of

class C2m,α(Ω̄) which is ε-close in C2m,α sense to B for any ε ∈ (0, ε0]. Assume that (2.5) holds,

then there exists δ1 > 0 such that for −δ1 < λ ≤ 0 , one has

deg(L− λI + F − h,B(R), 0) = deg(L− δ0I,B(R), 0) = ±1.

Therefore (1.1)λ has a solution in B(R) for −δ1 ≤ λ ≤ δ0.

Lemma 2.10. Let ε0 be as in Lemma 2.2. Let Ω = B, or N = 2 and Ω is a bounded domain of

class C2m,α(Ω̄) which is ε-close in C2m,α sense to B for any ε ∈ (0, ε0]. Assume that (2.6) holds,

then there exists δ1 > 0 such that for 0 ≤ λ < δ1, one has

deg(L− λI + F − h,B(R), 0) = deg(L− δ0I,B(R), 0) = ±1.

Therefore (1.1)λ has a solution in B(R) for −δ0 ≤ λ ≤ δ1.

Remark 2.11. Using “Whyburn’s lemma” (see [19]), one can in fact deduce that (1.1λ) has a

continuum C = {(λ, uλ)} of solutions with ||uλ|| < R1 and |λ| < δ1 for δ1 sufficiently small.

Remark 2.12. Since F is L-completely continuous and satisfies (2.7) and since λ = 0 is an

eigenvalue of odd multiplicity, it follows from bifurcation results of [17] that λ = 0 is a bifurcation

point from infinity for (1.1)λ, i.e., there exists a continuum C∞ ⊂ R×X of solutions of (1.1)λ,

bifurcating from infinity at λ = 0, i.e., there exists σ0 > 0 such that for all σ ∈ (0, σ0], there

exists a subcontinuum Cσ ⊂ C∞

Cσ ⊂ {(λ, u) ∈ C : |λ| < σ, ||u|| > 1

σ
} =: Uσ.

and Cσ connects (0,∞) to ∂Uσ.

3 The main results

Theorem 3.1. Let ε0 be as in Lemma 2.2. Let Ω = B, or N = 2 and Ω is a bounded domain

of class C2m,α(Ω̄) which is ε-close in C2m,α sense to B for any ε ∈ (0, ε0].

Assume that (2.5) and (1.8) hold. Then there exist λ− < 0 < λ+ such that (1.1)λ has
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(1) at least one solution if λ ∈ [0, λ+];

(2) at least two solutions if λ ∈ [λ−, 0).

Assume that (2.6) and (1.8) hold. Then there exist λ− < 0 < λ+ such that (1.1)λ has

(3) at least one solution if λ ∈ [λ−, 0];

(4) at least two solutions if λ ∈ (0, λ+].

Proof. It follows from lemmas 2.7 and 2.9 that there exist −δ1 < 0 < λ+ such that (1.1)λ has

at least one solution in B(R1) for λ ∈ [−δ1, λ+); on the other hand, Remark 2.12 shows that

there exists a continuum Cσ of solutions of (1.1)λ bifurcating from infinity at λ = 0. Hence the

subcontinua Cσ of Remark 2.12 (see Lemma 2.7) must satisfy

Cσ ⊂ {(λ, u) : ||u|| > 1

σ
, −σ < λ < 0},

and hence, if 1
σ , we obtain a second solution u, with ||u|| > R1. Hence letting λ− := max{−δ1,− 1

R1
},

we obtain (1) and (2). The remaining part is proved using lemmas 2.8 and 2.10 and Remark

2.12. �

Corollary 3.2. Let ε0 be as in Lemma 2.2. Let Ω = B, or N = 2 and Ω is a bounded domain

of class C2m,α(Ω̄) which is ε-close in C2m,α sense to B for any ε ∈ (0, ε0].

Assume that (1.5) and (1.8) hold. Then there exist λ− < 0 < λ+ such that (1.1)λ has

(1) at least one solution if λ ∈ [0, λ+];

(2) at least two solutions if λ ∈ [λ−, 0).

Assume that (1.5′) and (1.8) hold. Then there exist λ− < 0 < λ+ such that (1.1)λ has

(3) at least one solution if λ ∈ [λ−, 0];

(4) at least two solutions if λ ∈ (0, λ+].

Proof. Taking y = yn = ±ψ in (2.5) and (2.6), it is easy to check that (1.5) implies (2.5), and

(1.5′) implies (2.6). �
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