References
Abdel-Sayed, P., Kaeppeli, A.,
Siriwardena, T., Darbre, T., Perron, K., Jafari, P., . . . Applegate, L.
A. (2016). Anti-microbial dendrimers against multidrug-resistant P.
aeruginosa enhance the angiogenic effect of biological burn-wound
bandages. Scientific reports, 6 , 22020.
Ayyappan, S., Mahadevan, S.,
Chandramohan, P., Srinivasan, M., Philip, J., & Raj, B. (2010).
Influence of Co2+ ion concentration on the size, magnetic properties,
and purity of CoFe2O4 spinel ferrite nanoparticles. The Journal of
Physical Chemistry C, 114 (14), 6334-6341.
Baldino, L., Sarno, M., Cardea, S.,
Irusta, S., Ciambelli, P., Santamaria, J., & Reverchon, E. (2015).
Formation of cellulose acetate–graphene oxide nanocomposites by
supercritical CO2 assisted phase inversion. Industrial &
Engineering Chemistry Research, 54 (33), 8147-8156.
Boas, U., Christensen, J., &
Heegaard, P. M. (2006). Dendrimers: design, synthesis and chemical
properties. Journal of Materials Chemistry, 16 (38), 3785-3798.
Bock, N., Riminucci, A., Dionigi, C.,
Russo, A., Tampieri, A., Landi, E., . . . Dediu, V. (2010). A novel
route in bone tissue engineering: magnetic biomimetic scaffolds.Acta biomaterialia, 6 (3), 786-796.
Bosman, d. A., Janssen, H., & Meijer,
E. (1999). About dendrimers: structure, physical properties, and
applications. Chemical reviews, 99 (7), 1665-1688.
Campana, V., Milano, G., Pagano, E.,
Barba, M., Cicione, C., Salonna, G., . . . Logroscino, G. (2014). Bone
substitutes in orthopaedic surgery: from basic science to clinical
practice. Journal of Materials Science: Materials in Medicine,
25 (10), 2445-2461.
Chauhan, R. P., Mathur, R., Singh, G.,
Kaul, A., Bag, N., Singh, S., . . . Mishra, A. K. (2013). Evaluation of
Folate Conjugated Superparamagnetic Iron Oxide Nanoparticles for
Scintigraphic/Magnetic Resonance Imaging. Journal of biomedical
nanotechnology, 9 (3), 323-334.
Chawla, R., Shetty, K., Goyal, M.,
Rathore, A., & Sharma, A. (2018). Medicine Soaring with Nanofever.J Nanosci Curr Res, 3 (220), 2572-0813.1000220.
Chen, L., Peng, J., Zhao, J., Long,
Y., Xie, Y., & Nie, J. (2019). Magnetic Materials in Promoting Bone
Regeneration. Frontiers in Materials, 6 , 268.
Daňková, J., Buzgo, M., Vejpravova,
J., Kubíčková, S., Sovková, V., Vysloužilová, L., . . . Amler, E.
(2015). Highly efficient mesenchymal stem cell proliferation on
poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles.International journal of nanomedicine, 10 , 7307.
Erices, A., Conget, P., Rojas, C., &
Minguell, J. J. (2002). Gp130 activation by soluble interleukin-6
receptor/interleukin-6 enhances osteoblastic differentiation of human
bone marrow-derived mesenchymal stem cells. Experimental cell
research, 280 (1), 24-32.
Esmaeili, E., Khalili, M., Sohi, A.
N., Hosseinzadeh, S., Taheri, B., & Soleimani, M. (2019). Dendrimer
functionalized magnetic nanoparticles as a promising platform for
localized hyperthermia and magnetic resonance imaging diagnosis.Journal of cellular physiology, 234 (8), 12615-12624.
Esmaeili, E., Soleimani, M., Ghiass,
M. A., Hatamie, S., Vakilian, S., Zomorrod, M. S., . . . Hosseinzadeh,
S. (2019). Magnetoelectric nanocomposite scaffold for high yield
differentiation of mesenchymal stem cells to neural‐like cells.Journal of cellular physiology, 234 (8), 13617-13628.
Favela-Camacho, S. E.,
Samaniego-Benítez, E. J., Godínez-García, A., Avilés-Arellano, L. M., &
Pérez-Robles, J. F. (2019). How to decrease the agglomeration of
magnetite nanoparticles and increase their stability using surface
properties. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 574 , 29-35.
Fox, L. J., Richardson, R. M., &
Briscoe, W. H. (2018). PAMAM dendrimer-cell membrane interactions.Advances in colloid and interface science .
Gloria, A., Russo, T., D’Amora, U.,
Zeppetelli, S., D’Alessandro, T., Sandri, M., . . . Tampieri, A. (2013).
Magnetic poly (ε-caprolactone)/iron-doped hydroxyapatite nanocomposite
substrates for advanced bone tissue engineering. Journal of the
Royal Society Interface, 10 (80), 20120833.
Gorain, B., Tekade, M., Kesharwani,
P., Iyer, A. K., Kalia, K., & Tekade, R. K. (2017). The use of
nanoscaffolds and dendrimers in tissue engineering. Drug Discovery
Today, 22 (4), 652-664.
Gupta, A. K., & Gupta, M. (2005).
Synthesis and surface engineering of iron oxide nanoparticles for
biomedical applications. Biomaterials, 26 (18), 3995-4021.
Hamley, I. (2003). Nanotechnology
with soft materials. Angewandte Chemie International Edition,
42 (15), 1692-1712.
He, J., Hu, H., Zeng, X., Lan, F.,
Wu, F., & Wu, Y. (2017). A magnetic hydroxyapatite composite
scaffold-based magnetic therapy for bone repair: an experimental study
in canis lupus familiaris. Regenerative Biomaterials, 4 (2),
97-103.
Ito, A., Shinkai, M., Honda, H., &
Kobayashi, T. (2005). Medical application of functionalized magnetic
nanoparticles. Journal of bioscience and bioengineering, 100 (1),
1-11.
Jang, J.-H., Castano, O., & Kim,
H.-W. (2009). Electrospun materials as potential platforms for bone
tissue engineering. Advanced drug delivery reviews, 61 (12),
1065-1083.
Jiang, P., Zhang, Y., Zhu, C., Zhang,
W., Mao, Z., & Gao, C. (2016). Fe3O4/BSA particles induce osteogenic
differentiation of mesenchymal stem cells under static magnetic field.Acta biomaterialia, 46 , 141-150.
Joshi, N., & Grinstaff, M. (2008).
Applications of dendrimers in tissue engineering. Current topics
in medicinal chemistry, 8 (14), 1225-1236.
Kandpal, N., Sah, N., Loshali, R.,
Joshi, R., & Prasad, J. (2014). Co-precipitation method of synthesis
and characterization of iron oxide nanoparticles.
Kesharwani, P., Gajbhiye, V., K
Tekade, R., & K Jain, N. (2011). Evaluation of dendrimer safety and
efficacy through cell line studies. Current drug targets, 12 (10),
1478-1497.
Kesharwani, P., Tekade, R. K.,
Gajbhiye, V., Jain, K., & Jain, N. K. (2011). Cancer targeting
potential of some ligand-anchored poly (propylene imine) dendrimers: a
comparison. Nanomedicine: Nanotechnology, Biology and Medicine,
7 (3), 295-304.
Kesharwani, P., Tekade, R. K., &
Jain, N. K. (2015). Dendrimer generational nomenclature: the need to
harmonize. Drug Discovery Today, 20 (5), 497.
Khodadust, R., Unsoy, G., Yalcın, S.,
Gunduz, G., & Gunduz, U. (2013). PAMAM dendrimer-coated iron oxide
nanoparticles: synthesis and characterization of different generations.Journal of nanoparticle research, 15 (3), 1488.
Klajnert, B., & Bryszewska, M.
(2001). Dendrimers: properties and applications. Acta biochimica
polonica, 48 (1), 199-208.
Koehler, F. M., Rossier, M., Waelle,
M., Athanassiou, E. K., Limbach, L. K., Grass, R. N., . . . Stark, W. J.
(2009). Magnetic EDTA: coupling heavy metal chelators to metal
nanomagnets for rapid removal of cadmium, lead and copper from
contaminated water. Chemical Communications (32), 4862-4864.
Kohli, N., Ho, S., Brown, S. J.,
Sawadkar, P., Sharma, V., Snow, M., & García-Gareta, E. (2018). Bone
remodelling in vitro: Where are we headed?-A review on the current
understanding of mimicking physiological bone remodelling and
inflammation in vitro and the future strategies for testing biomaterials
in vitro. Bone .
Liu, H., Guo, J., Jin, L., Yang, W.,
& Wang, C. (2008). Fabrication and functionalization of dendritic poly
(amidoamine)-immobilized magnetic polymer composite microspheres.The Journal of Physical Chemistry B, 112 (11), 3315-3321.
Marinin, A. (2012). Synthesis and
characterization of superparamagnetic iron oxide nanoparticles coated
with silica.
Mascolo, M. C., Pei, Y., & Ring, T.
A. (2013). Room temperature co-precipitation synthesis of magnetite
nanoparticles in a large pH window with different bases.Materials, 6 (12), 5549-5567.
Miron, R., & Zhang, Y. (2012).
Osteoinduction: a review of old concepts with new standards.Journal of dental research, 91 (8), 736-744.
Ng, J., Spiller, K., Bernhard, J., &
Vunjak-Novakovic, G. (2017). Biomimetic approaches for bone tissue
engineering. Tissue Engineering Part B: Reviews, 23 (5), 480-493.
Pan, B., Cui, D., Sheng, Y., Ozkan,
C., Gao, F., He, R., . . . Huang, T. (2007). Dendrimer-modified magnetic
nanoparticles enhance efficiency of gene delivery system. Cancer
research, 67 (17), 8156-8163.
Polo-Corrales, L., Latorre-Esteves,
M., & Ramirez-Vick, J. E. (2014). Scaffold design for bone
regeneration. Journal of nanoscience and nanotechnology, 14 (1),
15-56.
POURIANAZAR, N. T. (2016).TARGETED DELIVERY OF CPG-OLIGODEOXYNUCLEOTIDE TO BREAST CANCER
CELLS BY POLY-AMIDOAMINE DENDRIMER-MODIFIED MAGNETIC NANOPARTICLES.MIDDLE EAST TECHNICAL UNIVERSITY.
Ren, K., Wang, Y., Sun, T., Yue, W.,
& Zhang, H. (2017). Electrospun PCL/gelatin composite nanofiber
structures for effective guided bone regeneration membranes.Materials Science and Engineering: C, 78 , 324-332.
Robbins, S., Lauryssen, C., &
Songer, M. N. (2017). Use of nanocrystalline hydroxyapatite with
autologous BMA and local bone in the lumbar spine: a retrospective CT
analysis of posterolateral fusion results. Clinical spine surgery,
30 (3), E192.
Souza, T., Ciminelli, V., &
Mohallem, N. (2016). A comparison of TEM and DLS methods to
characterize size distribution of ceramic nanoparticles. Paper
presented at the Journal of Physics: Conference Series.
Stevens, B., Yang, Y., Mohandas, A.,
Stucker, B., & Nguyen, K. T. (2008). A review of materials, fabrication
methods, and strategies used to enhance bone regeneration in engineered
bone tissues. Journal of Biomedical Materials Research Part B:
Applied Biomaterials, 85 (2), 573-582.
Tajabadi, M., Khosroshahi, M. E., &
Bonakdar, S. (2013). An efficient method of SPION synthesis coated with
third generation PAMAM dendrimer. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 431 , 18-26.
Tsao, Y.-T., Huang, Y.-J., Wu, H.-H.,
Liu, Y.-A., Liu, Y.-S., & Lee, O. K. (2017). Osteocalcin mediates
biomineralization during osteogenic maturation in human mesenchymal
stromal cells. International journal of molecular sciences,
18 (1), 159.
Uzun, K., Çevik, E., Şenel, M.,
Sözeri, H., Baykal, A., Abasıyanık, M., & Toprak, M. (2010). Covalent
immobilization of invertase on PAMAM-dendrimer modified
superparamagnetic iron oxide nanoparticles. Journal of
nanoparticle research, 12 (8), 3057-3067.
Wang, R., Wu, H., Yang, Y., & Song,
M. (2016). Effects of electromagnetic fields on osteoporosis: a
systematic literature review. Electromagnetic biology and
medicine, 35 (4), 384-390.
Xia, Y., Chen, H., Zhao, Y., Zhang,
F., Li, X., Wang, L., . . . Gu, N. (2019). Novel magnetic calcium
phosphate-stem cell construct with magnetic field enhances osteogenic
differentiation and bone tissue engineering. Materials Science and
Engineering: C, 98 , 30-41.
Xia, Y., Sun, J., Zhao, L., Zhang,
F., Liang, X.-J., Guo, Y., . . . Xu, H. H. (2018). Magnetic field and
nano-scaffolds with stem cells to enhance bone regeneration.Biomaterials, 183 , 151-170.
Yen, C.-H., Lien, H.-L., Chung,
J.-S., & Yeh, H.-D. (2017). Adsorption of precious metals in water by
dendrimer modified magnetic nanoparticles. Journal of hazardous
materials, 322 , 215-222.
Zhao, X., Kim, J., Cezar, C. A.,
Huebsch, N., Lee, K., Bouhadir, K., & Mooney, D. J. (2011). Active
scaffolds for on-demand drug and cell delivery. Proceedings of the
National Academy of Sciences, 108 (1), 67-72.
Zhu, R., Jiang, W., Pu, Y., Luo, K.,
Wu, Y., He, B., & Gu, Z. (2011). Functionalization of magnetic
nanoparticles with peptide dendrimers. Journal of Materials
Chemistry, 21 (14), 5464-5474.
Figure captions
Fig. 1. The schematic representation of the synthesis reaction
of G3- SPION.
Fig. 2. (a) TEM photograph and size distribution histogram of
G3–SPIONs. (b) DLS and (c) Zeta potential measurements of the
G3–SPIONs.
Fig. 3. (a) FTIR spectrum of the neat SPIONs, APTES, G1, G2,
and G3 grafted SPIONs. (b) VSM result of SPIONs and G3-SPIONs.
Fig. 4. SEM image and histogram of nanofibers (a) PCL (b)
G3-SPION-PCL.
Fig. 5. (a) The MTT cell viability and (b) DAPI staining of
ADMSCs cultured on the PCL and G3-SPION-PCL scaffolds.
Fig. 6. Biochemical analyses of differentiated cells on TCP,
PCL, and G3-SPION-PCL scaffolds under OM or/and PEMF condition; (a) ALP
activity, (b) Calcium content. (Data are expressed as means ± SD and
p-Value of less than 0.05 were interpreted as being significant, showing
as one asterisk.), (c) Morphological analyses of ADMSCs during
osteogenic differentiation on G3-SPION-PCL scaffold after 1 and 14 days.
Fig 7. Relative expression of OC, Col 1, and Runx2 on day 14
for ADMSCs cultured on the G3-SPION-PCL in the presence of OM and,or
PEMF.
Table 1. The primer sequences used in RT‐PCR to quantify the osteogenic
differentiation.