References:
Aebi, H., 1984. Catalase in vitro. Method Enzymol. 105, 121–126.
Akula, R., Ravishankar, G.A., 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 6, 1720–1731.
Andréasson, L.E., Vass, I., Styring, S., 1995. Ca2+depletion modifies the electron transfer on the both donor and acceptor sides in photosystem II from spinach. Biochim. Biophys. Acta 1230, 155–164.
Balaji, S., Kalaivani, T., Rajasekaran, C., 2013. Biosorption of zinc and nickel and its effect on growth of different Spirulinastrains. CLEAN Soil Air Water 41(9999), 1–6.
Bartlett, J.E., Baranov, S.V., Ananyev, G.M., Dismukes, G.C., 2008. Calcium controls the assembly of the photosynthetic water-oxidizing complex: a cadmium (II) inorganic mutant of the Mn4Ca core. Philos. Trans. R. Soc. B. 363, 1253–1261.
Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207.
Batista, V.C.V., Pereira, I.M.C., de Oliveira Paula-Marinho, S., Canuto, K.M., de C´assia Alves Pereira, R., odrigues, T.H.S., de Menezes Daloso, D., Gomes-Filho, E., de Carvalho, H.H., 2019. Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa.Environ. Exp. Bot. 167, 103870.
Belkadhi, A., De Haro, A., Soengas, P., Obregon, S., Cartea, M.E., Chaibi, W., Djebali, W., 2014. Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.). J. Plant Interact. 9, 647–654.
Bennett, A., Bogorad, L., 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58, 419–435.
Boisvert, S., Joly, D., Leclere, S., Govindachary, S., Harnois, J., Carpentier, R., 2007. Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 20, 879–889.
Cawse. P.A., 1967. The determination of nitrate in soil solution by ultraviolet spectrophotometry. Analyst 92, 311–315.
Chaurasia, A.K., Apte, S.K., 2011. Improved eco-friendly recombinantAnabaena sp. Strain PCC7120 with enhanced nitrogen biofertilizer potential. Appl. Environ. Microbiol. 77, 395–399.
Chávez, S., Candau, P., 1991. An NAD-specific glutamate dehydroge­nase from cyanobacteria identification and properties. FEBS Lett. 285, 35–38.
Chen, K., Chen, L., Fan, J., Fu, J., 2013. Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. Photosynth. Res. 116, 21–31.
Ellman, G.L., 1959. Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82, 70–77.
Elstner, E.F., Heupel, A., 1976. Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal. Biochem. 70, 616–620.
Flores, E., Herrero, A., 1994. Assimilatory nitrogen metabolism and its regulation. In: Bryant, D.A. (Ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 487–517.
Förster, B., Osmond, C.B., Pogson, B.J., 2005. Improved survival of very high light and oxidative stress is conferred by spontaneous gain-of-function mutations in Chlamydomonas . Biochim. Biophys. Acta 1709, 45–57.
Foyer, C.H., Noctor, G., 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28, 1056–1071.
Gahagan, H.E., Holm, R.E., Abeles, F.B., 1968. Effect of ethylene on peroxidase activity. Physiol. Plant. 21, 1270–1279.
Gaitonde, M.K., 1967. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem. J. 104, 627–633.
Ghassemi-Golezani, K., Lotfi, R., 2015. The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russ. J. Plant Physiol. 62, 611–616.
Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59, 309–314.
Goodwin, T.W., 1954. Carotenoids. In: Paech, K., Tracey, M.V.E., (Ed.), Handbook of plant analysis Vol. 3. Berlin: Springer Varlag. pp. 272–311.
Govindjee, 1995. Sixty-three years since Kautsky: chlorophyll afluorescence. Aust. J. Plant Physiol. 34, 1073–1079.
Habig, W.H., Pabst. M.J., Jakoby, W.B., 1974. Glutathione-S -transferases, the first enzymatic step in mercapturic acid formation. Biol. Chem. 249, 7130–7139.
Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.
Herrero, A., Flores, E., Guerrero, M.G., 1981. Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans ,Anabaena sp. strain 7119, and Nostoc sp. strain 6719. J. Bacteriol. 145, 175–180.
Herrero, A., Flores, E., Guerrero, M.G., 1984. Regulation of the nitrate reductase level in Anacystis nidulans : activity decay under nitrogen stress. Arch. Biochem. Biophys. 234, 454–459.
Herrero, A., Guerrero, M.G., 1986. Regulation of nitrite reductase in the cyanobacterium Anacystis nidulans . J. Gen. Microbiol. 132, 2463–2468.
Jahan, M.S., Guo, S., Baloch, A.R., Sun, J., Shu, S., Wang, Y., Ahammed, G.J., Kabir, K., Roy, R., 2020. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol. Environ. Saf. 197, 110593.
Jittawuttipoka, T., Planchon, M., Spalla, O., Benzerara, K., Guyot, F., Cassier-Chauvat, C., 2013. Multidisciplinary evidences thatSynechocystis PCC6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PLoS One. 8(2), e55564.
Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Lukasik, I., Goltsev, V., Ladle, R.J., 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38, 102.
Kalaji, H.M., Schansker, G., Ladle, R.J., Goltsev, V., Bosa, K., Allakhverdiev, S.I., Brestic, M., Bussotti, F., Calatayud, A., Da˛browski, P., Elsheery, N.I., Ferroni, L., Guidi, L., Hogewoning, S.W., Jajoo, A., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C., Poli, D., Pollastrini, M., Romanowska-Duda, Z.B., Rutkowska, B., Seroˆdio, J., Suresh, K., Szulc, W., Tambussi, E., Yanniccari, M., Zivcak, M., 2014. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth. Res. 122, 121–158.
Kalaji, H.M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., Li, P., Losciale, P., Mishra, V.K., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C., Pollastrini, M., Suresh, K., Tambussi, E., Yanniccari, M., Zivcak, M., Cetner, M.D., Samborska, I.A., Stirbet, A., Olsovska, K., Kunderlikova, K., Shelonzek, H., Rusinowski, S., Baba, W., 2017. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 132, 13–66.
Kupper, H., Šetlík, I., Šetliková, E., Ferimazova, N., Spiller, M., Küpper, F.C., 2003. Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation inScenedesmus quadricauda . Funct. Plant Biol. 30, 1187–1196.
Kusnetsov, V.V., Herrmann, R.G., Kulaeva, O.N., Oelmuller, R., 1998. Cytokinin stimulates and abscisic acid inhibits greening of etiolatedLupinus luteus cotyledons by affecting the expression of the light-sensitive photochlorophyllide oxidoreductase. Mol. Gen. Genet. 259, 21–28.
Lee, S.Y., Damodaran, P.N., Roh, K.S., 2014. Influence of salicylic acid on RubisCO and RubisCO activase in tobacco plant grown under sodium chloride in vitro. Saudi J. Biol. Sci. 21, 417–426.
Ma, X., Zheng, J., Zhang, X., Hu, Q., Qian, R., 2017. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front. Plant Sci. 8, 600.
Martínez-Ruiz, E.B., Martínez-Jerónimo, F., 2015. Nickel has biochemical, physiological, and structural effects on the green microalga Ankistrodesmus falcatus : An integrative study. Aquat Toxicol. 169, 27–36.
Mérida, A., Candau, P., Florencio, F.J., 1991. Regulation of glutamine synthetase activity in the unicellular cyanobacteriumSynechocystis sp. Strain PCC 6803 by the nitrogen source: effect of ammonium. J. Bacte­riol. 173, 4095–4100.
Muro-Pastor, M.I., Florencio, F.J., 2003. Regulation of ammonium assimilation in cyanobacteria. Plant Physiol. Biochem. 41, 595–603.
Muyssen, B.T.A., Brix, K.V., DeForest, D.K., Janssen, C.R., 2004. Nickel essentiality and homeostasis in aquatic organisms. Environ. Rev. 12, 113–131.
Najafpour, M.M., Moghaddam, A.N., Allakhverdiev, S.I., 2012. Biological water oxidation: lessons from Nature. Biochim. Biophys. Acta 1817(8), 1110–1121.
Navarro, F., Cha¨vez, S., Candau, P., Florencio, F.J., 1995. Existence of two ferredoxinglutamate synthases in the cyanobacteriumSynechocystis sp. PCC 6803. Isolation and insertional inactivation of gltB and gltS genes. Plant Mol. Biol. 27, 753–67.
Nnorom, I.C., Osibanjo, O., 2009. Heavy metal characterization of waste portable rechargeable batteries used in mobile phones. Int. J. Environ. Sci. Technol. 6(4), 641–650.
Ohmori, K., Hattori, A., 1970. Induction of nitrate and nitrite reductases in Anabaena cylindrica . Plant Cell Physiol. 11, 873–878.
Pan, X., Deng, C., Zhang, D., Wang, J., Mua, G., Chen, Y., 2008. Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in-vivo chlorophyll fluorescence tests. Aquat. Toxicol. 89, 207–213.
Peto, A., 2011. Involvement of nitric oxide and auxin in signal transduction of copper–induced morphological responses inArabidopsis seedlings. Ann. Bot. 108, 449–457.
Pompella, A., Maellaro, E., Casini, A.F., Ferrali, M., Ciccoli, L., Comporti, M., 1987. Measurement of lipid peroxidation in vivo: a comparison of different procedures. Lipids 22, 206–211.
Porra, R.J., Thompson, W.A., Kriedemann, P.E., 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents; verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394.
Prasad, S.M., Dwivedi, R., Zeeshan, M., 2005. Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43, 177-185.
Rai, L.C., Tyagi, B., Mallick, N., Rai, P.K., 1995. Interactive effects of UV-B and copper on photosynthetic activity of the cyanobacteriumAnabaena doliolum . Environ. Exp. Bot. 35, 177–185.
Rai, L.C., Tyagi, B., Rai, P.K., Mallick, N., 1998. Interactive effects of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus metabolism of a N2-fixing cyanobacterium Anabaena doliolum . Environ. Exp. Bot. 39, 221–231.
Rai, K.K., Pandey, N., Rai, S.P., 2020. Salicylic acid and nitric oxide signaling in plant heat stress. Physiol. Plant. 168, 241–255.
Seifter, S., Dayton, S., Novic, B., Muntusylar, E., 1959. Estimation of glycogen with anthrone reagent. Arch. Biochem. 25, 191–200.
Sharma, M., Kaushik, A., Bala, S.K., Kamra, A., 2008. Sequestration of chromium by exopolysaccharides of Nostoc and Gleocapsafrom dilute aqueous solutions. J. Hazard. Mater. 157, 315–318.
Sharma, P., Dubey, R.S., 2005. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J. Plant Physiol. 162, 854–864.
Singh, R., Parihar, P., Prasad, S.M., 2018a. Simultaneous exposure of sulphur and calcium hinder As toxicity: Upregulation of growth, mineral nutrients uptake and antioxidants system. Ecotoxicol. Environ. Saf. 161, 318–331.
Singh, R., Parihar, P., Prasad, S.M., 2018b. Sulfur and calcium simultaneously regulate photosynthetic performance and nitrogen metabolism status in As-challenged Brassica juncea L. seedlings. Front. Plant Sci. 9, 772.
Singh, R., Parihar, P., Prasad, S.M., 2020b. Sulphur and calcium attenuate arsenic toxicity in Brassica by adjusting ascorbate–glutathione cycle and sulphur metabolism. Plant Growth Regul. https://doi.org/10.1007/s10725-020-00601-8.
Singh, R., Parihar, P., Prasad, S.M., 2020a. Interplay of calcium and nitric oxide in improvement of growth and arsenic-induced toxicity in mustard seedlings. Sci. Rep. 10, 6900.
Singh, V.P., Srivastava, P.K., Prasad, S.M., 2012. Differential effects of UV-B radiation fluence rates on growth, photosynthesis, and phosphate metabolism in two cyanobacteria under copper toxicity. Toxicol. Environ. Chem. 94, 1511–1535.
Skopelitis, D.S., Paranychianakis, N.V., Paschalidis, K.A., 2006. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell. 18, 2767–2781.
Snell, F.D., Snell, C.T., 1949. Colorimetric Methods of Analysis, vol. 3. Van Nostrand, New York, pp. 804–805.
Strasser, R.J., Srivastava, A., Tsimilli-Michael, M., 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (Eds.), Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor & Francis, New York, London, pp. 445–483.
Sun, C., Liu, L., Lu, L., Jin, C., Lin, X., 2018. Nitric oxide acts downstream of hydrogen peroxide in regulating aluminum-induced antioxidant defense that enhances aluminium resistance in wheat seedlings. Environ. Exp. Bot. 145, 95–103.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity and the environment. EXS 101, 133–164.
Tiwari, A., Singh, P., Khadim, S.K.R., Singh, A.K., Singh, U., Singh, P., Asthana, R.K., 2019b. Role of Ca2+ as protectant under heat stress by regulation of photosynthesis and membrane saturation in Anabaena PCC 7120. Protoplasma 256,681–691.
Tiwari, S., Patel, A., Prasad, S.M., 2018. Kinetin alleviates chromium toxicity on growth and PSII photochemistry in Nostoc muscorum by regulating antioxidant system. Ecotoxicol. Environ. Saf. 161, 296–304.
Tiwari, S., Verma, N., Singh, V.P., Prasad, S.M., 2019a. Nitric oxide ameliorates aluminium toxicity in Anabaena PCC7120: Regulation of aluminium accumulation, exopolysaccharides secretion, photosynthesis and oxidative stress markers. Environ Exp Bot. 161, 218–227.
Tiwari, S., Verma, N., Prasad, S.M., Singh, V.P., 2020. Cytokinin alleviates cypermethrin toxicity in Nostoc muscorum by involving nitric oxide: regulation of exopolysaccharides secretion PSII photochemistry and reactive oxygen species homeostasis. Chemosphere 259, 127356.
Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151, 59–66.
Verma, E., Chakraborty, S., Tiwari, B., Singh, S., Mishra, A.K., 2018. Alleviation of NaCl toxicity in the cyanobacterium Synechococcussp. PCC 7942 by exogenous calcium supplementation. J. Appl. Phycol. 30(3), 1465–1482.
Verma, N., Tiwari, S., Singh, V.P., Prasad, S.M., 2020. Nitric oxide in plants: an ancient molecule with new tasks. Plant Growth Regul. 90, 1–13.
Wang, S., Zhang, D., Pan, X., 2012. Effects of arsenic on growth and photosystem II (PSII) activity of Microcystis aeruginosa.Ecotoxicol. Environ. Saf. 84, 104–111.
Wu, X.X., 2013. Nitric oxide alleviates adverse salt-induced effects by improving the photosynthetic performance and increasing the antioxidant capacity of eggplant (Solanum melongena  L.). J. Hortic. Sci. Biotech. 88, 352–360.
Xu, Y.F., Fu, J., Chu, X., Sun, Y., Zhou, H., Hu, T., 2013. Nitric oxide mediates abscisic acid induced light-tolerance in leaves of tall fescue under high–light stress. Sci. Hort. 162, 1–10.
Yamamoto, Y., Kobayashi, Y., Matsumoto, H., 2001. Lipid peroxidation is an early symptom triggered by aluminium, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 125, 199–208.
Yamane, Y., Shikanai, T., Kashino, Y., Koike, H., Satoh, K., 2000. Reduction of Q(A) in the dark: another cause of fluorescence Fo increases by high temperatures in higher plants. Photosynth. Res. 63, 23–34.
Zakar, T., Laczko-Dobos, H., Toth, T.N., Gombos, Z., 2016. Carotenoids assist in cyanobacterial photosystem II assembly and function. Front. Plant Sci. 7, 295.
Zhang, H., Li, Y., Hu, L., Wang, S., Zhang, F.Q., Hu, K., 2008. Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ. J. Plant Physiol. 55, 469–474.
Fig. 1. Effect of SA, CaCl2 and SNP on(A) growth, (B) exopolysaccharides (EPS) content,(C) NO content, and (D) Ni accumulation in Ni-stressedAnabaena Sp. PCC 7120 subjected to c-PTIO (a NO scavenger; 2-4-carboxyphenyl-4,4,5,5 -tetramethylimidazoline-1-oxyl-3-oxide) and EGTA (a Ca scavenger; ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′ -tetraacetic acid), after 72 h of experiments. Data signifies the mean±standard error of three replicates, each with three independent experiments (n=3). Bars followed by different letters have significant difference atp<0.05 level according to DMRT (Duncan’s multiple range test).
Fig. 2. Effect of SA, CaCl2 and SNP on(A) photosynthesis and (B) respiration rate, and(C) the JIP-kinetics obtained from polyphasic fast chlorophylla fluorescence in Ni-stressed Anabaena Sp. PCC 7120 subjected to c-PTIO and EGTA, after 72 h of experiments. Data signifies the mean±standard error of three replicates, each with three independent experiments (n=3). Bars followed by different letters have significant difference at p<0.05 level according to DMRT.
Fig. 3. Effect of SA, CaCl2 and SNP on(A-B) nitrate (NO3) and nitrite (NO2) uptake rate, and the enzyme activities of: (C) nitrate reductase (NR), (D)nitrite reductase (NiR), (E) glutamine synthetase (GS),(F) glutamate synthase, and (G) glutamate dehydrogenase (GDH) in Ni-stressed Anabaena Sp. PCC 7120 subjected to c-PTIO and EGTA, after 72 h of experiments. Data signifies the mean±standard error of three replicates, each with three independent experiments (n=3). Bars followed by different letters have significant difference at p<0.05 level according to DMRT.
Fig. 4(a). Effect of SA, CaCl2 and SNP on the contents of (A) superoxide radical (SOR: O2•─), (B) hydrogen peroxide (H2O2), and (C) malondialdehyde (MDA) equivalents in Ni-stressed Anabaena Sp. PCC 7120 subjected to c-PTIO and EGTA, after 72 h of experiments. Data signifies the mean±standard error of three replicates, each with three independent experiments (n=3). Bars followed by different letters have significant difference at p<0.05 level according to DMRT.
Fig. 4(b). In-vivo visualization of SOR, H2O2, lipid peroxidation (MDA), and electrolyte leakage (EL) in Ni-stressed Anabaena Sp. PCC 7120 subjected to c-PTIO and EGTA, after 72 h of experiments.
Fig. 5. Effect of SA, CaCl2 and SNP on the activities of enzymatic antioxidants: (A) superoxide dismutase (SOD), (B) peroxidase (POD), (C) catalase (CAT), and(D) glutathione-S -transferase (GST) in Ni-stressedAnabaena Sp. PCC 7120 subjected to c-PTIO and EGTA, after 72 h of experiments. Data signifies the mean±standard error of three replicates, each with three independent experiments (n=3). Bars followed by different letters have significant difference at p<0.05level according to DMRT.
Fig. 6. Effect of SA, CaCl2 and SNP on the activities of non-enzymatic antioxidants: (A) cysteine (Cys),(B) proline (Pro), and (C) non-protein thiols (NPTs) in Ni-stressed Anabaena Sp. PCC 7120 subjected to c-PTIO and EGTA, after 72 h of experiments. Data signifies the mean±standard error of three replicates, each with three independent experiments (n=3). Bars followed by different letters have significant difference atp<0.05 level according to DMRT.
Fig. 7. Principal component analysis (A) of different growth, physiological as well as biochemical parameters of Ni-stressedAnabaena Sp. PCC 7120 subjected to c-PTIO and EGTA, after 72 h of experiments, and (B) Biplot of treatments with that of studied parameters. DW= dry weight, PS= photosynthesis, RS= respiration, CAR= carotenoids, CHLA= chlorophyll a , EPS= exopolysaccharides, NO= nitric oxide, NR= nitrate reductase, NiR= nitrite reductase, NO3= nitrate uptake rate, NO2= nitrite uptake rate, GS= glutamine synthetase, GDH= glutamate dehydrogenase, SOR= superoxide radical, H2O2= hydrogen peroxide, MDA= malondialdehyde equivalents, SOD= superoxide dismutase, POD= peroxidase, GST= glutathione-s-trasnferase, CAT= catalase, Pro=proline, Cys= cysteine, and NPT= non-protein thiol.