References:
Aebi, H., 1984. Catalase in vitro. Method Enzymol. 105, 121–126.
Akula, R., Ravishankar, G.A., 2011. Influence of abiotic stress signals
on secondary metabolites in plants. Plant Signal. Behav. 6, 1720–1731.
Andréasson, L.E., Vass, I., Styring, S., 1995. Ca2+depletion modifies the electron transfer on the both donor and acceptor
sides in photosystem II from spinach. Biochim. Biophys. Acta 1230,
155–164.
Balaji, S., Kalaivani, T., Rajasekaran, C., 2013. Biosorption of zinc
and nickel and its effect on growth of different Spirulinastrains. CLEAN Soil Air Water 41(9999), 1–6.
Bartlett, J.E., Baranov, S.V., Ananyev, G.M., Dismukes, G.C., 2008.
Calcium controls the assembly of the photosynthetic water-oxidizing
complex: a cadmium (II) inorganic mutant of the Mn4Ca
core. Philos. Trans. R. Soc. B. 363, 1253–1261.
Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of
free proline for water-stress studies. Plant Soil 39, 205–207.
Batista, V.C.V., Pereira, I.M.C., de Oliveira Paula-Marinho, S., Canuto,
K.M., de C´assia Alves Pereira, R., odrigues, T.H.S., de Menezes Daloso,
D., Gomes-Filho, E., de Carvalho, H.H., 2019. Salicylic acid modulates
primary and volatile metabolites to alleviate salt stress-induced
photosynthesis impairment on medicinal plant Egletes viscosa.Environ. Exp. Bot. 167, 103870.
Belkadhi, A., De Haro, A., Soengas, P., Obregon, S., Cartea, M.E.,
Chaibi, W., Djebali, W., 2014. Salicylic acid increases tolerance to
oxidative stress induced by hydrogen peroxide accumulation in leaves of
cadmium-exposed flax (Linum usitatissimum L.). J. Plant Interact.
9, 647–654.
Bennett, A., Bogorad, L., 1973. Complementary chromatic adaptation in a
filamentous blue-green alga. J. Cell Biol. 58, 419–435.
Boisvert, S., Joly, D., Leclere, S., Govindachary, S., Harnois, J.,
Carpentier, R., 2007. Inhibition of the oxygen-evolving complex of
photosystem II and depletion of extrinsic polypeptides by nickel.
Biometals 20, 879–889.
Cawse. P.A., 1967. The determination of nitrate in soil solution by
ultraviolet spectrophotometry. Analyst 92, 311–315.
Chaurasia, A.K., Apte, S.K., 2011. Improved eco-friendly recombinantAnabaena sp. Strain PCC7120 with enhanced nitrogen biofertilizer
potential. Appl. Environ. Microbiol. 77, 395–399.
Chávez, S., Candau, P., 1991. An NAD-specific glutamate dehydrogenase
from cyanobacteria identification and properties. FEBS Lett. 285,
35–38.
Chen, K., Chen, L., Fan, J., Fu, J., 2013. Alleviation of heat damage to
photosystem II by nitric oxide in tall fescue. Photosynth. Res. 116,
21–31.
Ellman, G.L., 1959. Tissue sulfhydryl groups, Arch. Biochem. Biophys.
82, 70–77.
Elstner, E.F., Heupel, A., 1976. Inhibition of nitrite formation from
hydroxylammonium chloride: a simple assay for superoxide dismutase.
Anal. Biochem. 70, 616–620.
Flores, E., Herrero, A., 1994. Assimilatory nitrogen metabolism and its
regulation. In: Bryant, D.A. (Ed.), The Molecular Biology of
Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands,
pp. 487–517.
Förster, B., Osmond, C.B., Pogson, B.J., 2005. Improved survival of very
high light and oxidative stress is conferred by spontaneous
gain-of-function mutations in Chlamydomonas . Biochim. Biophys.
Acta 1709, 45–57.
Foyer, C.H., Noctor, G., 2005. Oxidant and antioxidant signalling in
plants: a re-evaluation of the concept of oxidative stress in a
physiological context. Plant Cell Environ. 28, 1056–1071.
Gahagan, H.E., Holm, R.E., Abeles, F.B., 1968. Effect of ethylene on
peroxidase activity. Physiol. Plant. 21, 1270–1279.
Gaitonde, M.K., 1967. A spectrophotometric method for the direct
determination of cysteine in the presence of other naturally occurring
amino acids. Biochem. J. 104, 627–633.
Ghassemi-Golezani, K., Lotfi, R., 2015. The impact of salicylic acid and
silicon on chlorophyll a fluorescence in mung bean under salt
stress. Russ. J. Plant Physiol. 62, 611–616.
Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutases: I.
Occurrence in higher plants. Plant Physiol. 59, 309–314.
Goodwin, T.W., 1954. Carotenoids. In: Paech, K., Tracey, M.V.E., (Ed.),
Handbook of plant analysis Vol. 3. Berlin: Springer Varlag. pp.
272–311.
Govindjee, 1995. Sixty-three years since Kautsky: chlorophyll afluorescence. Aust. J. Plant Physiol. 34, 1073–1079.
Habig, W.H., Pabst. M.J., Jakoby, W.B., 1974.
Glutathione-S -transferases, the first enzymatic step in
mercapturic acid formation. Biol. Chem. 249, 7130–7139.
Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated
chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation.
Arch. Biochem. Biophys. 125, 189–198.
Herrero, A., Flores, E., Guerrero, M.G., 1981. Regulation of nitrate
reductase levels in the cyanobacteria Anacystis nidulans ,Anabaena sp. strain 7119, and Nostoc sp. strain 6719. J.
Bacteriol. 145, 175–180.
Herrero, A., Flores, E., Guerrero, M.G., 1984. Regulation of the nitrate
reductase level in Anacystis nidulans : activity decay under
nitrogen stress. Arch. Biochem. Biophys. 234, 454–459.
Herrero, A., Guerrero, M.G., 1986. Regulation of nitrite reductase in
the cyanobacterium Anacystis nidulans . J. Gen. Microbiol. 132,
2463–2468.
Jahan, M.S., Guo, S., Baloch, A.R., Sun, J., Shu, S., Wang, Y., Ahammed,
G.J., Kabir, K., Roy, R., 2020. Melatonin alleviates nickel
phytotoxicity by improving photosynthesis, secondary metabolism and
oxidative stress tolerance in tomato seedlings. Ecotoxicol. Environ.
Saf. 197, 110593.
Jittawuttipoka, T., Planchon, M., Spalla, O., Benzerara, K., Guyot, F.,
Cassier-Chauvat, C., 2013. Multidisciplinary evidences thatSynechocystis PCC6803 exopolysaccharides operate in cell
sedimentation and protection against salt and metal stresses. PLoS One.
8(2), e55564.
Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M.,
Samborska, I.A., Cetner, M.D., Lukasik, I., Goltsev, V., Ladle, R.J.,
2016. Chlorophyll a fluorescence as a tool to monitor
physiological status of plants under abiotic stress conditions. Acta
Physiol. Plant. 38, 102.
Kalaji, H.M., Schansker, G., Ladle, R.J., Goltsev, V., Bosa, K.,
Allakhverdiev, S.I., Brestic, M., Bussotti, F., Calatayud, A.,
Da˛browski, P., Elsheery, N.I., Ferroni, L., Guidi, L., Hogewoning,
S.W., Jajoo, A., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C.,
Poli, D., Pollastrini, M., Romanowska-Duda, Z.B., Rutkowska, B.,
Seroˆdio, J., Suresh, K., Szulc, W., Tambussi, E., Yanniccari, M.,
Zivcak, M., 2014. Frequently asked questions about in vivo chlorophyll
fluorescence: practical issues. Photosynth. Res. 122, 121–158.
Kalaji, H.M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A.,
Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., Li, P., Losciale, P.,
Mishra, V.K., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C.,
Pollastrini, M., Suresh, K., Tambussi, E., Yanniccari, M., Zivcak, M.,
Cetner, M.D., Samborska, I.A., Stirbet, A., Olsovska, K., Kunderlikova,
K., Shelonzek, H., Rusinowski, S., Baba, W., 2017. Frequently asked
questions about chlorophyll fluorescence, the sequel. Photosynth. Res.
132, 13–66.
Kupper, H., Šetlík, I., Šetliková, E., Ferimazova, N., Spiller, M.,
Küpper, F.C., 2003. Copper-induced inhibition of photosynthesis:
limiting steps of in vivo copper chlorophyll formation inScenedesmus quadricauda . Funct. Plant Biol. 30, 1187–1196.
Kusnetsov, V.V., Herrmann, R.G., Kulaeva, O.N., Oelmuller, R., 1998.
Cytokinin stimulates and abscisic acid inhibits greening of etiolatedLupinus luteus cotyledons by affecting the expression of the
light-sensitive photochlorophyllide oxidoreductase. Mol. Gen. Genet.
259, 21–28.
Lee, S.Y., Damodaran, P.N., Roh, K.S., 2014. Influence of salicylic acid
on RubisCO and RubisCO activase in tobacco plant grown under sodium
chloride in vitro. Saudi J. Biol. Sci. 21, 417–426.
Ma, X., Zheng, J., Zhang, X., Hu, Q., Qian, R., 2017. Salicylic acid
alleviates the adverse effects of salt stress on Dianthus
superbus (Caryophyllaceae) by activating photosynthesis, protecting
morphological structure, and enhancing the antioxidant system. Front.
Plant Sci. 8, 600.
Martínez-Ruiz, E.B., Martínez-Jerónimo, F., 2015. Nickel has
biochemical, physiological, and structural effects on the green
microalga Ankistrodesmus falcatus : An integrative study. Aquat
Toxicol. 169, 27–36.
Mérida, A., Candau, P., Florencio, F.J., 1991. Regulation of glutamine
synthetase activity in the unicellular cyanobacteriumSynechocystis sp. Strain PCC 6803 by the nitrogen source: effect
of ammonium. J. Bacteriol. 173, 4095–4100.
Muro-Pastor, M.I., Florencio, F.J., 2003. Regulation of ammonium
assimilation in cyanobacteria. Plant Physiol. Biochem. 41, 595–603.
Muyssen, B.T.A., Brix, K.V., DeForest, D.K., Janssen, C.R., 2004. Nickel
essentiality and homeostasis in aquatic organisms. Environ. Rev. 12,
113–131.
Najafpour, M.M., Moghaddam, A.N., Allakhverdiev, S.I., 2012. Biological
water oxidation: lessons from Nature. Biochim. Biophys. Acta 1817(8),
1110–1121.
Navarro, F., Cha¨vez, S., Candau, P., Florencio, F.J., 1995. Existence
of two ferredoxinglutamate synthases in the cyanobacteriumSynechocystis sp. PCC 6803. Isolation and insertional
inactivation of gltB and gltS genes. Plant Mol. Biol. 27, 753–67.
Nnorom, I.C., Osibanjo, O., 2009. Heavy metal characterization of waste
portable rechargeable batteries used in mobile phones. Int. J. Environ.
Sci. Technol. 6(4), 641–650.
Ohmori, K., Hattori, A., 1970. Induction of nitrate and nitrite
reductases in Anabaena cylindrica . Plant Cell Physiol. 11,
873–878.
Pan, X., Deng, C., Zhang, D., Wang, J., Mua, G., Chen, Y., 2008. Toxic
effects of amoxicillin on the photosystem II of Synechocystis sp.
characterized by a variety of in-vivo chlorophyll fluorescence
tests. Aquat. Toxicol. 89, 207–213.
Peto, A., 2011. Involvement of nitric oxide and auxin in signal
transduction of copper–induced morphological responses inArabidopsis seedlings. Ann. Bot. 108, 449–457.
Pompella, A., Maellaro, E., Casini, A.F., Ferrali, M., Ciccoli, L.,
Comporti, M., 1987. Measurement of lipid peroxidation in vivo: a
comparison of different procedures. Lipids 22, 206–211.
Porra, R.J., Thompson, W.A., Kriedemann, P.E., 1989. Determination of
accurate extinction coefficients and simultaneous equations for assaying
chlorophylls a and b extracted with four different
solvents; verification of the concentration of chlorophyll standards by
atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394.
Prasad, S.M., Dwivedi, R., Zeeshan, M., 2005. Growth, photosynthetic
electron transport, and antioxidant responses of young soybean seedlings
to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43,
177-185.
Rai, L.C., Tyagi, B., Mallick, N., Rai, P.K., 1995. Interactive effects
of UV-B and copper on photosynthetic activity of the cyanobacteriumAnabaena doliolum . Environ. Exp. Bot. 35, 177–185.
Rai, L.C., Tyagi, B., Rai, P.K., Mallick, N., 1998. Interactive effects
of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus
metabolism of a N2-fixing cyanobacterium Anabaena
doliolum . Environ. Exp. Bot. 39, 221–231.
Rai, K.K., Pandey, N., Rai, S.P., 2020. Salicylic acid and nitric oxide
signaling in plant heat stress. Physiol. Plant. 168, 241–255.
Seifter, S., Dayton, S., Novic, B., Muntusylar, E., 1959. Estimation of
glycogen with anthrone reagent. Arch. Biochem. 25, 191–200.
Sharma, M., Kaushik, A., Bala, S.K., Kamra, A., 2008. Sequestration of
chromium by exopolysaccharides of Nostoc and Gleocapsafrom dilute aqueous solutions. J. Hazard. Mater. 157, 315–318.
Sharma, P., Dubey, R.S., 2005. Modulation of nitrate reductase activity
in rice seedlings under aluminium toxicity and water stress: role of
osmolytes as enzyme protectant. J. Plant Physiol. 162, 854–864.
Singh, R., Parihar, P., Prasad, S.M., 2018a. Simultaneous exposure of
sulphur and calcium hinder As toxicity: Upregulation of growth, mineral
nutrients uptake and antioxidants system. Ecotoxicol. Environ. Saf. 161,
318–331.
Singh, R., Parihar, P., Prasad, S.M., 2018b. Sulfur and calcium
simultaneously regulate photosynthetic performance and nitrogen
metabolism status in As-challenged Brassica juncea L. seedlings.
Front. Plant Sci. 9, 772.
Singh, R., Parihar, P., Prasad, S.M., 2020b. Sulphur and calcium
attenuate arsenic toxicity in Brassica by adjusting
ascorbate–glutathione cycle and sulphur metabolism. Plant Growth Regul.
https://doi.org/10.1007/s10725-020-00601-8.
Singh, R., Parihar, P., Prasad, S.M., 2020a. Interplay of calcium and
nitric oxide in improvement of growth and arsenic-induced toxicity in
mustard seedlings. Sci. Rep. 10, 6900.
Singh, V.P., Srivastava, P.K., Prasad, S.M., 2012. Differential effects
of UV-B radiation fluence rates on growth, photosynthesis, and phosphate
metabolism in two cyanobacteria under copper toxicity. Toxicol. Environ.
Chem. 94, 1511–1535.
Skopelitis, D.S., Paranychianakis, N.V., Paschalidis, K.A., 2006.
Abiotic stress generates ROS that signal expression of anionic glutamate
dehydrogenases to form glutamate for proline synthesis in tobacco and
grapevine. Plant Cell. 18, 2767–2781.
Snell, F.D., Snell, C.T., 1949. Colorimetric Methods of Analysis, vol.
3. Van Nostrand, New York, pp. 804–805.
Strasser, R.J., Srivastava, A., Tsimilli-Michael, M., 2000. The
fluorescence transient as a tool to characterize and screen
photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (Eds.), Probing
Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor &
Francis, New York, London, pp. 445–483.
Sun, C., Liu, L., Lu, L., Jin, C., Lin, X., 2018. Nitric oxide acts
downstream of hydrogen peroxide in regulating aluminum-induced
antioxidant defense that enhances aluminium resistance in wheat
seedlings. Environ. Exp. Bot. 145, 95–103.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy
metal toxicity and the environment. EXS 101, 133–164.
Tiwari, A., Singh, P., Khadim, S.K.R., Singh, A.K., Singh, U., Singh,
P., Asthana, R.K., 2019b. Role of Ca2+ as protectant
under heat stress by regulation of photosynthesis and membrane
saturation in Anabaena PCC 7120. Protoplasma 256,681–691.
Tiwari, S., Patel, A., Prasad, S.M., 2018. Kinetin alleviates chromium
toxicity on growth and PSII photochemistry in Nostoc muscorum by
regulating antioxidant system. Ecotoxicol. Environ. Saf. 161, 296–304.
Tiwari, S., Verma, N., Singh, V.P., Prasad, S.M., 2019a. Nitric oxide
ameliorates aluminium toxicity in Anabaena PCC7120: Regulation of
aluminium accumulation, exopolysaccharides secretion, photosynthesis and
oxidative stress markers. Environ Exp Bot. 161, 218–227.
Tiwari, S., Verma, N., Prasad, S.M., Singh, V.P., 2020. Cytokinin
alleviates cypermethrin toxicity in Nostoc muscorum by involving
nitric oxide: regulation of exopolysaccharides secretion PSII
photochemistry and reactive oxygen species homeostasis. Chemosphere 259,
127356.
Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some
antioxidant systems in acid rain-treated bean plants. Plant Sci. 151,
59–66.
Verma, E., Chakraborty, S., Tiwari, B., Singh, S., Mishra, A.K., 2018.
Alleviation of NaCl toxicity in the cyanobacterium Synechococcussp. PCC 7942 by exogenous calcium supplementation. J. Appl. Phycol.
30(3), 1465–1482.
Verma, N., Tiwari, S., Singh, V.P., Prasad, S.M., 2020. Nitric oxide in
plants: an ancient molecule with new tasks. Plant Growth Regul. 90,
1–13.
Wang, S., Zhang, D., Pan, X., 2012. Effects of arsenic on growth and
photosystem II (PSII) activity of Microcystis aeruginosa.Ecotoxicol. Environ. Saf. 84, 104–111.
Wu, X.X., 2013. Nitric oxide alleviates adverse salt-induced effects by
improving the photosynthetic performance and increasing the antioxidant
capacity of eggplant (Solanum melongena L.). J. Hortic. Sci.
Biotech. 88, 352–360.
Xu, Y.F., Fu, J., Chu, X., Sun, Y., Zhou, H., Hu, T., 2013. Nitric oxide
mediates abscisic acid induced light-tolerance in leaves of tall fescue
under high–light stress. Sci. Hort. 162, 1–10.
Yamamoto, Y., Kobayashi, Y., Matsumoto, H., 2001. Lipid peroxidation is
an early symptom triggered by aluminium, but not the primary cause of
elongation inhibition in pea roots. Plant Physiol. 125, 199–208.
Yamane, Y., Shikanai, T., Kashino, Y., Koike, H., Satoh, K., 2000.
Reduction of Q(A) in the dark: another cause of fluorescence Fo
increases by high temperatures in higher plants. Photosynth. Res. 63,
23–34.
Zakar, T., Laczko-Dobos, H., Toth, T.N., Gombos, Z., 2016. Carotenoids
assist in cyanobacterial photosystem II assembly and function. Front.
Plant Sci. 7, 295.
Zhang, H., Li, Y., Hu, L., Wang, S., Zhang, F.Q., Hu, K., 2008. Effects
of exogenous nitric oxide donor on antioxidant metabolism in wheat
leaves under aluminum stress. Russ. J. Plant Physiol. 55, 469–474.
Fig. 1. Effect of SA, CaCl2 and SNP on(A) growth, (B) exopolysaccharides (EPS) content,(C) NO content, and (D) Ni accumulation in Ni-stressedAnabaena Sp. PCC 7120 subjected to c-PTIO (a NO scavenger;
2-4-carboxyphenyl-4,4,5,5 -tetramethylimidazoline-1-oxyl-3-oxide)
and EGTA (a Ca scavenger; ethylene
glycol-bis(2-aminoethylether)-N,N,N′,N′ -tetraacetic acid), after
72 h of experiments. Data signifies the mean±standard error of three
replicates, each with three independent experiments (n=3). Bars followed
by different letters have significant difference atp<0.05 level according to DMRT (Duncan’s multiple range
test).
Fig. 2. Effect of SA, CaCl2 and SNP on(A) photosynthesis and (B) respiration rate, and(C) the JIP-kinetics obtained from polyphasic fast chlorophylla fluorescence in Ni-stressed Anabaena Sp. PCC 7120
subjected to c-PTIO and EGTA, after 72 h of experiments. Data signifies
the mean±standard error of three replicates, each with three independent
experiments (n=3). Bars followed by different letters have significant
difference at p<0.05 level according to DMRT.
Fig. 3. Effect of SA, CaCl2 and SNP on(A-B) nitrate (NO3−) and
nitrite (NO2−) uptake rate, and the
enzyme activities of: (C) nitrate reductase (NR), (D)nitrite reductase (NiR), (E) glutamine synthetase (GS),(F) glutamate synthase, and (G) glutamate
dehydrogenase (GDH) in Ni-stressed Anabaena Sp. PCC 7120
subjected to c-PTIO and EGTA, after 72 h of experiments. Data signifies
the mean±standard error of three replicates, each with three independent
experiments (n=3). Bars followed by different letters have significant
difference at p<0.05 level according to DMRT.
Fig. 4(a). Effect of SA, CaCl2 and SNP on the
contents of (A) superoxide radical (SOR:
O2•─), (B) hydrogen peroxide
(H2O2), and (C) malondialdehyde
(MDA) equivalents in Ni-stressed Anabaena Sp. PCC 7120 subjected
to c-PTIO and EGTA, after 72 h of experiments. Data signifies the
mean±standard error of three replicates, each with three independent
experiments (n=3). Bars followed by different letters have significant
difference at p<0.05 level according to DMRT.
Fig. 4(b). In-vivo visualization of SOR,
H2O2, lipid peroxidation (MDA), and
electrolyte leakage (EL) in Ni-stressed Anabaena Sp. PCC 7120
subjected to c-PTIO and EGTA, after 72 h of experiments.
Fig. 5. Effect of SA, CaCl2 and SNP on the
activities of enzymatic antioxidants: (A) superoxide dismutase
(SOD), (B) peroxidase (POD), (C) catalase (CAT), and(D) glutathione-S -transferase (GST) in Ni-stressedAnabaena Sp. PCC 7120 subjected to c-PTIO and EGTA, after 72 h of
experiments. Data signifies the mean±standard error of three replicates,
each with three independent experiments (n=3). Bars followed by
different letters have significant difference at p<0.05level according to DMRT.
Fig. 6. Effect of SA, CaCl2 and SNP on the
activities of non-enzymatic antioxidants: (A) cysteine (Cys),(B) proline (Pro), and (C) non-protein thiols (NPTs)
in Ni-stressed Anabaena Sp. PCC 7120 subjected to c-PTIO and
EGTA, after 72 h of experiments. Data signifies the mean±standard error
of three replicates, each with three independent experiments (n=3). Bars
followed by different letters have significant difference atp<0.05 level according to DMRT.
Fig. 7. Principal component analysis (A) of different
growth, physiological as well as biochemical parameters of Ni-stressedAnabaena Sp. PCC 7120 subjected to c-PTIO and EGTA, after 72 h of
experiments, and (B) Biplot of treatments with that of studied
parameters. DW= dry weight, PS= photosynthesis, RS= respiration, CAR=
carotenoids, CHLA= chlorophyll a , EPS= exopolysaccharides, NO=
nitric oxide, NR= nitrate reductase, NiR= nitrite reductase,
NO3= nitrate uptake rate, NO2= nitrite
uptake rate, GS= glutamine synthetase, GDH= glutamate dehydrogenase,
SOR= superoxide radical, H2O2= hydrogen
peroxide, MDA= malondialdehyde equivalents, SOD= superoxide dismutase,
POD= peroxidase, GST= glutathione-s-trasnferase, CAT= catalase,
Pro=proline, Cys= cysteine, and NPT= non-protein thiol.