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Using an immersed boundary-lattice Boltzmann method, we in-
vestigated the response of dense granular suspensions to time-
varying shear rates and flow reversals. The apparent viscosity
and the evolution of particle clusters were analysed. The solids
fractions and particle Reynolds numbers varied over the ranges
5% ≤ �v ≤ 47% and 0.11 ≤ Rep ≤ 0.32. The simulations
included sub-grid scale corrections for unresolved lubrication
forces. The contribution of the tangential lubrication corrections
to the shear stress is dominant when �v surpasses 30%. For
�v > 35%, increasing shear-thickening is seen with increasing
�v. Following a shear reversal, the number of clusters temporarily
increases and then decreases to a stable value over the same time
scale as the development of the wall shear stress (and apparent
viscosity). Simulations with several step changes in the shear rate
show the effects of the previous shear history on the viscosity of
the suspension.
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1 | INTRODUCTION

Suspensions are complex fluids where the nature of the suspended particles governs their char-
acteristics. In many areas of industry (for example, waste water treatment and slurry transport),
the flow of suspensions is widely encountered inside pipelines, vessels, and pumps. The mu-
tual interactions of particles as well as particle-fluid interactions complicate the dynamics of the
flow of suspensions. A clear understanding of the rheological properties of these suspensions
is necessary for the design of operations. Over the last several decades, understanding of the
rheology of dense suspensions has progressed through both experimental and computational
studies. Brady and Bossis (1985) used Stokesian dynamics to investigate the microstructure
and the macroscopic properties (apparent viscosity: the ratio of the effective viscosity over
the viscosity of the suspending fluid) of concentrated suspensions. Jogun and Zukoski (1996)
conducted experiments with plate-like particles suspended inside a basic solution to study its
rheological behaviour (the yielding type of response). A review article by Stickel and Powell
(2005) also discusses the rheology of dense suspensions with more emphasis on microstructure
and total fluid stresses. The non-Newtonian behaviour of dense suspensions, such as normal-
stress differences and shear-induced migration, has been discussed by Guazzelli (2017) and
co-workers (Simon et al., 2015). By coupling the lattice Boltzmann method (LBM) with a
hybrid immersed boundary method (IBM) and a bounce-back scheme, Lorenz et al. (2018)
demonstrated the continuous and discontinuous shear thickening of concentrated suspensions.
Both Thorimbert et al. (2018) and Srinivasan et al. (2020) performed numerical simulations us-
ing LBM. The former discussed the effects of particle fraction and density ratio on the viscosity
of the suspension while the latter discussed the role of particle rotation and cluster formation
on the shear thickening of suspensions.

Suspension properties arewell understood in dilute regimes (Bergenholtz et al., 2002; Kulka-
rni and Morris, 2008). However, as the solids concentration increases, the rheological charac-
teristics of suspensions become more complex. While many researchers have reported the
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steady-state rheology of suspensions (Fall et al., 2010; Dbouk et al., 2013; Brown and Jaeger,
2014), few have studied their transient behaviour. The time-dependent response of the apparent
viscosity of a dense suspension may arise due to a change in the magnitude of the shear rate or
a reversal of the direction of the shear flow. The first experimental observations of the response
of shear stress to a reversal of the flow direction were reported by Gadala-Maria and Acrivos
(1980). Experiments were performed with spherical particles in a Couette device, and they
showed that for solids fractions �v > 30%, memory effects from the previous shearing are evi-
dent when the shear was stopped and then resumed in either the same or the opposite direction.
Both Kolli et al. (2002) and Blanc et al. (2011) carried out experiments to analyse the transient
response of a suspension after reversing the direction of shear flow. In recent years, interpre-
tation of the transient rheology of suspensions through numerical simulation is gaining more
attention. For example, simulations of suspensions at 45% solids submitted to shear reversal
have been reported by Peters et al. (2016). More recently, Srinivasan et al. (2020) examined the
history-dependent rheology of suspensions at �v = 38% when subjected to a sudden increase
and decrease in the shear rate.

In the present work, we analyse the time-dependent behaviour of dense suspensions (up to
47% solids by volume) via Direct Numerical Simulations (DNS). We focus on the effects of
particle volume fraction and shear rate (particle Reynolds number), and in particular, we will
discuss simulations of suspensions subjected to:

• a reversal of the direction of shear flow,
• increases and decreases in the shear speed in one (or more) step(s), and
• a sudden stop and then a restart of the fluid flow.

To do this, we implement an immersed boundary-lattice Boltzmann method (IB-LBM) as pro-
posed by Feng and Michaelides (2004) in a custom C++ code (Srinivasan et al., 2020). We
handle the interparticle interactions by explicitly adding lubrication force and torque correc-
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tions (O’Neill and Majumdar, 1970; Nguyen and Ladd, 2002; Simeonov and Calantoni, 2012).
These additional forces act over sub-grid scale distances and account for unresolved details
of the flow between adjacent particles. The inclusion of these lubrication forces differentiates
this study from our previous work (Srinivasan et al., 2020). We assess the contribution of
these interparticle forces on the observed viscosity, comparing the simulation results with the
experimental values of Krieger and Dougherty (1959) and Dbouk et al. (2013) as well as the
simulations of Thorimbert et al. (2018) and Srinivasan et al. (2020).

We organise the paper in the following manner: In Sec. 2, we briefly summarise our prob-
lem statement. In Sec. 3, we briefly describe the immersed boundary-lattice Boltzmannmethod.
Next, we discuss the implementation of lubrication corrections and show how the relative ap-
parent viscosity of the suspension is computed from the stress on the moving walls. Finally,
we show the effect of particle configurations on the viscosity of the suspension. In Sec. 4, we
first present the steady-state rheology of the suspensions. Then we consider the evolution of
the viscosity of dense suspensions that arises from the contribution of the resolved and unre-
solved (lubrication correction) stresses. Finally, we discuss the simulations mentioned in the
bullet points above to investigate the nature of the transients in the evolution of suspensions
in response to changes in the shear rate and its direction. We summarise our key findings in
Sec. 5.
2 | PROBLEM STATEMENT

The transport of slurries through industrial pipelines motivated us to carry out the current nu-
merical study. The dynamics of such transport is complex due to transient fluctuations in the
transport rate and spatial variations along the line (in e.g., bends and valves). In this applica-
tion, the solids concentration �v typically amounts to some 35%, with the flow being laminar.
The carrier liquid phase is Newtonian with a kinematic viscosity � and density �f . The solid
phase is assumed to consist of rigid spheres. Although our current numerical study is intended
to mimic a representative volume of a suspension within a macroscopic flow, the simulation
domain dimensions and boundary conditions are very similar to the parameters of a rheometer.
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In a typical rheometer, a suspension of particles with radius R equal to 150 microns is con-
tained within a 2mm gap, such that the confinement ratio � = 2R∕H (whereH is the height of
the simulation domain across the wall-normal z direction) amounts to 0.15. In our suspension
simulations, the confinement ratio is 0.17, with R = 4 lu and H = 50 lu, where lu denotes
lattice units (multiples of the simulation grid size).

FIGURE 1 Simulation geometry with particles suspended in a Newtonian liquid subjected to simple shear flow. The left
panel shows the positions of particles inside the simulation box. The right shows a 2-D visualisation of the spheres that intersect
the mid-plane of the box. In both snapshots, the background colours indicate the x component of the liquid velocity scaled by the
wall speed Uw.

A schematic of the simulation domain with particles suspended between two parallel plates
is presented in Fig. 1. These plates move in opposite directions with a speed Uw, and we
define U ∗ = Ux∕Uw (where Ux is the x component of the liquid velocity). The particles are
placed randomly between the parallel walls. The flow is induced only by the shearing motion
of the walls, and we do not take into account the effects of gravity. The imposed shear rate
is ̇ = 2Uw∕H . The simulation box is periodic in the shear (x) and vorticity (y) directions.
We determine the relative apparent viscosity of the suspension under steady-state and transient
conditions by varying the wall speed (shear rate) and the number of particles (solids volume
fraction).
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3 | SIMULATION METHODS

3.1 | The immersed boundary-lattice Boltzmann method

We solve the flow of the interstitial Newtonian liquid with a common lattice Boltzmann tech-
nique (Chen and Doolen, 1998). We used a D3Q19 model (19 discrete velocities in 3-D), the
usual BGK collision operator, and the Shan and Chen (1993) forcing scheme for incorporating
a body force (which is used by the immersed boundary method to account for the presence of
solid particles). The wall speed in the simulation was kept well below the speed of sound to
simulate an incompressible flow. An explicit leapfrog integration scheme was used to solve
the translational and angular motion of the particles. For more details, the reader is referred
to our earlier paper (Srinivasan et al., 2020). We have previously tested the accuracy of the
implemented IB-LBM code by evaluating the translation of a single rigid sphere at a constant
speed in Newtonian liquid (Srinivasan et al., 2020). In a simulation with a sphere of radius
R = 4 lu, the effective size of the sphere (its hydrodynamic radius Rℎyd) increased by about
5% (4.2 lu) in comparison with the input radius R. Therefore, in the sections that follow, we
use this calibrated radius to compute the solids volume fraction as well as the particle Reynolds
number Rep = ̇R2ℎyd∕�.
3.2 | Lubrication corrections

The main difference between the suspension simulations described in this paper and our previ-
ous study (Srinivasan et al., 2020) is that we now consider higher solids volume fractions and
include corrections for unresolved lubrication forces and torques between particles. When the
distance between the surfaces of two spheres (or between a sphere and a wall) approaches the
resolution of the simulation grid, the simulation can no longer resolve the flow of liquid in the
gap. Therefore, explicit lubrication force and torque corrections (both normal and tangential)
are included to account for the unresolved flow. The expression for the leading order normal
lubrication force correction on the particle p due to relative translation of the spheres p and q
along the line connecting the centres of the spheres is given by (Ten Cate et al., 2004; Simeonov
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and Calantoni, 2012)

Fn,lubp = 6��Rℎyd
�2

(1 + �)2

(

1
ℎ
− 1
ℎno

)

(Upq ⋅ npq)npq. (1)

The superscript n denotes normal. For a monodisperse suspension, the ratio of the radii of
spheres p and q is � = Rqℎyd∕R

p
ℎyd = 1, while ℎ = |xq − xp| − 2Rℎyd is the gap between

particles, where xp and xq are the centres of spheres p and q respectively. Upq = uq − up is the
relative translational speed, and npq is the unit vector that points from the centre of sphere p to
the centre of sphere q. ℎno is the cutoff gap below which the normal lubrication correction is
applied. The lubrication forces do not saturate at small gap sizes, and additional repulsive force
is not included in the simulations to prevent overlap - for the cases we consider, the divergence
of the lubrication (correction) force with decreasing gap size is sufficient to prevent overlap.
The value ℎno∕Rℎyd = 0.72 is chosen by performing a simulation of the head-on collision of
two spheres with R = 4 lu, and it ensures that the force on the spheres is correct in the limit
of small gaps. Several similar benchmark simulations have been conducted to determine the
cutoffs for the tangential lubrication force and torque corrections. The details of the equations
used for implementing the tangential lubrication correction as well as their corresponding cutoff
values are given in Appendix A.

The integration of particle motion uses smaller timesteps than the LBM flow solver. We
ensure stability of the explicit scheme for integration of the particles’ motion by using ntp equal
sub-timesteps for every fluid timestep. For �v ≤ 40%, a constant number of sub-timesteps was
used throughout each simulation, and the required value of ntp that is needed to ensure stability
increases with increasing �v and Rep. To assess the effect of the number of sub-timestpes, we
considered simulations at�v = 17% and 25%withRep = 0.32. For�v = 17%, the difference in
the apparent viscosity was 0.02% when increasing the number of sub-timesteps from 50 to 100.
The difference was 0.14% at �v = 25% when using 70 and 150 sub-timesteps. The viscosities
are therefore not sensitive to the number of sub-timesteps. For �v = 47%, we used an adaptive
time-stepping scheme. Whenever overlap between two particles or between a particle and wall
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is detected, the number of sub-timesteps is doubled until overlap does not occur. If overlap is
not detected, the number of sub-timesteps is halved. The typical number of sub-timesteps in
these simulations was 512.

The computation of interparticle interaction forces is accelerated by the use of a binning
algorithm instead of checking all pairs of particles to find those that are sufficiently close to
applying lubrication corrections. The simulation domain is divided into a grid, and all parti-
cles are assigned to a cell within the grid. The algorithm then compares only the positions
of particles that are in adjacent cells. With this algorithm, the suspension simulations were
approximately seven times faster than with the less-efficient alternative.
3.3 | Relative apparent viscosity

The relative apparent viscosity �r of the suspension is determined as the sum of the resolved
fluid shear stress and the lubrication correction for particle-wall interactions. First, we evaluate
the local fluid shear stress on every lattice node adjacent to the sheared walls (top and bottom)
as

�LBw = �
Ux − Uw
Δy

(2)

where Δy = 0.5 lu is the distance between the wall and the neighbouring fluid node. The
superscript LB denotes the fluid contribution to the shear stress on either wall w. These local
shear stresses are averaged across the x − y cross-sectional plane to obtain the total fluid shear
stress. In the simulations with tangential lubrication force and torque corrections, the additional
stress � lubw =

1
LW

∑

F lub
w

�̇
(with F lub

w being the force on particles that arise from the contact with
solid walls) due to translation and rotation of any particle near either wall is added to Eq. 2.
The overall stress of the suspension on the walls, and therefore, the relative apparent viscosity
is obtained as

�r =
⟨�LBw ⟩ + � lubw

�̇
. (3)
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In this equation, ⟨ ⟩ denotes the average over the x − y cross-sectional area. The apparent
viscosity may be computed from the stresses on either of the two walls. In the discussion
that follows, the average of the apparent viscosities calculated from the stresses on the top and
bottom walls is used: �̄r = (�tr + �br )∕2.
4 | THREE-DIMENSIONAL SIMULATIONS OF SUSPENSIONS

Three-dimensional simulations of dense monodisperse suspensions have been performed in
simple shear flow. In these simulations, the solids fraction �v was varied between 5% and 47%
and the particle Reynolds number between 0.11 and 0.32. The suspensions are neutrally buoy-
ant (ratio of the particle and fluid densities is � = �p∕�f = 1). The liquid kinematic viscosity
is � = 1∕30 lu2/ts. Explicit lubrication corrections (normal and tangential), as previously de-
scribed, were included to account for sub-grid scale details of the flow between solid surfaces.
Simulations of dense suspensions (that is, �v ≥ 25%) ran on ICHEC (Irish Centre for High End
Computing) machines with 2 × 20 core 2.4 GHz Intel Xeon Gold 6148 (Skylake) processors
with 192 GB RAM. Local computing resources with 4 core Intel i7-6700 processor of 64 GB
RAM was used to simulated dilute suspensions (�v < 25%).
4.1 | Particle initialisation

Several different approaches were taken to specify the initial positions of the spheres over the
range of solids volume fractions that we consider in this study. For suspensions up to 38%
solids, random initialisation of the positions was implemented, and we discuss the rheology
of suspensions with two such random initial states. By random packing of non-overlapping
spheres (inside the simulation domain as well as across the periodic boundaries), we were able
to achieve up to a maximum of 35% solids (that is, Np = 280, where Np is the number of
particles). To reach 38% solids by volume (Np = 310), we used the same random initialisation
except for that overlap across the periodic boundaries was accepted. Then, we applied a spring-
like repulsive force (Srinivasan et al., 2020) to separate any contact.

At �v = 40%, we used a regular cubic packing and considered two different configurations
as presented in Fig. 2. In the first configuration (set a), we stacked the spheres with a gap of
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FIGURE 2 Differences in the evolution of the relative apparent viscosity of a suspension as a function of dimensionless
time for two different initial particle configurations (set a and set b). For this example, �v = 40% and Rep = 0.32, and only
normal lubrication corrections were included. The insets show the two initial conditions.

0.4 lu which left additional gaps near x = L, y = W , and z = H (7 lu, 1.5 lu, and 6.67 lu,
respectively). In the second case (set b), we retained the large gap near the periodic boundaries
(x = L and y = W ) and stretched the gaps along the wall-normal z direction while maintaining
a gap of 0.5 lu between the particles and the top and bottom plates. The inset in Fig. 2 shows
cross-sections through the two initial particle configurations. Both suspensions started from
rest and were sheared until steady-state (that is, until we observed steady fluctuations in the
average viscosity). While both suspensions attain approximately the same viscosity in the long
run (the difference is ≈ 4%), the evolution of the viscosity towards this equilibrium depends on
the initial particle configuration. Finally, to achieve�v = 47%, we specified the initial positions
of 432 spheres by using a cubic packing with small random displacements.

For simulations up to 38% solids, the simulation domain was 100 × 50 × 50 lu. To achieve
more dense suspensions, we slightly altered the domain size by increasing the dimension along
the streamwise (x), spanwise (y), and wall-normal (z) directions to 100 lu, 52 lu, and 50 lu
for 40% solids, and 102 lu, 52 lu, and 54 lu for 47% solids, respectively. A grid independence
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study has been previously reported (Srinivasan et al., 2020), and our results are not sensitive
to increases in domain size along the periodic boundaries as well as across the channel height.
Therefore, a domain size of 100×50×50 lu with particles of R = 4 lu is sufficient to represent
larger domains.
4.2 | Steady-state rheology

In Fig. 3, we present the average relative apparent viscosity of suspensions computed using only
normal lubrication corrections and the combination of both normal and tangential lubrication
corrections. In all these simulations, the suspension was sheared up to a strain of ̇ t = 200.
The presented results are time averaged (over 100 ≤ ̇ t ≤ 200) and compared with Krieger
and Dougherty (1959) with the parameters B = 2.5 and �c = 0.60 , Dbouk et al. (2013), and
simulations of Thorimbert et al. (2018) at Rep = 0.1 and � = 1.3 and Srinivasan et al. (2020)
at Rep = 0.11, 0.33, and 0.55 and � = 1.

Fig. 3 shows how the relative apparent viscosity of the suspension increases with an increase
in solids concentration. For dilute suspensions (that is, �v = 6% and 12%), our viscosities agree
with Krieger and Dougherty (1959). Up to �v = 25%, the viscosities computed by the spring
force simulations of Thorimbert et al. (2018) and Srinivasan et al. (2020) are in good agreement
with the present results. It is also evident that in this dilute regime the particle Reynolds number
does not affect the viscosity of the suspension. As the solids fraction increases (�v ≥ 30%),
we see that the computed viscosities diverge from the data reported by Thorimbert et al. (2018)
and Krieger and Dougherty (1959) and approach the values of Dbouk et al. (2013). In the
simulations with only the normal lubrication correction (filled green symbols), we can see
that the effect of Rep becomes noticeable for �v ≥ 30% and the suspension exhibits shear-
thickening (when �v exceeds 35%). Interestingly, from the simulations with both normal and
tangential lubrication corrections (filled orange symbols), we observe a transition from weak
shear-thinning (at 30% and 35% solids) to shear-thickening (�v ≥ 40%). A similar transition
in the rheological behaviour was also observed in the transient simulations – details are given
in the upcoming section. Over the range of solids concentrations presented (that is from 2% to
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47% solids), we can see that the viscosities computed using simulations with both normal and
tangential lubrication corrections are in good agreement with the experiments of Dbouk et al.
(2013).
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FIGURE 3 Comparison of the computed average apparent viscosities �̄r (filled symbols) for varying solids volume fraction
and Rep with Krieger and Dougherty (1959) (dashed line), Dbouk et al. (2013) (pluses), Thorimbert et al. (2018) (open circles),
and Srinivasan et al. (2020) (filled symbols in different shades of blue). While the left and right error bars show the solids
volume fraction computed using Rinput = 4 lu and Rspring = 4.5 lu, the symbol is at �v calculated with Rℎyd = 4.2 lu.

At 47% solids, we were able to simulate suspensions up to Rep = 0.2 with the current
numerical scheme before encountering instability in the integration of particle motion. Hori-
zontal error bars are presented for the simulations from our previous study (Srinivasan et al.,
2020) at Rep = 0.55 to show the range of �v for different estimates of the particle radius. In
these previous simulations, a repulsive force is applied when ℎ < 1 lu to separate particles. In
Fig. 3, the symbol is drawn at the volume fraction that corresponds to the hydrodynamic radius
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Rℎyd = 4.2 lu. The error bars to the left and right correspond to �v calculated based on the
input radius Rinput = 4 lu (which is the radius of the sphere on which the tracking points of the
immersed boundary method are located) and the spring radius Rspring = 4.5 lu (which follows
from the separation distance imposed by the repulsive spring force). Interestingly, we see that
the results match the Krieger and Dougherty (1959) correlation if �v was computed based on
the spring radius. In the current simulations, this effect is no longer present.
4.3 | Transient rheology

In the steady-state rheology calculations, the shear rate was constant throughout the simulation.
In many scenarios, the direction and rate of shear may vary in time and space. Therefore, it
is also interesting to learn about how the structure and rheology of suspensions responds to
changes in the shear rate.

Before going into the details of simulations with time-varying shear, we first consider in
Fig. 4 the transient evolution of the apparent viscosity of a suspension under constant shear.
This figure shows the contributions of the resolved (LBM) and unresolved (explicit lubrication
correction) stresses. The solids volume fractions were�v = 6%, 30%, 38% and 47%, andRep =
0.11. At �v = 47%, the resolved fluid stress (see Eq. 2) first increases up to ̇ t ≈ 5 and
then decreases before it start to stabilise after ̇ t ≈ 10. Contrarily, the lubrication stresses
are negligible until ̇ t ≈ 5 due to the initial gap between the particles and the top and bottom
walls. As the suspension is sheared, some particles approach to within the cutoff distance from
the walls, and the lubrication stress increases rapidly up to ̇ t ≈ 20 and then stabilise. The
smaller figures along the top of Fig. 4 present the evolution of the stresses for several lower
volume fractions. For dilute suspensions, lubrication stresses are negligible compared with
the resolved fluid stresses (that is, Eq. 2). As the suspension becomes denser, the number of
particles adjacent to a wall increases (see the 2-D cross-sections along the bottom of Fig. 4),
and therefore, the lubrication corrections overtake the resolved fluid stress. Lubrication and
resolved stresses are comparable in magnitude when the solids volume fraction is 30%.
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FIGURE 4 Contributions of resolved (dashed blue lines, ‘only LBM’) and unresolved shear stresses (solid magenta lines,
‘only lub. correction’) to the relative apparent viscosity (solid red lines, ‘LBM + lub. correction’) of a suspension as a function of
dimensionless time (̇ t) at �v = 47% and Rep = 0.11. Figures along the top show the trends for �v = 6%, 30%, and 38%.
Images along the bottom show cross-sections through the simulation domains �v = 6% (left) and 47% (right) at ̇ t = 50.
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4.3.1 | Effects of shear reversal

We now discuss the transient behaviour of suspensions subjected to changes in the direction of
the shear while keeping the rate constant. For several values of �v varying between 10 and 40%
and particle Reynolds numbersRep = 0.11 and 0.32, we present in Fig. 5 the numerical results
of shear reversal simulations. The apparent suspension viscosity is plotted as a function of the
accumulated strain after the time of the reversal (tr). In all these simulations, the suspensionwas
first sheared up to ̇ tr = 30 (except at �v = 40%, where ̇ tr = 40 to ensure steady fluctuations)
in one direction. After reversing the shear flow (t ≥ tr), all simulations ran to the same strain
(̇(t − tr) = 30). Consistent with our observation from the constant shear simulations (Fig. 3),
even after flow reversal, we can see that the rheology of the suspension changes from weak
shear-thinning (at 30% and 33% solids) to weak shear-thickening (at �v ≥ 40%).

We relate these transitions in the rheological behaviour of suspensions to the rotation rates of
particles (Srinivasan et al., 2020). In dilute suspensions, the particles rotate at half the imposed
shear rate (that is, !p = ̇∕2); however, as the solids concentration increases, clustering of
particles increases. As a result, several groups of particles revolve together at a slower rate.
Overall, the rotation of clusters has a significant effect on the transport of momentum and
therefore, the relative viscosity (Srinivasan et al., 2020).

At t = tr, the shear stress on the walls (and thus the computed apparent viscosity of the
suspension) increases suddenly from its previous value and then decreases. For low solids
volume fractions (10% and 17%), the viscosity continues to decrease until reaching the previous
steady value. With increasing solids concentration (�v ≥ 30%), the viscosity first decreases
below its previous steady value and then increases. The magnitude of the temporary decrease
in the viscosity increases with increasing solids fraction. The insets in the figures on the right
of Fig. 5 present a comparison of the simulated viscosities (Rep = 0.11) with the experimental
values of Blanc et al. (2011) (Rep ∼ 10−9 − 10−7 ≪ 1). At 30% solids, the minimum viscosity
after shear reversal and the steady value are consistent with Blanc et al. (2011). At the higher
volume fraction (40% solids), the minimum simulation viscosity deviates from Blanc et al.
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FIGURE 5 Average relative apparent viscosity �̄r as a function of accumulated strain after reversal in the shear direction for
Rep = 0.11 (purple lines) and 0.32 (green lines). The solids concentration varies from 10% to 40%. Insets in the figures on the
right show a comparison of the numerical results (solid lines) obtained by IB-LBM for �v = 30% and 40%, and Rep = 0.11 with
the experimental results (symbols) of Blanc et al. (2011) under Stokes condition (Rep ∼ 10−9 − 10−7). Computations for an
additional random initial condition (dashed lines) are shown for �v = 30 and 40%.
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(2011) by ≈ 4%. From a steady value of about 10 prior to the flow reversal, the viscosity in this
simulation drops to a minimum of≈ 7. Though the steady structure of the particle arrangement
is destroyed temporarily due to reversal of the flow direction, the structure eventually rebuilds
and the relative viscosity returns to 10 (average over 10 ≤ ̇(t − tr) ≤ 30). Simulations with
a different random initial particle configuration (set 2) for 30 and 40% solids at Rep = 0.11

and 0.32 show that the details of the fluctuations are different but the general trends remain
the same. For set 2, �̄r is higher than for set 1 by ≈ 2% for both Reynolds numbers and solids
volume fractions.
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FIGURE 6 Wall shear stress (expressed as the implied average relative apparent viscosity �̄r) after shear reversal as a
function of time scaled by the viscous time scaleH2∕�. The solids volume fractions vary from 0% to 40% in the order of
increasing viscosity, and Rep = 0.11 and 0.32. The initial particle positions correspond to set 1 of Fig. 5. The dashed magenta
line shows the analytical solution for the stress in the absence of suspended particles (�v = 0%).

With an increase in the solids concentration, we observe a delay in the development of the
suspension viscosity that decreases with increasing �v. We analyse the reason for this delay by
considering the development of the viscosity of the suspension over two time scales. The first of
these scales is the viscous time scale based on the domain height, and the second is an advection
time scale based on the mean free path between particles. Fig. 6 presents a comparison of the



18 SRINIVASAN ET AL.

average apparent viscosity as a function of (t−tr)�∕H2 for�v between 10% and 40% andRep =
0.11 and 0.32. We can see that the minimum viscosities coincide for bothRep, which indicates
that the dynamics of the first stage (the attainment of the minimum viscosity) are determined
by the viscous time scale. For 10% and 17% solids, the initial decreases in the viscosity of the
suspension have similar slopes until becoming steady for (t − tr)�∕H2 ≥ 0.1. With increasing
solids, the slope of �̄r increases, and the time to reach the minimum viscosity decreases (relative
to the viscous time scale) as the higher amount of solids increases the apparent viscosity (and
accelerates momentum transport). In Fig. 6, we also present the analytical solution (Bird et al.,
2007) for the developing shear stress in the absence of particles (dashed magenta line). The
slope from the LB simulation with �v = 10% matches the analytical solution well during the
initial development of the wall shear stress. Under the steady-state condition, the analytical
relative apparent viscosity must be exactly equal to 1. The deviation of �̄r in the simulation for
(t − tr)�∕H2 > 0.1 reflects the higher viscosity of a suspension with 10% solids.

Re-structuring of the suspension occurs over an advective timescale. Taking ̇Rℎyd as the
velocity scale and the mean free path l = 3

√

V ∕Np = Rℎyd 3
√

4�∕(3�v) (where V is the volume
of the simulation domain) as the length scale, we form the advective time scale l∕(̇Rℎyd).
Fig. 7 shows the development of �̄r as a function of time scaled by this advective time scale
starting from rest with a random particle configuration (left panel) and after a reversal of the
shear direction (right panel). For this analysis, we consider solids volume fractions up to 47%
andRep = 0.11. For the development from rest in a random configuration, the differences in the
initial trends at higher concentrations (�v = 40 and 47%) are due to the use of a cubic packing.
The right panel of Fig. 7 shows that the apparent viscosity evolves differently after a reversal.
In all cases (both from rest and after reversal), a steady viscosity is achieved after ≈ 3l∕(̇Rℎyd)
for concentrated suspensions (�v ≥ 30%). As the solids concentration increases, the mean free
path decreases, and the suspension requires less time to attain a stable configuration. As shown
on the right of Fig. 7, the non-dimensional time to reach steady fluctuations is the same at a
higher Reynolds number (Rep = 0.2) for �v = 47%.
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FIGURE 7 Development of the average relative apparent viscosity of suspensions starting from rest with random particle
positions (left) and after reversal of the shear direction (right). Time is scaled by the advective time scale l∕(̇Rℎyd ), with the
mean free path l defined in the text. For all solids concentrations (10% ≤ �v ≤ 47%) the particle Reynolds number is 0.11.
Additional data for �v = 47% with Rep = 0.2 is also shown on the right (dashed black line).

Analysis of the evolution of the number of clusters in the simulations of shear reversal shows
that the average cluster size increases with increasing solids concentration. Presented in Fig. 8
is a comparison of the evolution of the number of clusters as a function of time for several
solids concentrations. A cluster is defined as a collection of two or more particles in which
the gap between each particle and at least one other particle in the cluster is smaller than a
cutoff distance ℎc . In dilute suspensions (for instance, �v = 10%) there is a limited number
of particles, and therefore the likelihood of clusters forming is low. In dense suspensions (for
example 47% solids), the particles are closely packed and have a greater tendency to form
several small clusters or one cluster with several particles. To demonstrate changes in the
evolution of particle clusters, ℎc was chosen to obtain approximately 20 clusters at steady-state
for each solids concentration. In concentrated suspensions (�v > 30%), a temporary rise in the
number of clusters is seen after a reversal of the shear direction. It is interesting to see that the
peaks are similar with a maximum of approximately 50 clusters for all such dense suspensions.
The bottom right corner of Fig. 8 shows the dependence of the average cluster number after flow
reversal on the choice of the threshold for several concentrations. The average cluster number
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is computed as N̄ c
p = NpNs∕N t

c , whereN t
c is the total number of clusters (including all single

particles) counted overNs equally-spaced samples of the simulation state. With an increase of
�v, it is evident that the average cluster number increases. While for 10% solids, the average
cluster number is approximately 1.2 at ℎc∕Rℎyd = 0.119, for the same cluster threshold N̄ c

p at
47% solids is 244.5. For dense suspensions, small changes in the cluster threshold lead to large
differences in the number of clusters.
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FIGURE 8 Evolution of the number of clustersNc as a function of non-dimensional time ̇(t − tr) after a reversal of the
shear direction for several solids fractions and cluster cutoffs at Rep = 0.11. In all simulations, the cluster threshold ℎc∕Rℎyd
was chosen to yield ≈ 20 clusters at steady state. At ̇(t − tr) = 0, sudden peaks for �v ≥ 30% indicate the switch in flow
direction. The dependence of the average cluster size N̄c

p on the cutoff distance ℎc∕Rℎyd is shown in the bottom right corner.
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4.3.2 | Effects of step-changes in the shear rate

We now study the transient behaviour of dense suspensions in response to step-changes in the
magnitude of the shear rate. For this purpose, we consider two solids fractions, �v = 40%

and 47%. At 40% solids, we used the same initial cubic packing as previously (sets 1 and 2
in Fig. 2). To show trends more clearly, �̄r is obtained by averaging the results for the two
initial particle arrangements. For 47% we use an initial particle configuration from the period
of steady fluctuations shown in Fig. 4. The number of sub-timesteps is constant for 40% solids,
and it is determined by the requirements for the highest Rep to ensure stability throughout the
simulations. The adaptive algorithm for the number of sub-timesteps was used for 47% solids.

The left-hand panel of Fig. 9 shows the evolution of the average relative apparent viscosity
as a function of the accumulated strain ̇ot starting from rest (̇o is the shear rate that corresponds
to Rep = 0.1). The shear rate is increased in two different ways: a single step up to Rep = 0.2
(red lines) at ̇ot = 18.5 and in two steps (blue lines) – an intermediate step to Rep = 0.15 at
̇ot = 12.7 and then another step toRep = 0.2 at ̇ot = 18.5. The shear rate then remains steady
until ̇ot = 24.2. For comparison, we also show the data for simulations with a constant shear
rate (Rep = 0.1; green lines). Considering the range of the fluctuations, we conclude that the
apparent viscosities after shearing at Rep = 0.2 are the same as with Rep = 0.1 for both solids
fractions. The result is the same whether the shear rate is increased in a single step or two steps;
the average relative viscosities are 10 (�v = 40%) and 17 (�v = 47%).

After shearing the suspensions at Rep = 0.2, we consider how the viscosity of the suspen-
sions develops when the shear rate is returned to Rep = 0.1 (right panel of Fig. 9). At the
lower solids fraction (40%), the relative viscosity shows no significant history effect, returning
to ≈ 10 for all cases. For �v = 47%, however, temporary shear at a higher speed results in
an increase in the apparent viscosity when the shear rate returns to its previous value. In the
simulations with one and two step increases, the viscosity increases by 35% to 23. Considering
the range of the fluctuations, it is not clear whether there is a difference between a single step
increase or multiple increases with a smaller magnitude. The right panel of Fig. 9 includes
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FIGURE 9 Average relative apparent viscosity as a function of time for suspensions with �v = 40% (bottom set; lower
viscosity) and 47% (top set; higher viscosity). In the left panel, the coloured arrows at the top show the durations of the different
shear rates for each case. The right panel shows the evolution of average viscosity after bringing the shear rate back to its original
value (that is, Rep = 0.1) from the previous high shear regime. The black line in the right panel shows the result of stopping the
fluid and particle motion at ̇ot = 24.2 and restarting from the particle positions at that time.

one additional case (black lines): instead of continuing from the complete simulation state of
the red case at the end of shearing at Rep = 0.2, the fluid and particle velocities are reset to
zero. The only history that is retained is the positions of the particles but not their speeds or the
motion of the interstitial fluid. The apparent viscosities in these cases are effectively the same
as those for constant shear: within 2% at �v = 40% and 6% at �v = 47%. Therefore, restarting
the flow cancels out the effects of temporary shear at a higher rate. From these observations,
we conclude that the rheology of suspensions depends not only on the positions of the particles
(the microstructure of the suspension) but also the fluid history.
5 | CONCLUSIONS

Three-dimensional direct numerical simulations of suspensions have been performed using an
immersed boundary-lattice Boltzmann method for Reynolds numbers in the range 0.1 ≤ Rep ≤

0.3 and solids volume fractions from 5% to 47%. The simulations included corrections for
unresolved lubrication forces and torques over sub-grid scale distances. Up to �v = 47% solids,
the relative apparent viscosity of suspensions computed from the simulations with normal and
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tangential lubrication corrections showed good agreement with the experimental data due to
Dbouk et al. (2013) but deviate from the correlation data of Krieger and Dougherty (1959) and
simulations of Thorimbert et al. (2018). The viscosity of the suspension showed no dependence
on the Reynolds number for �v ≤ 17%, weak shear-thinning at �v = 30 and 35%, and shear-
thickening for �v ≥ 40%. As the solids concentration increases (�v ≥ 30%), the unresolved
stress due to translation and rotation of particles near the walls contribute substantially to the
total stress on the walls and therefore the apparent viscosity.

Simulations of suspensions submitted to shear reversal have been performed for solids frac-
tions between 10 and 47% with Rep = 0.11 and 0.32; for 47% solids, simulations were run
for Rep = 0.1 and 0.2. The initial development of the shear stress after a reversal follows a
viscous time scale. Dilute suspensions (�v ≤ 17%) follow the trend of a pure Newtonian fluid
(�v = 0%). At higher volume fractions, a minimum shear stress is observed before the shear
stress rises to a steady value that depends on the imposed shear rate. This minimum stress is the
same for bothRep. As �v increases, the mean free path decreases and therefore, the suspension
requires less time to re-structure and attain a stable assembly. An advective timescale based
on this mean free path governs the dynamics of the re-structuring of the suspension towards a
steady apparent viscosity.

Over this advective time scale, evolution in the number of clusters is also evident in dense
suspensions (�v ≥ 30%). For �v between 10 and 47%, the time-evolution of the microstructure
is demonstrated by choosing an appropriate cluster threshold. After reversing the flow direction,
the structure of the particle assembly collapses, and a temporary increase in the number of
clusters is seen. The previous structure then rebuilds to form a stable cluster configuration. At
the highest solids fraction we considered (47% solids), simulations with step increases in the
magnitude (but not the direction) of the shear rate showed a 35% higher viscosity when the
shear rate was returned to its initial value. At low fractions (�v = 40%), history effects on the
viscosity of the suspension were negligible. The memory effect seen at �v = 47%was removed
by stopping the motion of the fluid and particles before shearing again at the initial rate.
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Our next aim is to examine the effects of including surface potentials on the steady-state
and transient rheology of dense suspensions. For this purpose, we will study the effects of
electrostatic repulsion and Van derWaals attraction forces as a function of the particle Reynolds
number and solids volume fraction.
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APPENDIX A

In this appendix, we list the equations for computing the tangential lubrication force and torque
corrections. First, the tangential lubrication force on the ptℎ particle due to translation and rota-
tion of the spheres perpendicular to the centerline is (O’Neill and Majumdar, 1970; Simeonov
and Calantoni, 2012)

Ft,lubp = 6��Rℎyd

[

4�(2 + � + 2�2)
15(1 + �)3

ln
(

ℎ
ℎto

)

+ O(1)
]

Ut

Fr,lubp = 6��R2ℎyd

[

2�2

15(1 + �)2
ln
(

ℎ
ℎro

)

+ O(1)
]

(!F × npq).
(A.1)

The superscripts t and r denote translation and rotation. Ut = Upq − (Upq ⋅ npq)npq and !F =

!pq+4�−1ωp+4�!q (where!pq = !p+!q) are the tangential translational and rotational speeds.
ℎto, and ℎro are the translational and rotational lubrication cutoffs below which the corrections
are applied. Similarly, the lubrication torques due to translation and rotation are given by

Tt,lubp = 8��R2ℎyd

[

�(4 + �)
10(1 + �)2

ln
(

ℎ
ℎto

)

+ O(1)
]

(npq × Upq)

Tr,lubp = 8��R3ℎyd

[

2�
5(1 + �)

ln
(

ℎ
ℎro

)

+ O(1)
]

!T
(A.2)
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where !T =
(

!p +
�!q
4

)

−
[(

!p +
�!q
4

)

⋅ npq
]

npq. The equations above (Eqs. A.1 and
A.2) include the O(1) terms. Since the analytical results are valid in the limit of small interpar-
ticle gaps, we estimated these term from the values given by O’Neill and Majumdar (1970) for
ℎ∕R = 0.001. The lubrication forces (normal and tangential) and torques on the qtℎ particle
can be written as Fq = −Fp and Tq = Tp. By taking the limit � → ∞ in Eqs. 1, A.1, and A.2
and replacing q with w to denote a wall, one can derive the equations for the lubrication cor-
rection on a particle near a wall. These wall contributions are added with the particle-particle
lubrication correction to obtain the total forces and torques. From benchmark simulations of
steady translation and rotation of rigid particles at varying gaps, the tangential lubrication cut-
offs are estimated to be ℎto∕Rℎyd = ℎro∕Rℎyd = 0.1 and ℎw,to ∕Rℎyd = ℎw,ro ∕Rℎyd = 0.1 (where
ℎw,to and ℎw,ro are the particle-wall lubrication cutoffs). The forces and torques computed by
LBM saturate to a constant value for gap sizes smaller than these thresholds.
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