Reference
Amexis, G., Oeth, P., Abel, K., Ivshina, A., Pelloquin, F., Cantor, C. R., . . . Chumakov, K. (2001). Quantitative mutant analysis of viral quasispecies by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proceedings of the National Academy of Sciences, 98 (21), 12097-12102. doi:https://doi.org/10.1073/pnas.211423298
Azeem, A., Rashid, I., Hassan, M. M., Asad, M., Kaukab, G., Tehseen, A., & Aamir, S. (2020). A review on foot and mouth disease in dairy animals, etiology, pathogenesis and clinical findings. Pure Applied Biology, 9 (1), 821-832. doi: http://dx.doi.org/10.19045/bspab.2020.90088
Bagheri, M., Norouzi, H. R., Hossienizadeh, S. M. J., Es-haghi, A., & Ghassempour, A. (2018). Development and modeling of two-dimensional fast protein liquid chromatography for producing nonstructural protein-free food-and-mouth diseases virus vaccine. J. Chromatogr. B, 1096 , 113-121. doi:https://doi.org/10.1016/j.jchromb.2018.08.014
Bailly, M., & Tondeur, D. (1981). Two-way chromatography: flow reversal in non-linear preparative liquid chromatography. Chemical Engineering Science, 36 (2), 455-469. doi:https://doi.org/10.1016/0009-2509(81)85028-2
Benedini, L. J., Figueiredo, D., Cabrera-Crespo, J., Gonçalves, V. M., Silva, G. G., Campani, G., . . . Furlan, F. F. (2020). Modeling and simulation of anion exchange chromatography for purification of proteins in complex mixtures. Journal of Chromatography A, 1613 , 460685. doi:https://doi.org/10.1016/j.chroma.2019.460685
Calderaro, A., Arcangeletti, M.-C., Rodighiero, I., Buttrini, M., Gorrini, C., Motta, F., . . . De Conto, F. (2014). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. J Scientific reports, 4 (1), 1-10. doi:https://doi.org/10.1038/srep06803
Chisti, Y., & Moo-Young, M. (1990). Large scale protein separations: engineering aspects of chromatography. J Biotechnology advances, 8 (4), 699-708. doi:https://doi.org/10.1016/0734-9750(90)91992-P
Domingo, E., Baranowski, E., Escarmı́s, C., & Sobrino, F. (2002). Foot-and-mouth disease virus. J Comparative immunology, microbiology infectious diseases, 25 (5-6), 297-308. doi:https://doi.org/10.1016/S0147-9571(02)00027-9
Ernest, M. V., Whitley, R. D., Ma, Z., & Wang, N.-H. L. (1997). Effects of mass action equilibria on fixed-bed multicomponent ion-exchange dynamics. Industrial & engineering chemistry research, 36 (1), 212-226. doi:https://doi.org/10.1021/ie960167u
Ferreira, G. N., Monteiro, G. A., Prazeres, D. M., & Cabral, J. M. (2000). Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. J. Trends in biotechnology, 18 (9), 380-388. doi:https://doi.org/10.1016/S0167-7799(00)01475-X
Frenz, J., & Horváth, C. (1985). High performance displacement chromatography: calculation and experimental verification of zone development. J AIChE journal, 31 (3), 400-409. doi:https://doi.org/10.1002/aic.690310307
Gavier-Widen, D., Meredith, A., & Duff, J. P. (2012). Infectious Diseases of Wild Mammals and Birds in Europe : Wiley.
Giebel, R., Worden, C., Rust, S., Kleinheinz, G., Robbins, M., & Sandrin, T. (2010). Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): applications and challenges. In Advances in applied microbiology(Vol. 71, pp. 149-184): Elsevier.
Grubman, M. J., & Baxt, B. (2004). Foot-and-mouth disease. J Clinical microbiology reviews, 17 (2), 465-493. doi:https://doi.org/10.1128/CMR.17.2.465-493.2004
Gu, T. (2015). Mathematical Modeling and Scale-up of Liquid Chromatography: With Application Examples : Springer.
Harmsen, M., Jansen, J., Westra, D., & Coco-Martin, J. (2010). Characterization of foot-and-mouth disease virus antigen by surface-enhanced laser desorption ionization-time of flight-mass spectrometry in aqueous and oil-emulsion formulations. J. Vaccine, 28 (19), 3363-3370. doi:https://doi.org/10.1016/j.vaccine.2010.02.084
Hassan, A. I. (2016). Effect of different culture systems on the production of foot and mouth disease trivalent vaccine. J Veterinary World, 9 (1), 32. doi: https://doi.org/10.14202/vetworld.2016.32-37
Heath, N., Grant, L., De Oliveira, T. M., Rowlinson, R., Osteikoetxea, X., Dekker, N., & Overman, R. (2018). Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography.J Scientific reports, 8 (1), 1-12. doi:https://doi.org/10.1038/s41598-018-24163-y
Helfferich, F., & James, D. (1970). An equilibrium theory for rare-earth separation by displacement development. J Journal of Chromatography A, 46 , 1-28. doi:https://doi.org/10.1016/S0021-9673(00)83961-8
Ilina, E. N., Malakhova, M. V., Generozov, E. V., Nikolaev, E. N., & Govorun, V. M. (2005). Matrix-assisted laser desorption ionization-time of flight (mass spectrometry) for hepatitis C virus genotyping.Journal of clinical microbiology, 43 (6), 2810-2815. doi: http://dx.doi.org/10.1128/JCM.43.6.2810-2815.2005
Kim, H., Kim, A.-Y., Kim, J.-S., Lee, J.-M., Kwon, M., Bae, S., . . . Ko, Y.-J. (2019). Determination of the optimal method for the concentration and purification of 146S particles for foot-and-mouth disease vaccine production. J. Virol. Methods, 269 , 26-29. doi:https://doi.org/10.1016/j.jviromet.2019.04.009
Kleid, D. G., Yansura, D., Small, B., Dowbenko, D., Moore, D. M., Grubman, M. J., . . . Bachrach, H. L. (1981). Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine.J. Science, 214 (4525), 1125-1129. doi:https://doi.org/10.1126/science.6272395
Klein, G., & Helfferich, F. G. (1970). Multicomponent Chromatography: Theory of Interference .
Kol, S., Ley, D., Wulff, T., Decker, M., Arnsdorf, J., Schoffelen, S., . . . Chiang, A. W. (2020). Multiplex secretome engineering enhances recombinant protein production and purity. J Nature communications, 11 (1), 1-10. doi:https://doi.org/10.1038/s41467-020-15866-w
Kramberger, P., Urbas, L., & Štrancar, A. (2015). Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages. J Human vaccines immunotherapeutics, 11 (4), 1010-1021. doi:https://doi.org/10.1080/21645515.2015.1009817
Lee, F., Jong, M.-H., & Yang, D.-W. (2006). Presence of antibodies to non-structural proteins of foot-and-mouth disease virus in repeatedly vaccinated cattle. J Veterinary microbiology, 115 (1-3), 14-20. doi:https://doi.org/10.1016/j.vetmic.2005.12.017
Lee, M. J., Jo, H., Park, S. H., Ko, M.-K., Kim, S.-M., Kim, B., & Park, J.-H. (2020). Advanced Foot-And-Mouth Disease Vaccine Platform for Stimulation of Simultaneous Cellular and Humoral Immune Responses.J Vaccines, 8 (2), 254. doi:https://doi.org/10.3390/vaccines8020254
Lee, S.-Y., Lee, Y.-J., Kim, R.-H., Park, J.-N., Park, M.-E., Ko, M.-K., . . . Kim, S.-M. (2017). Rapid engineering of foot-and-mouth disease vaccine and challenge viruses. Journal of Virology, 91 (16). doi:https://doi.org/10.1128/jvi.00155-17
Li, H., Yang, Y., Zhang, Y., Zhang, S., Zhao, Q., Zhu, Y., . . . Su, Z. (2015). A hydrophobic interaction chromatography strategy for purification of inactivated foot-and-mouth disease virus. Protein. Expres. Purif., 113 , 23-29. doi:https://doi.org/10.1016/j.pep.2015.04.011
Liang, T., Yang, D., Liu, M., Sun, C., Wang, F., Wang, J., . . . Yu, L. (2014). Selection and characterization of an acid-resistant mutant of serotype O foot-and-mouth disease virus. J Archives of virology, 159 (4), 657-667. doi:https://doi.org/10.1007/s00705-013-1872-7
MacDonald, J. (2018). Prospects of Plant-Based Vaccines in Veterinary Medicine : Springer.
Martin, A., & Synge, R. M. (1941). A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. J Biochemical Journal, 35 (12), 1358. doi:https://doi.org/10.1042/bj0351358
Mehay, A., & Gu, T. (2014). A general rate model of ion-exchange chromatography for investigating ion-exchange behavior and scale-up.J Microb Biochem Technol, 6 , 216-222. doi:https://doi.org/10.4172/1948-5948.1000147
Namatovu, A., Wekesa, S. N., Tjørnehøj, K., Dhikusooka, M. T., Muwanika, V. B., Siegsmund, H. R., & Ayebazibwe, C. (2013). Laboratory capacity for diagnosis of foot-and-mouth disease in Eastern Africa: implications for the progressive control pathway. J BMC veterinary research, 9 (1), 19. doi:https://doi.org/10.1186/1746-6148-9-19
Rhee, H. K., & Amundson, N. R. (1982). Analysis of multicomponent separation by displacement development. J AIChE journal, 28 (3), 423-433. doi:https://doi.org/10.1002/aic.690280310
Rodrigues, A., Dias, M., & Lopes, J. (1991). Theory of linear and nonlinear chromatography. In Chromatographic and Membrane Processes in Biotechnology (pp. 25-52): Springer.
Ruelle, V., Moualij, B. E., Zorzi, W., Ledent, P., & Pauw, E. D. (2004). Rapid identification of environmental bacterial strains by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. J Rapid Communications in Mass Spectrometry, 18 (18), 2013-2019. doi:https://doi.org/10.1002/rcm.1584
Ruthven, D. M. (1984). Principles of adsorption and adsorption processes : John Wiley & Sons.
Santry, L. A., Jacquemart, R., Vandersluis, M., Zhao, M., Domm, J. M., McAusland, T. M., . . . Wootton, S. K. (2020). Interference chromatography: a novel approach to optimizing chromatographic selectivity and separation performance for virus purification. J BMC biotechnology, 20 (1), 1-15. doi:https://doi.org/10.1186/s12896-020-00627-w
Schmidt, M., Hafner, M., & Frech, C. (2014). Modeling of salt and pH gradient elution in ion‐exchange chromatography. Journal of separation science, 37 (1-2), 5-13. doi:https://doi.org/10.1002/jssc.201301007
Sjöholm, M. I., Dillner, J., & Carlson, J. (2008). Multiplex detection of human herpesviruses from archival specimens by using matrix-assisted laser desorption ionization-time of flight mass spectrometry.Journal of clinical microbiology, 46 (2), 540-545. doi:https://doi.org/10.1128/JCM.01565-07
Soleimani Mashhadi, I., Shahmirzaie, M., Aliahmadi, A., Safarnejad, M. R., & Ghassempour, A. (2020). Conjugation of Single-Chain Variable Fragment Antibody to Magnetic Nanoparticles and Screening of Fig Mosaic Virus by MALDI TOF Mass Spectrometry. J Analytical Chemistry . doi:https://doi.org/10.1021/acs.analchem.0c01119
Tseng, Y.-F., Weng, T.-C., Lai, C.-C., Chen, P.-L., Lee, M.-S., & Hu, A. Y.-C. (2018). A fast and efficient purification platform for cell-based influenza viruses by flow-through chromatography. J Vaccines, 36 (22), 3146-3152. doi:https://doi.org/10.1016/j.vaccine.2017.03.016
Valkama, A. J., Oruetxebarria, I., Lipponen, E. M., Leinonen, H. M., Käyhty, P., Hynynen, H., . . . Heikura, T. (2020). Development of large-scale downstream processing for lentiviral vectors. J Molecular Therapy-Methods Clinical Development . doi:https://doi.org/10.1016/j.omtm.2020.03.025
Wang, C., Mulagapati, S. H. R., Chen, Z., Du, J., Zhao, X., Xi, G., . . . Schmelzer, A. E. (2019). Developing an Anion Exchange Chromatography Assay for Determining Empty and Full Capsid Contents in AAV6. 2. J Molecular Therapy-Methods Clinical Development, 15 , 257-263. doi:https://doi.org/10.1016/j.omtm.2019.09.006
Yamamoto, S., Nakanishi, K., & Matsuno, R. (1988). Ion-exchange chromatography of proteins : CRC Press.
Yamamoto, S., Nakanishi, K., Matsuno, R., & Kamikubo, T. (1983a). Ion exchange chromatography of proteins—prediction of elution curves and operating conditions. I. Theoretical considerations. Biotechnology and bioengineering, 25 (6), 1465-1483. doi:https://doi.org/10.1002/bit.260250605
Yamamoto, S., Nakanishi, K., Matsuno, R., & Kamikubo, T. (1983b). Ion exchange chromatography of proteins—prediction of elution curves and operating conditions. II. Experimental verification. Biotechnology and bioengineering, 25 (5), 1373-1391. doi:https://doi.org/10.1002/bit.260250516
Zhao, M., Vandersluis, M., Stout, J., Haupts, U., Sanders, M., & Jacquemart, R. (2019). Affinity chromatography for vaccines manufacturing: Finally ready for prime time? J Vaccines, 37 (36), 5491-5503. doi:https://doi.org/10.1016/j.vaccine.2018.02.090
Figure captions:
Fig. 1 . Investigated downstream procedure. Suitability of anion-exchange (Q-Sepharose XL) followed by size exclusion Superdex 200 prep grade (pg) for capturing and polishing step. Q-Sepharose XL was fed with 20 fold concentrate of primary feed stock obtained from tangential flow filtration. A final concentration step was included after polishing step for decrease purified sample volume. Then Tris-HCl buffer was replaced by phosphate buffer through diafiltration (DF) before inactivation and formulation.
Fig. 2 . Elution profile of FMDV from 400×16 mm, I.D. column of Q-sepharose XL (A). Crude FMDV was loaded after dilution with initial buffer, Tris-HCl (20 mM, pH 7.3) and then eluted with elution buffer, Tris-HCl (20 mM, pH 7.3 containing 500 mM KCl). Separation conditions were set as follows: volume of injection: 50 mL, dilution factor: 6, flow rate for sample loading: 3 mL/min, flow rate for elution step: 8 mL/min. Pooled virus fraction was collected from first dimension and applied to the 600×26 mm, I.D. column of Sup-200 stationary phase in the second dimension (B). Separation conditions were set as follows: mobile phase composed 20 mM Tris-HCl (150 mM NaCl, pH 7.3), flow rate 2.5 mL/min and injection volume 4 mL. Chromatograms in both dimension were recorded at 280 nm.
Fig. 3 . Elution profile of FMDV from 400×16 mm, I.D. column of Q-Sepharose XL (A). Crude FMDV was loaded after dilution with initial buffer, Tris-HCl (20 mM, pH 7.3) and then eluted with elution buffer, Tris-HCl (20 mM, pH 7.3 containing 500 mM KCl). Separation conditions were set as follows: volume of injection: 100 mL, dilution factor: 6, flow rate for sample loading: 3 mL/min, flow rate for elution step: 8 mL/min. Pooled virus fraction was collected from first dimension and applied to the 600×26 mm, I.D. column of Sup-200 stationary phase in the second dimension (B). Separation conditions were set as follows: mobile phase composed 20 mM Tris-HCl (150 mM NaCl, pH 7.3), flow rate 2.5 mL/min and injection volume 4 mL. Chromatograms in both dimension were recorded in 280 nm.
Fig. 4. Application HP-SEC on Ultrahydrogel Linear (300 × 7.8 mm, I.D.) analytical column for evaluation fingerprint elution profile during three stage purification strategy. Solid line (Primary crude sample), Dash line (Intermediate concentration step), Dotted line (Second dimension). HP-SEC was performed as follows: mobile phase; 0.1 M Na2SO4 in 50 mM PBS (pH7.0), injection volume: 50 µl, flow-rate, 0.6 mL/min and detection wavelength: 280 nm.
Fig. 5. SDS–PAGE of purified FMDV vaccine. Lane 1, Protein markers; Lane 2, 2D-AEC×SEC purified FMDV. The identity of the final product from 2D-AEC×SEC was confirmed by presence of VP1-3 in 20-35 kD and VP4 in10 kD.
Fig 6. MALDI-TOF-MS profiles of purified FMDV particles by 2D-AEC×SEC in low molecular weight 2–20 kD (A ),medium molecular weight 20–50 kD (B ) and high molecular weight 50-100 kD (C ).
Fig 7. Characterization of purified FMDV particles by (A) DLS analysis and (B) TEM imaging.