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Abstract

This paper considers minimizers of the following inhomogeneous L2-subcritical energy
functional

E(u) :=

∫
RN

|∇u|2dx− 2

p + 1

∫
RN

m(x)|u|p+1dx,

under the mass constraint ‖u‖22 = M . Here N ≥ 1, p ∈ (1, 1 + 4
N

), M > 0 and the inho-
mogeneous term m(x) satisfies 0 < m(x) ≤ 1. Applying the concentration-compactness
principle, we prove that this minimization problem admits minimizers for any M ∈ (0,∞).
Further more, we also present a detail analysis on the influence of m(x) on the limit be-
havior of minimizers as M →∞.
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1 Introduction and main results

In physical research, many physical phenomena can be described by L2-constraint variational

problems, such as the mass concentration of Bose-Einstein condensates (BEC), the collapse of

pseudo-relativistic Boson stars, etc., (cf. [1, 7, 8, 23]). In addition, from the point of view of

variation, the well-posed results of standing waves for nonlinear Schrödinger equations can be

given by using the constraint variational method (cf. [2, 11]). Therefore, in recent years, the

research of L2-constraint variational problems has been widely concerned by many scholars at

home and abroad, see, e.g., [2, 10, 11, 12, 13, 17, 18, 20, 21] and the references therein.

In this paper, we study constraint minimizers of the following L2-subcritical constraint

variational problem

I(M) := inf
{u∈H1(RN ),‖u‖22=M}

E(u), (1.1)
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where the energy functional E(u) is defined by

E(u) :=

∫
RN

|∇u|2dx− 2

p+ 1

∫
RN

m(x)|u|p+1dx. (1.2)

Here N ≥ 1, p ∈ (1, 1 + 4
N ), M > 0 and the inhomogeneous term m(x) 6≡ 1 satisfies

(M1). m(x) ∈ L∞loc(RN )
⋂
Cα(RN )(0 < α < 1), 0 < m(x) ≤ m(0) = max

x∈RN
m(x) = 1 and

0 ≤ inf
x∈RN

m(x) = lim
|x|→∞

m(x) = m∞ ≤ 1,

(M2). 0 ∈ RN is the unique global maximum point of m(x) and 1−m(x) = |x|s+2
(
1+o(1)

)
as |x| → 0, where s > 0.

In particular, when m(x) ≡ 1, the research methods and results of this paper can be naturally

generalized. Hence, we do not elaborate here.

Problem (1.1) is put forward by P. L. Lions in [21] where he considered orbital stability

waves in nonlinear Schrödinger equations. In recent years, Guo and his collaborators (cf.

[3, 4, 9, 10, 11, 13]) have studied a more general L2-constraint variational problem:

IV (x)(M) := inf
u∈H1

V (x)

EV (x)(u), (1.3)

where the energy functional EV (x)(u) is defined by

EV (x)(u) :=

∫
RN

|∇u|2dx+

∫
RN

V (x)|u|2dx− 2

p+ 1

∫
RN

m(x)|u|p+1dx,

V (x) : RN → R is a suitable potential function, and H1
V (x) is defined by

H1
V (x) :=

{
u ∈ H1(RN ) : V (x)|u|2 ∈ L1(RN ), ‖u‖22 = M

}
.

These works (cf. [9, 10, 11, 13]) are mainly focused on the existence, uniqueness and mass

concentration behavior for minimizers of (1.3) under different potential functions as m(x) ≡ 1

and p = 1 + 4
N . As for the inhomogeneous case m(x) 6≡ 1 and p = 1 + 4

N , they (cf. [3, 4]) also

presented a detailed analysis about the specific influence of the inhomogeneous term on the

existence and limit behavior for minimizers of (1.3). Roughly speaking, when p = 1 + 4
N (the

so-called L2-critical case), there exists a threshold M∗ such that (1.3) admits minimizers if

M < M∗, and however, the influence of m(x) on the existence results as M = M∗ will become

uncertain and depends on the shape and some local profiles of m(x).

When 1 < p < 1 + 4
N , (1.3) is an L2-subcritical constraint variational problem. As for

the homogeneous case m(x) ≡ 1, there are many results on studying (1.3), including the

existence, uniqueness, symmetry and the concentration behavior of minimizers for (1.3), see

[2, 12, 18, 19, 20, 21, 22, 24, 29] and the references therein. However, all these work mentioned

require the trapping potential V (x) to meet some certain conditions, such as lim
|x|→∞

V (x) =∞.

If V (x) is bounded or even V (x) ≡ 0, as far as we know, there is no result on this case. On

the other hand, when m(x) 6≡ 1, there is also little work investigating the effect of m(x) on

this L2-subcritical constraint variational problem. Motivated by these previous works, in this
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paper, we shall focus on analyzing the effect of the inhomogeneous term m(x) on the existence

results and limit behavior of minimizers for problem (1.3) with V (x) ≡ 0 and 1 < p < 1 + 4
N .

Setting V (x) ≡ 0, m(x) 6≡ 1 and 1 < p < 1 + 4
N , problem (1.3) can be rewritten as (1.1),

which is what we study in the present paper. Just as mentioned above, this paper is devoted to

analyzing the existence results of minimizers for (1.1) and the limit behavior of minimizers as

M →∞. Before stating our main results, we now introduce the following scalar field equation

−∆u+ u = up, u ∈ H1(RN ), N ≥ 1, 1 < p < 1 +
4

N
. (1.4)

It is well-known from [5, 15, 16, 26] that (1.4) admits a unique (up to translations) radially sym-

metric positive solution, which can be denoted as Q = Q(|x|). Note also from [5, Proposition

4.1] that Q(|x|) satisfies

Q(|x|), |∇Q(|x|)| = O(|x|−
N−1

2 e−|x|) as |x| → ∞. (1.5)

Moreover, we recall from [26] the following Gagliardo-Nirenberg inequality

‖u‖p+1
p+1 ≤ C

−1
GN‖∇u‖

N
2 (p−1)

2 ‖u‖p+1−N
2 (p−1)

2 , u ∈ H1(RN ), N ≥ 1, 1 < p < 1 +
4

N
, (1.6)

where CGN > 0 satisfies

CGN := ‖Q‖p−1
2

(
1− p− 1

p+ 1

N

2

)[ N(p− 1)

2(p+ 1)−N(p− 1)

]N
4 (p−1)

, (1.7)

and the equality in (1.6) is achieved at u = Q. Moreover, one can derive from (1.4) and (1.6)

that Q satisfies∫
RN

|∇Q|2dx =
N

2

p− 1

p+ 1

∫
RN

Qp+1dx =
N(p− 1)

2(p+ 1)−N(p− 1)

∫
RN

Q2dx. (1.8)

By using the above results, we shall establish the following existence theorem of minimizers

for (1.1).

Theorem 1.1. Assume m(x) satisfies (M1), and then there exists at least one minimizer of

I(M) for any M ∈ (0,∞).

The key to complete the proof of of Theorem 1.1 is to overcome the possible loss of compact-

ness of minimizing sequences. In order to overcome this difficulty, we adopt the concentration-

compactness principle [20, 21]. Roughly speaking, we shall first prove the strict sub-additivity

inequality of I(M). Applying the GN inequality, one can further obtain the uniform bounded-

ness of the minimizing sequences. Moreover, by using the concentration-compactness principle,

the compactness of minimizing sequences can be obtained via a series of detailed analysis on

ruling out the dichotomy case and the vanishing case.

Assume uM is a minimizer of (1.1). One can note the fact that E(u) ≥ E(|u|) holds for any

u ∈ H1(RN ) due to the fact that |∇u| ≥ |∇|u|| a.e. in RN , which indicates that uM does not
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change the sign. Therefore, without loss of generality, one can suppose uM is non-negative,

i.e., uM ≥ 0. Moreover, one can derive that uM satisfies the following Euler-Lagrange equation

−∆uM −m(x)upM = µMuM in RN , (1.9)

where µM ∈ R is a suitable Lagrange multiplier associated to uM .

Stimulated by [10, 19, 22, 25], we are next concerned with the limit behavior of minimizers

uM as M →∞. Our main result can be stated as the following theorem.

Theorem 1.2. Suppose m(x) satisfies (M1) and (M2). Let uk be a nonnegative minimizer of

I(Mk). Then for any sequence {Mk} with Mk → ∞ as k → ∞, there exists a subsequence of

uk, still denoted by uk, such that uk has a unique maximum point z̄k and satisfies

lim
k→∞

ε
2

p−1

k uk(εkx+ zk) = Q(x) in H1(RN ), (1.10)

where lim
k→∞

z̄k = 0, εk :=
(
Mk

a∗

)− p−1
4−N(p−1)

, a∗ := ‖Q(x)‖22 and Q(x) is the unique radially

symmetric positive solution of (1.4).

Theorem 1.2 presents a refined description of the limit behavior of minimizers: each mini-

mizer uk must concentrate at a global maximum of the inhomogeneous term m(x) as k →∞.

One hard part of proving Theorem 1.2 is to obtain a suitable limit equation of (1.9), due to the

unboundedness of uk in Lp(RN )(p ∈ (2, 2 + 4
N )). Motivated by [22], we rewrite the constraint

variational problem (1.1) into the following equivalent form:

IM := inf
{v∈H1(RN ),‖v‖22=1}

EM (v), (1.11)

where EM (v) is defined by

EM (v) :=

∫
RN

|∇v|2dx− 2M
p−1
2

p+ 1

∫
RN

m(x)|v|p+1dx, 1 < p < 1 +
4

N
. (1.12)

One can verify that, if uM be a nonnegative minimizer of I(M), then vM := M−
1
2uM is a

nonnegative minimizer of IM and IM = M−1 · I(M). In view of the relation between uM and

vM , the proof of Theorem 1.2 can be equivalently convert into analyzing the limit behavior of

minimizers for (1.11) as M → ∞. Up to some necessary scaling of the minimizers for (1.11),

one can obtain the boundedness of minimizers as M →∞.

Another challenge in studying the limit behavior of vM is to locate the peak of vM as

M → ∞. Inspired by [18, 19, 22], we introduce the following new constraint variational

problem

ĨM := inf
{v∈H1(RN ),‖v‖22=1}

ẼM (v), (1.13)

where ẼM (v) is defined by

ẼM (v) :=

∫
RN

|∇v|2dx− 2M
p−1
2

p+ 1

∫
RN

|v|p+1dx, 1 < p < 1 +
4

N
. (1.14)
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By establishing that IM−ĨM → 0 asM →∞, one can derive that 2M
p−1
2

p+1

∫
RN

(
1−m(x)

)
|vM |p+1dx→

0 as M →∞, which is a great aid to locate the peak of minimizers.

This paper is organized as follows. Section 2 is devoted to proving Theorem 1.1 on the

existence of minimizers for (1.1). In Section 3, we firstly prove Theorem 3.1 on the limit

behavior of minimizers for IM as M → ∞, upon which one can then complete the proof of

Theorem 1.2.

2 Existence of minimizers for I(M)

This section is concerned with the proof of Theorem 1.1 on the existence of minimizers for

(1.1). We shall firstly establish the strict sub-additivity inequality of I(M), and then prove

Theorem 1.1 by applying the concentration-compactness principle.

Lemma 2.1. Assume m(x) satisfies (M1), and then for any M ∈ (0,∞), we have the following

strict sub-additivity inequality

I(M) < I(α) + I(M − α), ∀ α ∈ (0,M). (2.1)

Proof. Firstly, we claim that there exists a constant C > 0, independent of M , such that

I(M) ≤ −C < 0 for any M ∈ (0,∞). (2.2)

In fact, set uλ(x) := λ
N
2 u(λx), where λ > 0 is a constant and u ∈ H1(RN ) satisfies ‖u‖22 = M .

One can deduce that, for any M ∈ (0,∞),

I(M) ≤ E(uλ) =

∫
RN

|∇uλ|2dx−
2

p+ 1

∫
RN

m(x)|uλ|p+1dx

= 2
(λ2

2

∫
RN

|∇u|2dx− λ
N
2 (p−1)

p+ 1

∫
RN

m
(x
λ

)
|u|p+1dx

)
.

It then follows that E(uλ) < 0 for λ > 0 sufficiently small, due to the fact that N
2 (p− 1) < 2

and m(x) satisfies (M1), i.e., (2.2) holds.

Using (2.2), for any α ∈ (0,M
)

and θ ∈ (1, Mα ], one can now derive that

I(θα) = inf
{u∈H1(RN ),‖u‖22=θα}

E(u) = inf
{v∈H1(RN ),‖v‖22=α}

E(θ
1
2 v)

= inf
{v∈H1(RN ),‖v‖22=α}

{
θ

∫
RN

|∇v|2dx− 2θ
p+1
2

p+ 1

∫
RN

m(x)|v|p+1dx
}

= inf
{v∈H1(RN ),‖v‖22=α}

{
θ
[ ∫

RN

|∇v|2dx− 2

p+ 1

∫
RN

m(x)|v|p+1dx
]

+
2(θ − θ

p+1
2 )

p+ 1

∫
RN

m(x)|v|p+1dx
}

< θI(α) < 0,
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where the penultimate ”<” holds due to θ > 1 and p > 1. This implies that for any M ∈ (0,∞),

I(θα) < θI(α), ∀ α ∈ (0,M), ∀ θ ∈ (1,
M

α

]
. (2.3)

Further more, it follows from (2.3) that

I(M) =
M − α
M

I
( M

M − α
(M − α)

)
+

α

M
I
(M
α
· α
)
< I(M − α) + I(α), ∀α ∈ (0,M).

Hence, the proof of Lemma 2.1 is completed.

Proof of Theorem 1.1: For any given M ∈ (0,∞), assume ‖u‖22 = M . Applying (M1) and

GN inequality (1.6) to E(u) then yields that

E(u) =

∫
RN

|∇u(x)|2dx− 2

p+ 1

∫
RN

m(x)|u(x)|p+1dx

≥
∫
RN

|∇u(x)|2dx− 2

p+ 1

∫
RN

|u(x)|p+1dx

≥
∫
RN

|∇u(x)|2dx− 2

p+ 1
C−1
GN‖∇u‖

N
2 (p−1)

2 ‖u‖p+1−N
2 (p−1)

2

=

∫
RN

|∇u(x)|2dx− C
( ∫

RN

|∇u(x)|2dx
)N(p−1)

4 ,

(2.4)

which implies that E(u) is bounded from below for any M ∈ (0,∞). Let {un} ⊂ H1(RN )

be a minimizing sequence and satisfies ‖un‖22 = M and lim
n→∞

E(un) = I(M). In view of

(2.4), one can derive that {un} is bounded uniformly in H1(RN ). Further more, from the

concentration-compactness principle [20, Lemma III. 1], one can conclude that there exists a

subsequence {unk
} of {un} such that {unk

} satisfies compactness or dichotomy or vanishing.

In what follows, we shall rule out the possibility of dichotomy and vanishing.

We first prove that vanishing does not occur. By contradiction, assume that vanishing

occurs, i.e., for any R <∞, there holds that

lim
k→∞

sup
y∈RN

∫
BR(y)

u2
nk

(x)dx = 0.

According to [27, Lemma 1.21], one can further conclude that

unk

k−→ 0 in Lq(RN ) as k →∞, where 2 < q < 2∗.

It then directly follows that∫
RN

m(x)|unk
|p+1dx ≤

∫
RN

|unk
|p+1dx

k−→ 0, as k →∞.

Furthermore, one has

I(M) = lim
k→∞

E(unk
) = lim

k→∞

{∫
RN

|∇unk
|2dx− 2

p+ 1

∫
RN

m(x)|unk
|p+1dx

}
≥ lim
k→∞

∫
RN

|∇unk
|2dx ≥ 0,
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which contradicts to (2.2). Hence, vanishing does not occur.

Next, we shall prove that dichotomy does not occur. By contradiction again, suppose

dichotomy occurs, and it then follows from [20, Lemma III.1] that there exist two subsequence

of {unk
}, denoted as {unk,1

} and {unk,2
}, such that

‖unk
− (unk,1

+ unk,2
)‖Lq

k−→ 0, for 2 ≤ q < 2∗,∣∣∣ ∫RN u
2
nk,1

dx− α
∣∣∣ k−→ 0,

∣∣∣ ∫RN u
2
nk,2

dx− (M − α)
∣∣∣ k−→ 0, ∀ α ∈ (0,M),

dist
(

Supp unk,1
,Supp unk,2

)
k−→∞,

lim
k→∞

inf
∫
RN

{
|∇unk

|2 − |∇unk,1
|2 − |∇unk,2

|2
}
dx ≥ 0.

(2.5)

Set ūnk
:= m

1
p+1 (x)unk

, ūnk,1
:= m

1
p+1 (x)unk,1

, ūnk,2
:= m

1
p+1 (x)unk,2

. Applying (2.5), one

can deduce that∫
RN

m(x)|unk
|p+1dx−

∫
RN

m(x)|unk,1
|p+1dx−

∫
RN

m(x)|unk,2
|p+1dx

= ‖ūnk
‖p+1
p+1 − ‖ūnk,1

‖p+1
p+1 − ‖ūnk,2

‖p+1
p+1 = ‖ūnk

‖p+1
p+1 − ‖ūnk,1

+ ūnk,2
‖p+1
p+1 + o(1)

≤ C
(
‖ūnk

‖p+1 − ‖ūnk,1
+ ūnk,2

‖p+1

)
+ o(1)

≤ C
(
‖ūnk

− (ūnk,1
+ ūnk,2

)‖p+1

)
+ o(1)

≤ C
(
‖unk

− (unk,1
+ unk,2

)‖p+1

)
+ o(1)

≤ o(1), as k →∞,

where the second to last inequality holds due to 0 < m(x) ≤ 1. This indicates that∫
RN

m(x)|unk
|p+1dx =

∫
RN

m(x)|unk,1
|p+1dx+

∫
RN

m(x)|unk,2
|p+1dx+o(1), as k →∞. (2.6)

Applying (2.5) and (2.6) yields that

I(M) = lim
k→∞

E(unk
) = lim

k→∞

{∫
RN

|∇unk
|2dx− 2

p+ 1

∫
RN

m(x)|unk
|p+1dx

}
≥ lim
k→∞

{∫
RN

(
|∇unk,1

|2 + |∇unk,2
|2
)
dx− 2

p+ 1

∫
RN

m(x)
(
|unk,1

|p+1 + |unk,2
|p+1

)
dx
}

= lim
k→∞

E(unk,1
) + lim

k→∞
E(unk,2

) ≥ I(α) + I(M − α),

which contradicts to (2.1). Hence, dichotomy does not occur.

In view of the above conclusions, using the concentration-compactness lemma ([20, 21]),

one can conclude that there exists a subsequence of {unk
} (still denoted by {unk

}) and some

{yk} ⊂ RN such that ûnk
(·) := unk

(·+ yk) satisfies

ûnk
⇀ u0 in H1(RN ) for some u0 ∈ H1(RN ),

and ûnk

k−→ u0 in Lq(RN ) with 2 ≤ q < 2∗.
(2.7)

This further indicates that

lim
k→∞

∫
RN

m(x)|ûnk
|p+1dx =

∫
RN

m(x)|u0|p+1dx.
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Consequently, it then follows that E(·) is weak lower semicontinuous, i.e.,

E(u0) ≤ lim
k→∞

E(ûnk
). (2.8)

On the other hand, one can directly observe that I(M) ≤ lim
k→∞

E(ûnk
). If I(M) =

lim
k→∞

E(ûnk
), using (2.8), one can derive that

I(M) ≤ E(u0) ≤ lim
k→∞

E(ûnk
) = I(M), (2.9)

which indicates that u0 is a minimizer of I(M). If I(M) < lim
k→∞

E(ûnk
), we claim that {yk} is

bounded uniformly in RN . Otherwise, assume |yk|
k−→∞, and then one has

I(M) = lim
k→∞

E(unk
) = lim

k→∞

{∫
RN

|∇unk
|2dx− 2

p+ 1

∫
RN

m(x)|unk
|p+1dx

}
= lim
k→∞

{∫
RN

|∇ûnk
|2dx− 2

p+ 1

∫
RN

m(x+ yk)|ûnk
|p+1dx

}
= lim
k→∞

E(ûnk
) + lim

k→∞

2

p+ 1

∫
RN

(
m(x)−m(x+ yk)

)
|ûnk
|p+1dx

≥ lim
k→∞

E(ûnk
),

where the last inequality holds due to inf
x∈RN

m(x) = lim
|x|→∞

m(x). This contradicts to the

assumption I(M) < lim
k→∞

E(ûnk
), and the claim then holds. With this claim, passing to a

subsequence if necessary, one has lim
k→∞

yk = y0 for some y0 ∈ RN . Then it follows from (2.7)

that

unk

k−→ u0(· − y0) in Lq(RN ) with 2 ≤ q < 2∗.

which further implies that

lim
k→∞

∫
RN

m(x)|unk
|p+1dx =

∫
RN

m(x)|u0(x− y0)|p+1dx.

Similar to (2.8) and (2.9), one can conclude that

I(M) ≤ E
(
u0(· − y0)

)
≤ lim
k→∞

E(unk
) = I(M),

i.e., u0(· − y0) is a minimizer of I(M). Hence, we complete the proof of Theorem 1.1.

3 Mass concentration : proof of Theorem 1.2

In this section, we shall prove Theorem 1.2 on the concentration behavior of minimizers for

I(M) as M → ∞. As mentioned in the introduction, we shall firstly establish the following

Theorem 3.1 on the limit behavior of minimizers for IM as M → ∞, where IM is defined in

(1.11). Based on Theorem 3.1, one can then complete the proof of Theorem 1.2.
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Theorem 3.1. Suppose m(x) satisfies (M1) and (M2). Let vk be a nonnegative minimizer of

IMk
, where Mk →∞ as k →∞. Then passing to a subsequence if necessary, vk has a unique

maximum point z̄k as k is large enough and z̄k satisfies lim
k→∞

z̄k = 0. Moreover, there also holds

that

lim
k→∞

ε̂
N
2

k vk(ε̂kx+ zk) = (a∗)−
2

4−N(p−1)Q
(

(a∗)−
p−1

4−N(p−1)x
)

in H1(RN ), (3.1)

where ε̂k := M
− p−1

4−N(p−1)

k , a∗ := ‖Q(x)‖22 and Q(x) is the unique positive solution of (1.4).

3.1 Energy estimates of IM

This section is aimed at establishing the refined energy estimates of IM by employing the

analysis of ĨM defined in (1.13). Similar to the existence results for IM , one can verify that ĨM

admits minimizers for any M ∈ (0,∞) and all the minimizers don’t change the sign. Therefore,

without loss of generality, one can restrict minimizers for ĨM to nonnegative functions. As for

the estimates of ĨM , recall from [19][Lemma A.3] and one has the following lemma.

Lemma 3.1 (cf. [19][Lemma A.3]). Suppose ṽM is a nonnegative minimizer of ĨM . One then

has

ĨM = −2λ0

(M
a∗

) 2(p−1)
4−N(p−1)

, (3.2)

and

ṽM =
1√
a∗
α̃

N
2

MQ(α̃Mx), (3.3)

where α̃M :=
(
M
a∗

) p−1
4−N(p−1)

, and λ0 is defined by

λ0 :=
1

2

4−N(p− 1)

2(p+ 1)−N(p− 1)
. (3.4)

Based on Lemma 3.1, one can obtain the following energy estimates of IM .

Lemma 3.2. Suppose m(x) satisfies (M1), and then one has

lim
M→∞

IM(
M
a∗

) 2(p−1)
4−N(p−1)

= −2λ0, (3.5)

where a∗ := ‖Q‖22, λ0 is defined in (3.4), and Q(x) is the unique positive solution of (1.4).

Proof. Let vM be a nonmegative minimizer of IM . As for the lower bound of IM , one can

deduce from (1.11), (1.12), (1.13), (1.14) and (3.2) that

IM =ẼM (vM ) +
2M

p−1
2

p+ 1

∫
RN

(
1−m(x)

)
|vM |p+1dx

≥ĨM = −2λ0

(M
a∗

) 2(p−1)
4−N(p−1)

as M →∞.

(3.6)
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Next, we shall prove the upper bound of IM by taking a suitable testing function. Set

vτ (x) :=
Aτ
‖Q‖2

τ
N
2 Q(τx)ϕ(x), (3.7)

where τ > 0, Aτ is chosen so that ‖vτ‖22 = 1, and ϕ(x) ∈ C∞(RN ) is a cut-off function

satisfying that ϕ(x) = 1 for |x| ≤ 1; ϕ(x) = 0 for |x| ≥ 2; and ϕ(x) ∈ (0, 1) for 1 < |x| < 2.

From (1.5) and (1.8), one can deduce that

IM ≤EM (vτ ) =

∫
RN

|∇vτ |2dx+
2M

p−1
2

p+ 1

∫
RN

(
1−m(x)

)
|vτ |p+1dx− 2M

p−1
2

p+ 1

∫
RN

|vτ |p+1dx

≤
(
1 + C1e

−2τ
)
· N(p− 1)

2(p+ 1)−N(p− 1)
τ2 −

(
1− C2τ

−s−2
)
· 4(a∗)

1−p
2 M

p−1
2

2(p+ 1)−N(p− 1)
τ

N
2 (p−1),

as τ →∞, where s > 0 is defined in (M2). Setting τ =
(
M
a∗

) p−1
4−N(p−1)

then yields that

IM ≤
N(p− 1)− 4

2(p+ 1)−N(p− 1)

(M
a∗

) 2(p−1)
4−N(p−1)

+ C
(M
a∗

) −s(p−1)
4−N(p−1)

≤ N(p− 1)− 4

2(p+ 1)−N(p− 1)

(M
a∗

) 2(p−1)
4−N(p−1)

+ o(1)

=− 2λ0

(M
a∗

) 2(p−1)
4−N(p−1)

+ o(1), as M →∞. (3.8)

where λ0 is defined in (3.4). Hence, (3.5) follows from (3.6) and (3.8) directly, and Lemma 3.2

is then proved.

3.2 Blow-up analysis

In this section, we shall prove Theorem 3.1 and then complete the proof of Theorem 1.2.

Motivated by [12, Lemma 2.2] and [22, Lemma 4.2], we firstly give the following lemma.

Lemma 3.3. Suppose m(x) satisfies (M1) and (M2). Let vM be a nonnegative minimizer of

IM , and one then has

2M
p−1
2

p+ 1

∫
RN

(
1−m(x)

)
|vM |p+1dx→ 0, as M →∞. (3.9)

Proof. The key to prove this lemma is to verify that

IM − ĨM → 0, as M →∞, (3.10)

where ĨM is defined by (1.13). In fact, combing (3.2) and (3.8) yields that

IM ≤ ĨM + o(1), as M →∞. (3.11)

On the other hand, one can deduce that

IM − ĨM ≥ EM (vM )− ẼM (vM ) =
2M

p−1
2

p+ 1

∫
RN

[
1−m(x)

]
|vM |p+1dx ≥ 0. (3.12)

10



Hence, (3.10) follows from (3.11) and (3.12). Further more, one can derive from (3.10) that

2M
p−1
2

p+ 1

∫
RN

(
1−m(x)

)
|vM |p+1dx = IM − ẼM (vM ) ≤ IM − ĨM → 0, as M →∞. (3.13)

Spired by [11, 19, 25, 28, 29], we shall establish the following lemma.

Lemma 3.4. Suppose m(x) satisfies (M1) and (M2). Let vk be a nonnegative minimizer of

IMk
, where Mk →∞ as k →∞. Then we have follows.

(1). There exist a sequence {yk} ⊂ RN and positive constants η, R0 > 0 such that

ωk(x) := ε̂
N
2

k vk(ε̂kx+ ε̂kyk) (3.14)

satisfies

lim
k→∞

inf

∫
BR0

(0)

|ωk|p+1dx ≥ η > 0. (3.15)

where ε̂k := M
− p−1

4−N(p−1)

k . Morever, for the above sequence {yk}, passing to a subsequence if

necessary, there holds that

lim
k→∞

ε̂kyk = 0. (3.16)

(2). There exists a subsequence of {ωk}, still denoted by {ωk}, such that

ωk
k−→ ω0 := (a∗)−

2
4−N(p−1)Q

(
(a∗)−

p−1
4−N(p−1)x+ x̂0

)
strongly in H1(RN ), (3.17)

where x̂0 ∈ RN , a∗ := ‖Q‖22 and Q is the unique positive solution of (1.4).

Proof. Since the proof of (1) is similar to that given in [13, Lemma 2.3], here we omit it and

mainly give the proof of (2).

Firstly, we shall prove the boundedness of ‖∇ωk‖22 and ‖ωk‖p+1
p+1, i.e., there exist positive

constants C1, C2, C
′

1 and C
′

2, which are independent of k, such that ωk satisfies

0 < C1 ≤
∫
RN

|∇ωk|2dx ≤ C2 and 0 < C ′1 ≤
∫
RN

|ωk|p+1dx ≤ C ′2. (3.18)

In fact, one can deduce from (3.14) that

IMk
= ε̂−2

k

[ ∫
RN

|∇ωk|2dx+ ε̂2k
2M

p−1
2

k

p+ 1

∫
RN

(
1−m(x)

)
|vk|p+1dx− 2

p+ 1

∫
RN

|wk|p+1dx
]
.

This implies from (3.5) and (3.9) that

(a∗)
2(p−1)

4−N(p−1)

[ ∫
RN

|∇ωk|2dx−
2

p+ 1

∫
RN

|wk|p+1dx
]
k−→ −2λ0 < 0. (3.19)

If
∫
RN |∇ωk|2dx → ∞ as k → ∞, setting γ2

k :=
∫
RN |∇ωk|2dx and ωk(x) := γ

N
2

k νk(γkx),

one can deduce that ‖∇νk‖22 = ‖νk‖22 = 1. Applying the GN inequality (1.6) then yields

‖νk‖p+1
p+1 ≤ C

−1
GN . Moreover, one can deduce that∫

RN |wk|p+1dx∫
RN |∇ωk|2dx

=
‖νk‖p+1

p+1

‖∇νk‖22
γ

N
2 (p−1)−2

k ≤ C−1
GNγ

N
2 (p−1)−2

k → 0, as k →∞. (3.20)
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However, from (3.19), one has ∫
RN |wk|p+1dx∫
RN |∇ωk|2dx

→ 1, as k →∞,

which contradicts (3.20), and we know that
∫
RN |∇ωk|2dx ≤ C. Applying the GN inequality

(1.6) further yields
∫
RN |ωk|p+1dx ≤ C ′2. On the other hand, from (3.19) one can observe that∫

RN |ωk|p+1dx ≥ C ′1 > 0. Using the GN inequality again, one has
∫
RN |∇ωk|2dx ≥ C1. Hence,

one can thus conclude that (3.18) holds. Moreover, since ωk is bounded uniformly in H1(RN ),

then passing to a subsequence if necessary, there exist some ω0 ∈ H1(RN ) such that

ωk ⇀ ω0 ≥ 0 as k →∞. (3.21)

Since vk is a nonnegative minimizer of IMk
, one can derive that vk satisfies the following

Euler-Lagrange equation

−∆vk = µkvk +M
p−1
2

k m(x)vpk in RN , (3.22)

where µk ∈ R is a suitable Lagrange multiplier and satisfies

µk = IMk
−

(p− 1)M
p−1
2

k

p+ 1

∫
RN

m(x)|vk|p+1dx.

It then follows that ωk satisfies

−∆ωk = ε̂2kµkωk + ωpk +
(
m(ε̂kx+ ε̂kyk)− 1

)
ωpk in RN . (3.23)

Next, we shall derive the limit equation of (3.23) as k → ∞. As for ε̂2kµk, applying (3.5),

(3.9), (3.14) and (3.18), one can deduce that

ε̂2kµk = ε̂2k

[
IMk
−

(p− 1)M
p−1
2

k

p+ 1

∫
RN

m(x)|vk|p+1dx
]

=ε̂2kIMk
+ ε̂2k

(p− 1)M
p−1
2

k

p+ 1

∫
RN

(
1−m(x)

)
|vk|p+1dx− ε̂2k

(p− 1)M
p−1
2

k

p+ 1

∫
RN

|vk|p+1dx

=− 2λ0(a∗)
−2(p−1)

4−N(p−1) − p− 1

p+ 1
‖ωk‖p+1

p+1 + o(1) < 0, as k →∞.

(3.24)

This implies from (3.18) that {ε̂2kµk} is bounded uniformly as k → ∞, i.e., passing to a

subsequence if necessary, there exist some β ∈ R+ such that

ε̂2kµk → −β, as k →∞. (3.25)

As for the inhomogeneous term, by (3.9) and (3.14), one can deduce that∫
RN

(
m(ε̂kx+ ε̂kyk)− 1

)
ωp+1
k = ε̂2kM

p−1
2

k

∫
RN

(
m(x)− 1

)
|vk|p+1dx→ 0, as k →∞. (3.26)
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Combing (3.21), (3.25) and (3.26) and letting k →∞, one can thus obtain the following limit

equation of (3.23),

−∆ω0 = −βω0 + ωp0 in RN . (3.27)

Applying the strong maximum principle, together with (3.15), one has ω0 > 0. Since the

equation (1.4), up to translations, admits a unique positive solution Q, it then follows from

(3.27) that, there exists some x̂0 ∈ RN such that

ω0 = β
1

p−1Q(β
1
2x+ x̂0). (3.28)

Finally, we shall prove that

‖ω0‖22 = 1, β = ‖Q‖
− 4(p−1)

4−N(p−1)

2 . (3.29)

It follows from (3.28) that 
‖Q‖22 = β

N(p−1)−4
2(p−1) ‖ω0‖22,

‖∇Q‖22 = β
N(p−1)−4

2(p−1)
−1‖∇ω0‖22,

‖Q‖p+1
p+1 = β

N(p−1)−4
2(p−1)

−1‖ω0‖p+1
p+1.

(3.30)

Applying the Fatou Lemma yields ‖ω0‖22 ≤ lim
k→∞

‖ωk‖22 = 1. Hence, it follows from (3.30) that

β ≤ ‖Q‖
− 4(p−1)

4−N(p−1)

2 . On the other hand, substituting (3.30) into the identity (1.8) then yields

that

‖∇ω0‖22 =
N

2

p− 1

p+ 1
‖ω0‖p+1

p+1 =
N(p− 1)

2(p+ 1)−N(p− 1)
β‖ω0‖22. (3.31)

Apply the GN inequality (1.6) and one has

CGN ≤
‖∇ω0‖

N
2 (p−1)

2 ‖ω0‖
p+1−N

2 (p−1)
2

‖ω0‖p+1
p+1

=

(
N(p−1)

2(p+1)−N(p−1)β‖ω0‖22
)N

4 (p−1)

‖ω0‖
p+1−N

2 (p−1)
2

2(p+1)
2(p+1)−N(p−1)β‖ω0‖22

=
( N(p− 1)

2(p+ 1)−N(p− 1)

)N
4 (p−1)(

1− N(p− 1)

2(p+ 1)

)
β

N
4 (p−1)−1‖ω0‖p−1

2

≤ CGN

‖Q‖p−1
2

β
N(p−1)−4

4 ,

(3.32)

where the last”≤” holds due to ‖ω0‖2 ≤ 1. It then follows from (3.32) that β ≥ ‖Q‖
− 4(p−1)

4−N(p−1)

2 .

Thus, we get that β = ‖Q‖
− 4(p−1)

4−N(p−1)

2 . Further, substitute β = ‖Q‖
− 4(p−1)

4−N(p−1)

2 into (3.30) and

we have ‖ω0‖22 = 1. Hence, (3.29) is proved.

Since ‖ωk‖22 = ‖ω0‖22 = 1, one can derive that ωk → ω0 in L2(RN ) as k →∞. Then, using

the interpolation inequality and the Sobolev inequality, one can deduce that

ωk → ω0 in Lq(RN )(2 ≤ q < 2∗), as k →∞. (3.33)
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Further, one can derive from (3.23), (3.27) and (3.33) that ωk → ω0 in H1(RN ) as k →

∞. Moreover, substituting β = ‖Q‖
− 4(p−1)

4−N(p−1)

2 = (a∗)−
2(p−1)

4−N(p−1) into (3.28) then yields (3.17).

Hence, we complete the proof of Lemma 3.4.

Proof of Theorem 3.1: We shall firstly prove that, passing to a subsequence of {ωk}, there

holds that

ωk → 0 as |x| → ∞ uniformly for large k. (3.34)

Following from (3.33), one can deduce that∫
|x|≥γ

|ωk|2dx→ 0 as γ →∞ uniformly for large k. (3.35)

Applying (3.25) and (3.26), one can derive from (3.23) that −∆ωk − c(x)ωk ≤ 0, where c(x) =

ωp−1
k (x). Using De-Giorgi-Nash-Moser theory [14, Theorem 4.1 ] yields that

max
B1(ξ)

ωk(x) ≤ C
(∫

B2(ξ)

|ωk(x)|2dx
) 1

2

, (3.36)

where ξ ∈ RN . Hence, (3.34) follows from (3.35) and (3.36).

From (3.34), one knows that vk admits at least one global maximum point. Let z̄k be any

global maximum point of vk and denote zk := ε̂kyk → 0 as k → ∞. Hence, one can derive

from (3.14) that ωk(x) attains its global maximum point at x
′

k := z̄k−zk
ε̂k

. One can verify that

{ z̄k−zkε̂k
} is bounded uniformly in RN . Otherwise, it follows from (3.34) that lim

k→∞
‖ωk‖∞ = 0

as |x′k|
k−→∞, which contradicts to (3.15). This further indicates that, passing to a subsequence

if necessary,

lim
k→∞

z̄k = lim
k→∞

zk = 0. (3.37)

Set

ω̄k := ε̂
N
2

k vk(ε̂kx+ z̄k) = ε̂
N
2

k vk

(
ε̂k

(
x+

z̄k − zk
ε̂k

)
+ ε̂kyk

)
. (3.38)

By (3.14) and (3.17), one can derive that there exist a subsequence of {ω̄k}, still denoted by

ω̄k, such that

ω̄k(x) = ωk

(
x+

z̄k − zk
ε̂k

)
→ ω̄0(x) in H1(RN ) as k →∞, (3.39)

where ω̄0(x) := (a∗)−
2

4−N(p−1)Q
(

(a∗)−
p−1

4−N(p−1)
(
x+ y1

)
+ x̂0

)
and y1 ∈ RN is some fixed point.

Since m(x) ∈ Cα(RN ), using the discussion similar to that given in [13, Lemma 3.1 ], one can

deduce that

ω̄k(x)→ ω̄0(x) in C2
loc(RN ) as k →∞. (3.40)

From (3.38) we know that the origin is a local maximum point of ω̄k for all k > 0. Hence,

from (3.40), it is also a local maximum point of ω̄0. On the other hand, since Q is radially
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symmetric about origin and strictly decreasing about |x| ([6, 16, 26]), one can thus conclude

that the origin is the unique local maximum point of ω̄0, i.e.,

ω̄0(x) = (a∗)−
2

4−N(p−1)Q
(

(a∗)−
p−1

4−N(p−1)x
)
. (3.41)

Therefore, (3.1) follows from (3.37) and (3.41).

Finally, we shall prove the uniqueness of maximum point for uk as k is large enough.

Applying (3.23) and (3.38), one can deduce that ω̄k satisfies the following equation

−∆ω̄k = ε̂2kµkω̄k + ω̄pk +
(
m(ε̂kx+ z̄k)− 1

)
ω̄pk in RN . (3.42)

Suppose xk is any local maximum point of ω̄k, and then −∆ω̄k(xk) ≥ 0. From (3.25), (3.26)

and (3.42), one can deduce that ω̄k(xk) ≥ C > 0 for large k. It then follows from (3.34) that all

local maximum points of ω̄k must stay in a finite ball BR(0) as k is large enough, where R > 0

is independent of k. Since the origin is the unique maximum point of ω̄0 and ω̄k(x) → ω̄0(x)

in C2
loc(BR(0)) as k → ∞, one can thus derive that xk = 0 is the unique maximum point of

ω̄k as k → ∞, i.e., z̄k is the unique maximum point of vk when k is large enough. Hence, we

complete the proof of Theorem 3.1.

Proof of Theorem 1.2 Now, based on Theorem 3.1, we shall complete the proof of Theorem

1.2. Let uk be a nonnegative minimizer of I(Mk) and εk :=
(
Mk

a∗

)− p−1
4−N(p−1)

. Note from

Theorem 3.1 that εk = (a∗)
p−1

4−N(p−1) ε̂k and uk = M
1
2

k vk, and some calculations then yield that

ε
2

p−1

k uk(εkx+ z̄k) = (a∗)
2

4−N(p−1) ε̂
N
2

k vk

(
(a∗)

p−1
4−N(p−1) ε̂kx+ z̄k

)
→ Q(x), (3.43)

in H1(RN ) as k →∞, i.e., (1.10) holds. Moreover, as for the uniqueness and limit behavior of

the local maximum point z̄k of uk, one can directly obtain the same conclusions from Theorem

3.1.
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