References

  1. Niezen MGH, Edelenbosch R. Van Bodegom L. Verhoef P. Health at the centre - Responsible data sharing in the digital society. The Hague: Rathenau Instituut. 2019
  2. Kool L, Timmer L, Royakkers L, Van Est R. Urgent Upgrade - Protect public values in our digitized society. The Hague: Rathenau Instituut. 2017
  3. Kelly C J, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC med. 2019;17(1). doi: 10.1186/s12916-019-1426-2
  4. Greenes RA, Bates DW, Kawamoto K, Middleton B, Osheroff J, Shahar Y. Clinical decision support models and frameworks: seeking to address research issues underlying implementation successes and failures. J. biomed. inform . 2018;78:134-143. doi: 10.1016/j.jbi.2017.12.005.
  5. Wyatt J, Spiegelhalter D. Field trials of medical decision-aids: potential problems and solutions. In: Clayton P, ed. Proc. 15th Annu. Symp. on Comput. Appl. Med. Care. 1991. Washington.
  6. Sikma T, Edelenbosch R, Verhoef P. The use of AI in healthcare: A focus on clinical decision support system. 2020 [RECIPES project: https://recipes-project.eu/]
  7. Mahadevaiah G, Prasad RV, Bermejo I, Jaffray D, Dekker A, Wee L. Artificial intelligence‐based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance. Med. Phys. 2020;47(5): e228-e235. Doi: https://doi.org/10.1002/mp.13562
  8. Montani S, Striani M. Artificial Intelligence in Clinical Decision Support: a Focused Literature Survey. Yearb. of Med. Inform.2019;28(1):120-127. Doi: 10.1055/s-0039-1677911.
  9. Sloane EB , Silva RJ. Artificial intelligence in medical devices and clinical decision support systems. In: Iadanza E, ed. Clinical Engineering Handbook . Academic Press. 2020.: 556-568 Doi: https://doi.org/10.1016/B978-0-12-813467-2.00084-5
  10. Steels L, Lopez de Mantaras R. The Barcelona Declaration for the Proper Development and Usage of Artificial Intelligence in Europe.AI Comm. 2018;31(6): 485 – 494. DOI 10.3233/AIC-180607
  11. Van Baalen S, Boon M. An epistemological shift: from evidence-based medicine to epistemological responsibility. J Eval Clin Pract , 2015;21(3):433-439. DOI: 10.1111/jep.12282.
  12. Savage N. Another set of eyes for cancer diagnostics. Nature2020;579:S14-S16. doi 41586-020-00847-2
  13. Dagliati A, Tibollo V, Sacchi L. et al. Big Data as a Driver for Clinical Decision Support Systems: A Learning Health Systems Perspective. Frontiers in Digital Humanities 2020;5 https://doi.org/10.3389/fdigh.2018.00008
  14. Van Baalen S, Boon M. Evidence-based medicine versus expertise – knowledge, skills and epistemic actions. In: Bluhm R, ed.Knowing and Acting in Medicine. Rowman & Littlefield; 2017:21-38. ISBN: 978-178348810.
  15. Boon M. (2020) How scientists are brought back into science - The error of empiricism. In: Bertolaso M, Sterpetti F, eds. A critical Reflection on Automated Science - Will Science Remain Human.Springer Series Human Perspectives in Health Sciences and Technologie. Dordrecht: Springer. 2020:43-66. DOI 978-3-030-25001-0_4
  16. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 2019;25:44-56. doi: https://doi.org/10.1038/s41591-018-0300-7
  17. Kahneman D. Thinking fast and slow. New York: Farrar, Straus and Giroux. 2011
  18. Ankeny R A. Using cases to establish novel diagnoses: Creating generic facts by making particular facts travel together. In: Howletts P, Morgan MS, eds. How Well Do Facts Travel? The Dissemination of Reliable Knowledge. New York: Cambridge University Press. 2011:252-272.
  19. Solomon M. Epistemological reflections on the art of medicine and narrative medicine. Perspectives in Biology and Medicine,2008;51(3):406-417.
  20. Russo R, Williamson J. Interpreting Causality in the Health Sciences.Int. Stud. Philos. Sci. 2007;21. pp. 157-170, https://doi.org/10.1080/02698590701498084
  21. Parkkinen V-P, Wallmann C, Wilde M, et al. Evaluating Evidence of Mechanisms in Medicine: Principles and Procedure. 2018; SpringerOpenhttps://doi.org/10.1007/978-3-319-94610-8
  22. Khushf G. ‘The Aesthetics of Clinical Judgment: Exploring the Link between Diagnostic Elegance and Effective Resource Utilization’,Med Health Care Philos. 1999; 2(2):141-59 DOI:10.1023/a:1009941101276.
  23. Van Baalen S, Carusi A, Sabroe I, Kiely DG. A social-technological epistemology of clinical decision-making as mediated by imaging.J Eval Clin Pract , 2016;23(5):949-958. DOI: 10.1111/jep.12637.
  24. Code L. (1984), ‘Toward a ‘Responsibilist’ Epistemology’,Philos. Phenomenol. Res. 1984;45(1):29-50. DOI: 10.2307/2107325.
  25. Leonelli S, Tempini N, eds. Data Journeys in the Sciences . Berlin: Springer. 2020
  26. McAllister, J.W. (2011). What do Patterns in Empirical Data Tell Us About the Structure of the World? Synthese 182 (1): 73–87. https://doi.org/10.1007/s11229-009-9613-x.
  27. Chin-Yee B, Upshur R. Three problem with big data and artificial intelligence in medicine. Perspect. Biol. and Med. 2019;62(2): 237-256 DOI:https://doi.org/10.1353/pbm.2019.0012
  28. Sullivan E. Understanding from Machine Learning Models. Brit. J. Philos. Sci. 2020;axz035,https://doi.org/10.1093/bjps/axz035
  29. Esteva A, Kuprel B, Nova R, Ko J, Swetter S, Blau H, and Thrun S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature. 2017;542:115–8.
  30. Dellermann D, Ebel P, Söllner M, Leimeister JM. Hybrid Intelligence.Bus. Inform. Syst. Eng+ 2019;61:637-643. Doi:https://doi.org/10.1007/s12599-019-00595-2
  31. Adamson AS, Smith A. Machine Learning and Health Care Disparities in Dermatology. JAMA Dermatol. 2018;154(11):1247-1248 DOI: 10.1001/jamadermatol.2018.2348