References
[1] Dorrell G, Díaz V. Siemens Gamesa’s flagship 14 MW turbine to
power 1.4 GW Sofia offshore wind power project in the UK. Siemens Gamesa
Renew Energy 2020.
[2] Johnston B, Foley A, Doran J, Littler T. Levelised cost of
energy, A challenge for offshore wind. Renew Energy 2020;160:876–85.
https://doi.org/https://doi.org/10.1016/j.renene.2020.06.030.
[3] Sharifzadeh M, Lubiano-Walochik H, Shah N. Integrated renewable
electricity generation considering uncertainties: The UK roadmap to 50%
power generation from wind and solar energies. Renew Sustain Energy Rev
2017;72:385–98.
https://doi.org/https://doi.org/10.1016/j.rser.2017.01.069.
[4] Barutha P, Nahvi A, Cai B, Jeong HD, Sritharan S. Evaluating
commercial feasibility of a new tall wind tower design concept using a
stochastic levelized cost of energy model. J Clean Prod 2019;240:118001.
https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118001.
[5] MacPhee DW, Beyene A. Experimental and Fluid Structure
Interaction analysis of a morphing wind turbine rotor. Energy
2015;90:1055–65.
https://doi.org/https://doi.org/10.1016/j.energy.2015.08.016.
[6] Regodeseves PG, Morros CS. Unsteady numerical investigation of
the full geometry of a horizontal axis wind turbine: Flow through the
rotor and wake. Energy 2020;202:117674.
https://doi.org/https://doi.org/10.1016/j.energy.2020.117674.
[7] Jin Q, Li VC. Structural and durability assessment of
ECC/concrete dual-layer system for tall wind turbine towers. Eng Struct
2019;196:109338.
https://doi.org/https://doi.org/10.1016/j.engstruct.2019.109338.
[8] Yadav KK, Gerasimidis S. Imperfection insensitive thin
cylindrical shells for next generation wind turbine towers. J Constr
Steel Res 2020;172:106228.
https://doi.org/https://doi.org/10.1016/j.jcsr.2020.106228.
[9] Lin K, Xiao S, Zhou A, Liu H. Experimental study on long-term
performance of monopile-supported wind turbines (MWTs) in sand by using
wind tunnel. Renew Energy 2020;159:1199–214.
https://doi.org/https://doi.org/10.1016/j.renene.2020.06.034.
[10] Ma H, Yang J. A novel hybrid monopile foundation for offshore
wind turbines. Ocean Eng 2020;198:106963.
https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.106963.
[11] Long L, Mai QA, Morato PG, Sørensen JD, Thöns S. Information
value-based optimization of structural and environmental monitoring for
offshore wind turbines support structures. Renew Energy
2020;159:1036–46.
https://doi.org/https://doi.org/10.1016/j.renene.2020.06.038.
[12] Farrar CR, Worden K. Structural Health Monitoring: A Machine
Learning Perspective. Struct Heal Monit A Mach Learn Perspect 2012.
https://doi.org/10.1002/9781118443118.
[13] Jacob A, Mehmanparast A, D’Urzo R, Kelleher J. Experimental and
numerical investigation of residual stress effects on fatigue crack
growth behaviour of S355 steel weldments. Int J Fatigue 2019;128.
https://doi.org/10.1016/j.ijfatigue.2019.105196.
[14] Mehmanparast A, Brennan F, Tavares I. Fatigue crack growth
rates for offshore wind monopile weldments in air and seawater: SLIC
inter-laboratory test results. Mater Des 2017.
https://doi.org/10.1016/j.matdes.2016.10.070.
[15] Mehmanparast A, Taylor J, Brennan F, Tavares I. Experimental
investigation of mechanical and fracture properties of offshore wind
monopile weldments: SLIC interlaboratory test results. Fatigue Fract Eng
Mater Struct 2018;41:2485–501. https://doi.org/10.1111/ffe.12850.
[16] Arany L, Bhattacharya S, Macdonald J, Hogan SJ. Design of
monopiles for offshore wind turbines in 10 steps. Soil Dyn Earthq Eng
2017;92:126–52.
https://doi.org/https://doi.org/10.1016/j.soildyn.2016.09.024.
[17] Biswal R, Mehmanparast A. Fatigue damage analysis of offshore
wind turbine monopile weldments. Procedia Struct. Integr., 2019.
https://doi.org/10.1016/j.prostr.2019.08.086.
[18] Bocher M, Mehmanparast A, Braithwaite J, Shafiee M. New shape
function solutions for fracture mechanics analysis of offshore wind
turbine monopile foundations. Ocean Eng 2018;160:264–75.
https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.04.073.
[19] Kolios A, Wang L, Mehmanparast A, Brennan F. Determination of
stress concentration factors in offshore wind welded structures through
a hybrid experimental and numerical approach. Ocean Eng 2019;178:38–47.
https://doi.org/https://doi.org/10.1016/j.oceaneng.2019.02.073.
[20] Jacob A, Oliveira J, Mehmanparast A, Hosseinzadeh F, Kelleher
J, Berto F. Residual stress measurements in offshore wind monopile
weldments using neutron diffraction technique and contour method. Theor
Appl Fract Mech 2018. https://doi.org/10.1016/j.tafmec.2018.06.001.
[21] Yeter B, Garbatov Y, Guedes Soares C. Numerical and
experimental study of the ultimate strength of a monopile structure. Eng
Struct 2019;194:290–9.
https://doi.org/https://doi.org/10.1016/j.engstruct.2019.05.074.
[22] Mai QA, Weijtjens W, Devriendt C, Morato PG, Rigo P, Sørensen
JD. Prediction of remaining fatigue life of welded joints in wind
turbine support structures considering strain measurement and a joint
distribution of oceanographic data. Mar Struct 2019;66:307–22.
https://doi.org/https://doi.org/10.1016/j.marstruc.2019.05.002.
[23] Ambühl S, Kofoed JP, Sørensen JD. Determination of wave model
uncertainties used for probabilistic reliability assessments of wave
energy devices. Proc Int Offshore Polar Eng Conf 2014;2:508–15.
[24] Moghaddam BT, Hamedany AM, Taylor J, Mehmanparast A, Brennan F,
Davies CM, et al. Structural integrity assessment of floating offshore
wind turbine support structures. Ocean Eng 2020;208:107487.
https://doi.org/10.1016/j.oceaneng.2020.107487.
[25] Igwemezie V, Mehmanparast A, Kolios A. Materials selection for
XL wind turbine support structures: A corrosion-fatigue perspective. Mar
Struct 2018. https://doi.org/10.1016/j.marstruc.2018.06.008.
[26] Igwemezie V, Mehmanparast A. Waveform and frequency effects on
corrosion-fatigue crack growth behaviour in modern marine steels. Int J
Fatigue 2020;134:105484.
https://doi.org/10.1016/j.ijfatigue.2020.105484.
[27] Modulus T, Modulus C, Rates S. Strain-Controlled Fatigue
Testing 1. ASTM Stand E606 2013;92:1–16.
https://doi.org/10.1520/E0606-04E01.Copyright.
[28] Zhao D, Han N, Goh E, Cater J, Reinecke A. Offshore wind
turbine aerodynamics modelling and measurements. Wind Turbines Aerodyn
Energy Harvest 2019:373–400.
https://doi.org/10.1016/b978-0-12-817135-6.00005-3.
[29] ASTM E1049. Standard practices for cycle counting in fatigue
analysis. ASTM Stand 2017;85:1–10.
https://doi.org/10.1520/E1049-85R17.2.
[30] Hansen MO. Chapter 6:The classical blade element momentum
method. 3rd ed. Taylor Francis Group; 2015.
https://doi.org/10.1049/ip-a-1.1983.0080.
[31] Models for metals subjected to cyclic loading. Abaqus Anal.
User’s Guid., vol. 6.14, Dassault Systèmes; 2014.
[32] Norske Veritas D. RECOMMENDED PRACTICE DET NORSKE VERITAS AS
Fatigue Design of Offshore Steel Structures. 2011.