References
Abdel-Sayed, P., Kaeppeli, A., Siriwardena, T., Darbre, T., Perron, K., Jafari, P., . . . Applegate, L. A. (2016). Anti-microbial dendrimers against multidrug-resistant P. aeruginosa enhance the angiogenic effect of biological burn-wound bandages. Scientific reports, 6 , 22020.
Ayyappan, S., Mahadevan, S., Chandramohan, P., Srinivasan, M., Philip, J., & Raj, B. (2010). Influence of Co2+ ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. The Journal of Physical Chemistry C, 114 (14), 6334-6341.
Baldino, L., Sarno, M., Cardea, S., Irusta, S., Ciambelli, P., Santamaria, J., & Reverchon, E. (2015). Formation of cellulose acetate–graphene oxide nanocomposites by supercritical CO2 assisted phase inversion. Industrial & Engineering Chemistry Research, 54 (33), 8147-8156.
Boas, U., Christensen, J., & Heegaard, P. M. (2006). Dendrimers: design, synthesis and chemical properties. Journal of Materials Chemistry, 16 (38), 3785-3798.
Bock, N., Riminucci, A., Dionigi, C., Russo, A., Tampieri, A., Landi, E., . . . Dediu, V. (2010). A novel route in bone tissue engineering: magnetic biomimetic scaffolds.Acta biomaterialia, 6 (3), 786-796.
Bosman, d. A., Janssen, H., & Meijer, E. (1999). About dendrimers: structure, physical properties, and applications. Chemical reviews, 99 (7), 1665-1688.
Campana, V., Milano, G., Pagano, E., Barba, M., Cicione, C., Salonna, G., . . . Logroscino, G. (2014). Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science: Materials in Medicine, 25 (10), 2445-2461.
Chauhan, R. P., Mathur, R., Singh, G., Kaul, A., Bag, N., Singh, S., . . . Mishra, A. K. (2013). Evaluation of Folate Conjugated Superparamagnetic Iron Oxide Nanoparticles for Scintigraphic/Magnetic Resonance Imaging. Journal of biomedical nanotechnology, 9 (3), 323-334.
Chawla, R., Shetty, K., Goyal, M., Rathore, A., & Sharma, A. (2018). Medicine Soaring with Nanofever.J Nanosci Curr Res, 3 (220), 2572-0813.1000220.
Chen, L., Peng, J., Zhao, J., Long, Y., Xie, Y., & Nie, J. (2019). Magnetic Materials in Promoting Bone Regeneration. Frontiers in Materials, 6 , 268.
Daňková, J., Buzgo, M., Vejpravova, J., Kubíčková, S., Sovková, V., Vysloužilová, L., . . . Amler, E. (2015). Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles.International journal of nanomedicine, 10 , 7307.
Erices, A., Conget, P., Rojas, C., & Minguell, J. J. (2002). Gp130 activation by soluble interleukin-6 receptor/interleukin-6 enhances osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. Experimental cell research, 280 (1), 24-32.
Esmaeili, E., Khalili, M., Sohi, A. N., Hosseinzadeh, S., Taheri, B., & Soleimani, M. (2019). Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis.Journal of cellular physiology, 234 (8), 12615-12624.
Esmaeili, E., Soleimani, M., Ghiass, M. A., Hatamie, S., Vakilian, S., Zomorrod, M. S., . . . Hosseinzadeh, S. (2019). Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural‐like cells.Journal of cellular physiology, 234 (8), 13617-13628.
Favela-Camacho, S. E., Samaniego-Benítez, E. J., Godínez-García, A., Avilés-Arellano, L. M., & Pérez-Robles, J. F. (2019). How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 574 , 29-35.
Fox, L. J., Richardson, R. M., & Briscoe, W. H. (2018). PAMAM dendrimer-cell membrane interactions.Advances in colloid and interface science .
Gloria, A., Russo, T., D’Amora, U., Zeppetelli, S., D’Alessandro, T., Sandri, M., . . . Tampieri, A. (2013). Magnetic poly (ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. Journal of the Royal Society Interface, 10 (80), 20120833.
Gorain, B., Tekade, M., Kesharwani, P., Iyer, A. K., Kalia, K., & Tekade, R. K. (2017). The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discovery Today, 22 (4), 652-664.
Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26 (18), 3995-4021.
Hamley, I. (2003). Nanotechnology with soft materials. Angewandte Chemie International Edition, 42 (15), 1692-1712.
He, J., Hu, H., Zeng, X., Lan, F., Wu, F., & Wu, Y. (2017). A magnetic hydroxyapatite composite scaffold-based magnetic therapy for bone repair: an experimental study in canis lupus familiaris. Regenerative Biomaterials, 4 (2), 97-103.
Ito, A., Shinkai, M., Honda, H., & Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of bioscience and bioengineering, 100 (1), 1-11.
Jang, J.-H., Castano, O., & Kim, H.-W. (2009). Electrospun materials as potential platforms for bone tissue engineering. Advanced drug delivery reviews, 61 (12), 1065-1083.
Jiang, P., Zhang, Y., Zhu, C., Zhang, W., Mao, Z., & Gao, C. (2016). Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field.Acta biomaterialia, 46 , 141-150.
Joshi, N., & Grinstaff, M. (2008). Applications of dendrimers in tissue engineering. Current topics in medicinal chemistry, 8 (14), 1225-1236.
Kandpal, N., Sah, N., Loshali, R., Joshi, R., & Prasad, J. (2014). Co-precipitation method of synthesis and characterization of iron oxide nanoparticles.
Kesharwani, P., Gajbhiye, V., K Tekade, R., & K Jain, N. (2011). Evaluation of dendrimer safety and efficacy through cell line studies. Current drug targets, 12 (10), 1478-1497.
Kesharwani, P., Tekade, R. K., Gajbhiye, V., Jain, K., & Jain, N. K. (2011). Cancer targeting potential of some ligand-anchored poly (propylene imine) dendrimers: a comparison. Nanomedicine: Nanotechnology, Biology and Medicine, 7 (3), 295-304.
Kesharwani, P., Tekade, R. K., & Jain, N. K. (2015). Dendrimer generational nomenclature: the need to harmonize. Drug Discovery Today, 20 (5), 497.
Khodadust, R., Unsoy, G., Yalcın, S., Gunduz, G., & Gunduz, U. (2013). PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations.Journal of nanoparticle research, 15 (3), 1488.
Klajnert, B., & Bryszewska, M. (2001). Dendrimers: properties and applications. Acta biochimica polonica, 48 (1), 199-208.
Koehler, F. M., Rossier, M., Waelle, M., Athanassiou, E. K., Limbach, L. K., Grass, R. N., . . . Stark, W. J. (2009). Magnetic EDTA: coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. Chemical Communications (32), 4862-4864.
Kohli, N., Ho, S., Brown, S. J., Sawadkar, P., Sharma, V., Snow, M., & García-Gareta, E. (2018). Bone remodelling in vitro: Where are we headed?-A review on the current understanding of mimicking physiological bone remodelling and inflammation in vitro and the future strategies for testing biomaterials in vitro. Bone .
Liu, H., Guo, J., Jin, L., Yang, W., & Wang, C. (2008). Fabrication and functionalization of dendritic poly (amidoamine)-immobilized magnetic polymer composite microspheres.The Journal of Physical Chemistry B, 112 (11), 3315-3321.
Marinin, A. (2012). Synthesis and characterization of superparamagnetic iron oxide nanoparticles coated with silica.
Mascolo, M. C., Pei, Y., & Ring, T. A. (2013). Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases.Materials, 6 (12), 5549-5567.
Miron, R., & Zhang, Y. (2012). Osteoinduction: a review of old concepts with new standards.Journal of dental research, 91 (8), 736-744.
Ng, J., Spiller, K., Bernhard, J., & Vunjak-Novakovic, G. (2017). Biomimetic approaches for bone tissue engineering. Tissue Engineering Part B: Reviews, 23 (5), 480-493.
Pan, B., Cui, D., Sheng, Y., Ozkan, C., Gao, F., He, R., . . . Huang, T. (2007). Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer research, 67 (17), 8156-8163.
Polo-Corrales, L., Latorre-Esteves, M., & Ramirez-Vick, J. E. (2014). Scaffold design for bone regeneration. Journal of nanoscience and nanotechnology, 14 (1), 15-56.
POURIANAZAR, N. T. (2016).TARGETED DELIVERY OF CPG-OLIGODEOXYNUCLEOTIDE TO BREAST CANCER CELLS BY POLY-AMIDOAMINE DENDRIMER-MODIFIED MAGNETIC NANOPARTICLES.MIDDLE EAST TECHNICAL UNIVERSITY.
Ren, K., Wang, Y., Sun, T., Yue, W., & Zhang, H. (2017). Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes.Materials Science and Engineering: C, 78 , 324-332.
Robbins, S., Lauryssen, C., & Songer, M. N. (2017). Use of nanocrystalline hydroxyapatite with autologous BMA and local bone in the lumbar spine: a retrospective CT analysis of posterolateral fusion results. Clinical spine surgery, 30 (3), E192.
Souza, T., Ciminelli, V., & Mohallem, N. (2016). A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. Paper presented at the Journal of Physics: Conference Series.
Stevens, B., Yang, Y., Mohandas, A., Stucker, B., & Nguyen, K. T. (2008). A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85 (2), 573-582.
Tajabadi, M., Khosroshahi, M. E., & Bonakdar, S. (2013). An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431 , 18-26.
Tsao, Y.-T., Huang, Y.-J., Wu, H.-H., Liu, Y.-A., Liu, Y.-S., & Lee, O. K. (2017). Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. International journal of molecular sciences, 18 (1), 159.
Uzun, K., Çevik, E., Şenel, M., Sözeri, H., Baykal, A., Abasıyanık, M., & Toprak, M. (2010). Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles. Journal of nanoparticle research, 12 (8), 3057-3067.
Wang, R., Wu, H., Yang, Y., & Song, M. (2016). Effects of electromagnetic fields on osteoporosis: a systematic literature review. Electromagnetic biology and medicine, 35 (4), 384-390.
Xia, Y., Chen, H., Zhao, Y., Zhang, F., Li, X., Wang, L., . . . Gu, N. (2019). Novel magnetic calcium phosphate-stem cell construct with magnetic field enhances osteogenic differentiation and bone tissue engineering. Materials Science and Engineering: C, 98 , 30-41.
Xia, Y., Sun, J., Zhao, L., Zhang, F., Liang, X.-J., Guo, Y., . . . Xu, H. H. (2018). Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration.Biomaterials, 183 , 151-170.
Yen, C.-H., Lien, H.-L., Chung, J.-S., & Yeh, H.-D. (2017). Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles. Journal of hazardous materials, 322 , 215-222.
Zhao, X., Kim, J., Cezar, C. A., Huebsch, N., Lee, K., Bouhadir, K., & Mooney, D. J. (2011). Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences, 108 (1), 67-72.
Zhu, R., Jiang, W., Pu, Y., Luo, K., Wu, Y., He, B., & Gu, Z. (2011). Functionalization of magnetic nanoparticles with peptide dendrimers. Journal of Materials Chemistry, 21 (14), 5464-5474.
Figure captions
Fig. 1. The schematic representation of the synthesis reaction of G3- SPION.
Fig. 2. (a) TEM photograph and size distribution histogram of G3–SPIONs. (b) DLS and (c) Zeta potential measurements of the G3–SPIONs.
Fig. 3. (a) FTIR spectrum of the neat SPIONs, APTES, G1, G2, and G3 grafted SPIONs. (b) VSM result of SPIONs and G3-SPIONs.
Fig. 4. SEM image and histogram of nanofibers (a) PCL (b) G3-SPION-PCL.
Fig. 5. (a) The MTT cell viability and (b) DAPI staining of ADMSCs cultured on the PCL and G3-SPION-PCL scaffolds.
Fig. 6. Biochemical analyses of differentiated cells on TCP, PCL, and G3-SPION-PCL scaffolds under OM or/and PEMF condition; (a) ALP activity, (b) Calcium content. (Data are expressed as means ± SD and p-Value of less than 0.05 were interpreted as being significant, showing as one asterisk.), (c) Morphological analyses of ADMSCs during osteogenic differentiation on G3-SPION-PCL scaffold after 1 and 14 days.
Fig 7. Relative expression of OC, Col 1, and Runx2 on day 14 for ADMSCs cultured on the G3-SPION-PCL in the presence of OM and,or PEMF.
Table 1. The primer sequences used in RT‐PCR to quantify the osteogenic differentiation.