References
Abe, M., Honda, A., Hoshizaki, K., & Miguchi, H. (2008). Advantage of early seedling emergence in Fagus crenata : importance of cotyledon stage for predator escape and pathogen avoidance. Ecological Research, 23 , 681-688.
Afonso, A., Castro, S., Loureiro, J., Mota, L., Cerca de Oliveira, J., & Torices, R. (2014). The effects of achene type and germination time on plant performance in the heterocarpic Anacyclus clavatus (Asteraceae). American Journal of Botany, 101 (5), 892-898.
Akiyama, R., & Ågren, J. (2014). Conflicting selection on the timing of germination in a natural population of Arabidopsis thaliana . Journal of Evolutionary Biology, 27 , 193-199.
Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13 (1), 627-639.
Bianchi, E., Bugmann, H., & Bigler, C. (2019). Early emergence increases survival of tree seedlings in Central European temperate forests despite severe late frost.Ecology and Evolution, 9 (14), 8238-8252.
Blackman, B. K. (2017). Changing responses to changing seasons: Natural variation in the plasticity of flowering time. Plant Physiology, 173 , 16-26.
Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity. Advances in Genetics, 13 , 115-155.
Burghardt, L. T., Metcalf, C. J. E., Wilczek, A. M., Schmitt, J., & Donohue, K. (2015). Modeling the influence of genetic and environmental variation on the expression of plant life cycles across landscapes. The American Naturalist, 185 (2), 212-227.
Castro, J. (2006). Short delay in timing of emergence determines establishment success in Pinus sylvestris across microhabitats. Annals of Botany, 98 (6), 1233-1240.
Cogoni, D., Fenu, G., & Bacchetta, G. (2013). Effects of timing of emergence and microhabitat conditions on the seedling performance of a coastal Mediterranean plant.Ecoscience, 20 (2), 131-136.
de Kroon, H., Huber, H., Stuefer, J. F., & van Groenendael, J. M. (2005). A modular concept of phenotypic plasticity in plants. New Phytologist, 166 (1), 73-82.
Donaldson-Matasci, M. C., Bergstrom, C. T., & Lachmann, M. (2013). When unreliable cues are good enough.The American Naturalist, 182 , 313-327.
Donohue, K. (2005). Niche construction through phenological plasticity: Life history dynamics and ecological consequences. New Phytologist, 166 (1), 83-92.
Donohue, K. (2014). Why ontogeny matters during adaptation: developmental niche construction and pleiotorpy across the life cycle in Arabidopsis thaliana .Evolution, 68 , 32-47.
Donohue, K., de Casas, R. R., Burghardt, L., Kovach, K., & Willis, C. G. (2010). Germination, postgermination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics, 41 (1), 293-319.
Donohue, K., Dorn, D., Griffith, C., Kim, E., Aguilera, A., Polisetty, C. R., & Schmitt, J. (2005). Niche construction through germination cueing: Life-history responses to timing of germination in Arabidopsis thaliana . Evolution, 59 (4), 771-785.
Dyer, A., Fenech, A., & Rice, K. J. (2000). Accelerated seedling emergence in interspecific competitive neighbourhoods. Ecology Letters, 3 , 523-529.
Galloway, L. F., & Burgess, K. S. (2009). Manipulation of flowering time: Phenological integration and maternal effects. Ecology, 90 , 2139-2148.
Gremer, J. R., Wilcox, C. J., Chiono, A., Suglia, E., & Schmitt, J. (2020). Germination timing and chilling exposure create contingency in life history and influence fitness in the native wildflower Streptanthus tortuosus . Journal of Ecology, 108 (1), 239-255.
Grime, J. P. (1979). Plant Strategies and Vegetation Processes . Chichester: Wiley.
Grundy, A. C. (2003). Predicting weed emergence: a review of approaches and future challenges. Weed Research, 43 , 1-11.
Harper, J. L. (1977).Population biology of plants . New York, USA: Academic Press.
Hartzler, R., Battles, B., & Nordby, D. (2004). Effect of common waterhemp (Amaranthus rudis ) emergence date on growth and fecundity in soybean. Weed Science, 52 , 242-245.
Hodgson, J. G. (1999). Alloctating C-S-R plant functional types: a soft approach to a hard problem.Oikos, 85 , 282-294.
Huang, Z., Liu, S., Bradford, K. J., Huxman, T. E., & Venable, D. L. (2016). The contribution of germination functional traits to population dynamics of a desert plant community.Ecology, 97 , 250-261.
Jones, R. H., & Sharitz, R. R. (1989). Potential advantages and disadvantages of germinating early for trees in floodplain forests. Oecologia, 81 , 443-449.
Kalisz, S. (1986). Variable selection on the timing of germination in Collinsia verna(Scrophulariaceae). Evolution, 40 , 479-491.
Kelly, M. G., & Levin, D. A. (1997). Fitness consequences and heritability aspects of emergence date inPhlox drummondii . Journal of Ecology, 85 , 755-766.
Leverett, L. D., IV, G. F. S., & Donohue, K. (2018). The fitness benefits of germinating later than neighbors. American Journal of Botany, 105 (1), 20-30.
Lortie, C. J., & Turkington, R. (2002). The effect of initial seed density on the structure of a desert annual plant community. Journal of Ecology, 90 , 435-445.
McConnaughay, K. D. M., & Bazzaz, F. A. (1992). The occupation and fragmentation of space: consequences of neighbouring shoots. Functional Ecology, 6 , 711-718.
McConnaughay, K. D. M., & Coleman, J. S. (1999). Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology, 80 (8), 2581-2593.
Mercer, K. L., Alexander, H. M., & Snow, A. A. (2011). Selection on seedling emergence timing and size in an annual plant, Helianthus Annuus (Common Sunflower, Asteraceae). American Journal of Botany, 98 , 975-985.
Metcalf, C. J. E., Burghardt, L. T., & Koons, D. N. (2015). Avoiding the crowds: the evolution of plastic responses to seasonal cues in a density-dependent world. Journal of Ecology, 103 , 819-828.
Metcalf, J. C., Rose, K. E., & Rees, M. (2003). Evolutionary demography of monocarpic perennials.Trends in Ecology & Evolution, 18 , 471-480.
Miller, T. E., Winn, A. A., & Schemske, D. W. (1994). The effect of density and spatial distribution on selection for emergence time in Prunella vulgaris (Lamiaceae).American Journal of Botany, 81 , 1-6.
Orrock, J. L., & Christopher, C. C. (2010). Density of intraspecific competitors determines the occurrence and benefits of accelerated germination. American Journal of Botany, 97 , 694-699.
Poethke, H. J., Hovestadt, T., & Mitesser, O. (2016). The evolution of optimal emergence times: bet-hedging and the quest for an ideal free temporal distribution of individuals. Oikos, 125 , 1647-1656.
Rice, K. J. (1990). Reproductive hierarchies in Erodium: effects of variation in plant density and rainfall distribution. Ecology, 71 , 1316-1322.
Silvertown, J. (1988). The demographic and evolutionary consequences of seed dormancy. In A. Davy & M. Hutchings (Eds.), Plant Population Ecology (pp. 205-219). Oxford, UK: Blackwell.
Stratton, D. A. (1992). Life-Cycle components of selection in Erigeron annuus : I. Phenotypic Selection. Evolution, 46 , 92-106.
ten Brink, H., Gremer, J. R., & Kokko, H. (2020). Optimal germination timing in unpredictable environments: the importance of dormancy for both among- and within-season variation. Ecology Letters, 23 (4), 620-630.
Tuljapurkar, S. (1990). Delayed reproduction and fitness in variable environments. Proceedings of the National Academy of Sciencesa, 87 , 1139-1143.
Verdu´, M., & Traveset, A. (2005). Early emergence enhances plant fitness: a phylogenetically controlled meta-analysis. Ecology, 86 , 1385-1394.
Wang, S., Li, L., & Zhou, D.-W. (2017). Morphological plasticity in response to population density varies with soil conditions and growth stage in Abutilon theophrasti (Malvaceae). Plant Ecology, 218 , 785-797.
Wang, S., Li, L., & Zhou, D.-W. (2021). Root morphological responses to population density vary with soil conditions and growth stages: The complexity of density effects.Ecology and Evolution, 11 (15), 10590-10599.
Wang, S., & Zhou, D.-W. (2021). Architectural plasticity in response to population density inAbutilon theophrasti (Malvaceae). Ecological Research .
Wang, T.-H., Zhou, D.-W., Wang, P., & Zhang, H.-X. (2006). Size-dependent reproductive effort inAmaranthus retroflexus : the fluence of planting density and sowing date. Canadian Journal of Botany, 84 , 485-492.
Weekley, C. W., Menges, E. S., & Quintana-Ascencio, P. F. (2007). Seedling emergence and survival ofWarea carteri (Brassicaceae), an endangered annual herb of the Florida Scrub. Canadian Journal of Botany, 85 , 621-628.
Weiner, J. (1988). Variation in the performance of individuals in plant populations. In A. J. Davy, M. J. Hutchings, & A. R. Watkinson (Eds.), Plant Population Ecology(pp. 59-81). Oxford, UK: Blackwell.
Weiner, J. (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6 (4), 207-215.
Weinig, C. (2000). Differing selection in alternative competitive environments: shade-avoidance responses and germination timing. Evolution, 54 , 124-136.
Wilczek, A. M., Roe, J. L., Knapp, M. C., Cooper, M. D., Lopez-Gallego, C., Martin, L. J., . . . Schmitt, J. (2009). Effects of genetic perturbation on seasonal life history plasticity. Science, 323 , 930-934.
Wu, C., & Owen, M. D. (2014). When is the best time to emerge: reproductive phenology and success of natural common waterhemp (Amaranthus rudis ) cohorts in the Midwest United States? Weed Science, 62 (1), 107-117.
Xue, B., & Leibler, S. (2018). Benefits of phenotypic plasticity for population growth in varying environments. Proceedings of the National Academy of Sciences, 115 , 12745-12750.
Zhao, H.-Y., Xie, L.-W., Ma, Y.-Y., Li, H.-K., Yan, X., & An, Y.-L. (2010). Application of organic-inorganic composite ameliorants on the aeolian sandy soil in the western Jilin. Journal of Northeast Normal University (Natural Science Edition), 42 (2), 132-136.
Zhou, D.-W., Wang, T.-H., & Valentine, I. (2005). Phenotypic plasticity of life-history characters in response to different germination timing in two annual weeds.Canadian Journal of Botany, 83 , 28-36.
Table 1 The information on germination treatments, planting and sampling in this study.