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Interatomic potentials laid at the heart of molecular physics.
They are a bridge between the spectroscopic and structural
properties of molecular systems. In this paper, a century-
old review from 1920 to 2020, of functional forms used to
analytically represent potential energy as a function of in-
teratomic distance for diatomic systems is presented. With
such a purpose fifty functions were selected. For all of them,
motivationand themainmathematical features arediscussed.
Our goal is to provide a chronological pathway to the reader,
evenwith little knowledgeon the subject, tounderstandhow
to calculate each parameter that composes the interatomic
potentials, as well as obtain spectroscopic constants from
them. Comparative evaluation for the N2, CO, and HeH+
systems in their ground electronic states are also presented.
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1 | INTRODUCTION
The relationship upon the potential energy and the internuclear distance between two atoms is of the greatest im-
portance in physical-chemical processes. The potential energy surface associated with a specific electronic state is
the electronic energy for that state for all configurations of the nuclei. Thus to calculate the potential energy surface
from the Schrödinger equation onemust solve the equationmany times, for each of the nuclear configurations that are
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thought necessary for a correct representation of the surface. However, due to practical limitations in the solution of
this equation for molecules, physically supported approximations are required. In 1927 Born andOppenheimer, also
with the contribution of Huang, presented a pathway to circumvent this problem [1].

The Born-Oppenheimer approximation (BOA) consists in the separation of the nuclear and electron motions:
once nuclei have a much larger mass than electrons (more than 1838 times), they can be considered as stationary
compared to themoving electrons. Themathematical formalism for such an approach can be followed elsewhere [1]
and are fundamental in understanding the key concept of potential energy surface (PES). Since BOA several research
works have been attempting to obtain analytical representations of energy as a function of the interatomic distances.
Such a representation is usually required to bemathematically simple while accurately reproducing theoretical and
experimental data.

Accurate potential energy curves for diatomicmolecules are required to evaluate the Franck-Condon factors for
transitions between different various electronic states, applied in the calculation of radiative lifetimes, vibrational tem-
peratures, predissociations, the kinetics of energy transfer, and intensities of vibrational band spectra(see for example
Ref. [2]). Potential energy curves are also important for the interpretation of molecular spectra and chemiluminescent
atom recombination processes (see for example Ref. [3]).

The potential energy curve provides a broad insight into the structure of a molecular system. The minimum in
this curve defines the bond length of the diatomic molecule. The second derivative of such function provides the
force constants, which are fundamental for obtaining the vibrational and rotational energy levels of the molecule.
Higher-order derivatives are required for the calculation of the anharmonicity constants. Thus, finding a simple and
easy way to obtain the derivatives of the functional form is also desired.

One of the first observations of the vibrational structure in potential energy curves dates back to 1874, by Roscoe
and Schuster [4], for the diatomic systems Na2 and K2. However, such work was not clearly explained until the mid-
twenties of the XX century. To our knowledge, themost recent analytical way to describe PES of diatomic systems has
proposed in 2020 by Desai, Mesquita, and Fernandes [5]. The authors presented a NewModifiedMorse potential, with
four parameters for a high-precision representation of the diatomic potential. In that work, the authors claim such a
proposal to bemore accurate than the Hulburt-Hirschfelder [6] and the standardMorse [7] potentials, both widely used
in atomic and molecular physics. The NewModifiedMorse potential shown also high accuracy compared to curves
RKR [8, 9, 10].

Many efforts and advances have also been observed in the computational area to fit spectroscopic parameters
and obtain vibrational energy levels. In 2016, intending to obtain accurate potential energy functions for diatomic
systems, Le Roy presented the package dPotFit [11]. Such a tool performs the least-squares fitting of spectroscopic
data to determine analytic potential energy functions reproducing the observed levels and other known properties
of each electronic state. Four families of functions are there available for fitting: the Expanded Morse Oscillator
(EMO) function, theMorse/Long-Range (MLR) function, the Double-Exponential/Long-Range (DELR) function, and
the Generalized Potential Energy Function (GPEF) of Šurkus, which incorporates a variety of polynomial functional
forms. When the experimental information for a particular electronic state is not sufficiently extensive or systematic to
define a full potential energy function (PEF) for it, dPotFit allows its energy levels to be represented by (often quite
large) sets of independent term valuesTν,J or by a set of band constants {Gν ,Bν ,Dν ,Hν } for each vibrational level ν of
each isotopologue. These last capabilities can be particularly important in the early stage of a multi-state analysis, as it
allows one to perform a “direct potential fit” (DPF) analysis to determine an initial PEF for one state at a time.

Recent work (see for example Ref. 12) show the oldie idea of representing potential energy as a function of internu-
clear distance, is still extremely valuable. Interested especially in long-range intramolecular interactions, Stawalley
describes the behavior of certain potential regions for diatomic systemsH2, LiH, Li2, Na2, K2, KRb, Rb2, Cs2, HgH and
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Mg2 [12]. He analyzed the following potential regions: Short Range Chemically Bound Levels, Long Range Weakly
Bound Levels, Long Range Purely Repulsive Continuum Levels, Rydberg Levels Based on Short Range Chemically Bound
Ions, Rydberg Levels Based on Long-RangeWeakly Bound Ions, Long Range “Heavy” Rydberg Levels Based on Atomic
Ion Pairs and LongRangeRydberg Levels Based on anAtom@RydbergAtom [12], showing the relevance of still studying
PES of diatomic systems.

Another recent work to represent potential energy surfaces for diatomic systems is also by Le Roy and dates from
2017 [13]. There, the author describes a computer package RKR1, which implements the first-order semi-classical
Rydberg-Klein-Rees procedure for determining the potential energy function for a diatomicmolecule from a knowledge
of thedependenceof themolecular vibrational energiesGν and inertial rotation constantsBν on the vibrational quantum
number ν. RKR1 allows the vibrational energies and rotational constants to be defined in terms of (i) conventional
Dunham polynomial expansions, (ii) near-dissociation expansions (NDE’s), or (iii) the mixed Dunham/NDE “MXR”
functions [13]. For cases in which only vibrational data are available, RKR1 also allows an overall potential to be
constructed by combining directly calculated well widths with inner and the outer turning points generated from a
Morse function.

The RKR1method can be currently seen as an important complement to themoremodern and commonly used
techniques like DPF. The sophistication of the potential function forms used in such DPF analyses requires an auxiliary
tool. Their analytic complexity makes it difficult to generate the sets of realistic initial-trial-parameter values that are
required to initiate those non-linear least-squares fits. As a result, themost common approach is to start with a classical
analysis involving fits of assigned data to some variant of Dunham’s equation, i. e., a power series expansion for the
potential energy function to the coefficients of the conventional expansion for vibrational–rotational energies as a
double power series in

(
ν + 1

2

)
and [J (J + 1)], withGν and Bν represented by one of the expansions Dunham, NDE or

MXR. This is then followed by an RKR calculation using a code such as the one described in Ref. 13. Fits the resulting
potential function points using a specialized code, then yields the set of trial parameter values required to initiate
the DPF analysis. Thus, an analysis of the performance of RKR calculations is also a crucial part of a modern DPF
analysis [13].

Many comparative studies and historical reviews on diatomic potentials have been presented over the years, such
as those presented by Varshni [14] and Steele and Lippincott [15]. However, we miss an updated review, covering
from the oldest analytical forms such as Kratzer [16], Morse [7], and Rydberg [8] to the most recent ones, such as
Jia-Zhang-Peng [17] and Fu-Wang-Jia [18].

Although our aim in this work is to provide the reader with a broad view of themost relevant analytical ways to
represent diatomic potentials, we will present some with applications for particular systems, as is the case with the
potentials of Born-Mayer [19], Huggins [20] andHeller [21], dedicated in themajority of cases to alkali halide crystals
(Born-Mayer andHuggins) and van derWaals diatomic molecules (Born-Mayer andHeller).

We will start preliminary considering two methods that supported the development of the diatomic potential
theory: the Dunham expansion and the Rydberg-Klein-Reesmethod, better known as RKR.

The Dunhammethodmotivated the construction of important power functions, such as that of Thakkar[22], which
will be presented below, among others, which were based on an expansion in power series of R − Re . Besides, Dunham
showed that energy levels were given by a double series in terms of the vibrational and rotational quantum numbers ν
and J , and their coefficientsYl j . He demonstrated explicitly how potential relates to the spectroscopic constants of
Bohr’s theory, which defines theYl j ’s.

Themethod is known as RKR, in honor of Rydberg [8], Klein [9] and Rees [10], is a procedure to obtain potential
energy curves from experimental data for the vibrational term values E (ν) and rotational constants B(ν). The great
advantage of this method consists precisely in making use of experimental energy levels without reference to any
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empirical function to represent the PECs. It may seem a little contradictory that we approach this method in this work
since our objective is to deal with analytical functions to represent potentials. However, the RKRmethod that had its
construction begun in 1931 by Rydberg, improved by Klein in 1932 and completed (as we know today) by Rees in 1947,
is still themost widely used as a parameter of good precision for comparing curves of potential.

After these considerations about the RKR andDunhammethods, wewill present a historical review of about fifty
potential energy functions for diatomic systems, which have been proposed from 1920 to 2020. We know that in these
100 years of research other functions have been proposed, however, we have chosen the fifty analytical potentials
that we consider most relevant. To choose which potentials should be included in this article, we consider the number
of different species to which they can be applied and the simplicity in the calculations, prioritizing those that can be
obtained directly from experimental data in the literature. Then, for most potentials, the reader does not necessarily
need to know how tomake complex computational calculations to obtain potential energy curves.

At the end of this paper, we will compare all potentials for three diatomic systems, being one homonuclear, one
heteronuclear, and one cation in their ground electronic states, they are N2, CO andHeH+. From this comparison, we
hope to give the reader an insight into the performance of each potential by comparing themwith experimental RKR
data.

2 | PRELIMINARY
2.1 | TheDunham Expansion
In 1932, thinking of providing a method for the direct quantitative study of molecular structure from the spectra of
bands of diatomicmolecules, Dunham [23] vastly explored the theory of the rotanting vibrator. He calculated the energy
levels of this system in considerable detail by means of themethodWentzel-Brillouin-Kramers (WBK) [24, 25, 26]. For
such, firstly Dunham obtained the characteristics values of Schrödinger’s equation for this system, which is:

d 2ψ

dξ2
+
8π2µR 2e

~2

[
E (I , κ) −V − κ

Re
2(1 − ξ)2

]
ψ = 0, (1)

where ξ = (R − Re )/Re , being Re the equilibrium nuclear separation; µ is reduced nuclear mass;V the potential function
with minimum at Re . Here κ = ~2J (J+1)

8π2µ
and the last term in (1) will be call byVr = κ

Re 2(1−ξ)2
, beingVr the potential

centrifugal. The term E (I , κ) is the vibrational and rotational energy expressed as a function of the action I and the
square of the angular momentum κ .

TheMorse [7] potential at this time, 1932, was themost used to obtain energy levels since it was the only potential
that solved exactly the Schrodinger equation, which provided very good precision for such levels. However, to include
the rotational effect on its potential was not easy.

Dunham [23] (DUN) then proposes to expand the potentialV in a power series around the point ξ = 0, since the
rotational termVr has a simple expansion about this point, first neglecting the rotation, i. e. for J = 0:

VDUN = ~ca0ξ2(1 + a1ξ + a2ξ2 + a3ξ3 + · · · ) (2)

where a0 = ω2e /4Be , being ωe the classical frequency of small oscillations and Be = ~/(8π2µR 2e c), with µ the reduced
mass of the diatomic molecule, c the speed of light and ~ the Planck constant.

Now, taking into account the rotation, and in order to express all the quantities involving energy in terms of
wave numbers, Dunham considered E (I , κ) = ~cF (ν, J ) andV = ~cU , so that the effective potential function become
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U +Ur = UJ ,

UJ = a0ξ
2(1 + a1ξ + a2ξ2 + a3ξ3 + · · · ) + Be J (J + 1)(1 − 2ξ + 3ξ2 − 4ξ3 + · · · ). (3)

where

U = a0ξ
2(1 + a1ξ + a2ξ2 + a3ξ3 + · · · ) (4)

and

Ur = Be J (J + 1)(1 − 2ξ + 3ξ2 − 4ξ3 + · · · ). (5)

Dunham then proceeds to solve equation (1) by theWBKmethod, and obtains an expression for the energy as a
doubly infinite power series in the quantum numbers vibrational ν and rotational J :

FνJ =
∑
l j

Yl j

(
ν +

1

2

) l
J j (J + 1)j . (6)

Dunham calculated the first fifteenYl j and showed that the coefficients of the various powers of (ν + 1
2 ) e J (J + 1)

in the energy level formula are a series in powers of the ratio Be 2/ωe 2. By relating theYl j to the coefficients of Bohr’s
theory he noticed that these are not exactly equal, differing by for Be 2/ωe 2 in the case of the coefficientY10 of (ν + 1

2 )
that is not equal toωe , the same happens with the othersYl j . Thus:

Y10 ∼ ωe Y20 ∼ −ωexe Y30 ∼ ωe ye
Y01 ∼ Be Y11 ∼ −αe Y21 ∼ γe
Y02 ∼ De Y12 ∼ βe Y40 ∼ ωe ze
Y03 ∼ Fe Y04 ∼ He

(7)

With the possible exception of hydrides, theYl j ’s in (6) are equal to the related spectroscopic constants. Thus, since
theYl j ’s are determined from the experimental data, the potential function based on this data can be determined from
Eq. (3).

Thus, the experimentally determinedmolecular levels are given for:

E (ν, J )
~c

= ωe

(
ν +

1

2

)
− ωexe

(
ν +

1

2

)2
+ ωe ye

(
ν +

1

2

)3
− ωe ze

(
ν +

1

2

)4
+ · · · + Bν J (J + 1) − Dν J 2(J + 1)2 + · · · (8)

with Bν = Be − αe
(
ν + 1

2

)
+ γe

(
ν + 1

2

)2 andDν = De + βe (
ν + 1

2

)
.

Dunham related the coefficientsYl j with the ai ’s coefficients of potentialUJ . Some these spectroscopic parameters
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are:

Y10 = ωe

[
1 +

B2e
4ω2e

(
25a4 − 95a1a3

2 − 67a2
2

4 +
459a2

1
a2

8 − 1155a4
1

64

)]
Y20 =

(
Be
2

) [
3

(
a2 −

5a2
1
4

)
+

B2e
2ω2e

(
245a6 −

1465a1a5
2 − 885a2a4

2 − 1085a2
3

4 +
8535a2

1
a4

8 +
1707a3

2
8 +

7335a1a2a3
4

− 23865a
3
1
a3

16 − 62013a2
1
a2
2

32 +
239985a4

1
a2

128 − 209055a6
1

512

)]
Y30 =

(
B2e
2ωe

) [
10a4 − 35a1a3 −

17a2
2

2 +
225a2

1
a2

4 − 705a4
1

32

]
Y11 =

(
B2e
ωe

) [
6(1 + a1) +

(
B2e
ω2e

) (
175 + 285a1 − 335a2

2 + 190a3 − 225a4
2 + 175a5 +

2295a2
1

8 − 459a1a2 + 1425a1a3
4

− 795a1a42 +
1005a2

2
8 − 715a2a3

2 +
1155a3

1
4 − 9639a2

1
a2

16 +
5145a2

1
a3

8 +
4677a1a

2
2

8 − 14259a3
1
a2

16 + 31185
(a4
1
+a5
1
)

128

)]
Y21 =

(
6B2e
ω2e

) [
5 + 10a1 − 3a2 + 5a3 − 13a1a2 + 15

(a2
1
+a3
1
)

2

]
.

(9)

Since in this work we are interested in potential functions dependent on R and not ν, let suppose that any function
can be expanded in the Taylor series, around the equilibrium position Re , so that the potential for diatomic systems is
written as:

V =V (Re )+
(
dV

dR

)
R=Re

(R−Re )+
1

2!
(
d 2V

d 2
R

)
R=Re

(R−Re )2+
1

3!
(
d 3V

d 3
R

)
R=Re

(R−Re )3+
1

4!
(
d 4V

d 4
R

)
R=Re

(R−Re )4+ · · · (10)

where, (
dV

dR

)
R=Re

(R − Re ) = 0 (11)

since Re is theminimum of the potential.

Now, doing ρ = R − Re and fn =
(
d nV
dRn

)
R=Re

, we have:

V =V (0) + 1

2
f2ρ

2 +
1

6
f3ρ

3 +
1

24
f4ρ

4 + · · · . (12)

Then, we can explicit the coefficients an in terms of derivatives of potentialV , by relating (2) and (12):

a0 =
f2R

2
e

2~c a1 =
Re f3

12π2c2ω2e µ
a2 =

R2e f4
48π2c2ω2e µ

a3 =
R3e f5

240π2c2ω2e µ
a4 =

R4e f6
240π2c2ω2e µ

a5 =
R5e f7

10080π2c2ω2e µ
· · · .

(13)
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Substituting a0 = ω2e /4Be and Be = ~/(8π2µR 2e c) for f2, we have

f2 =

(
d 2V

d 2
R

)
R=Re

= 4π2µc2ω2e = ke (14)

where ke is the force constant.
Two other parameters that will be displayed for all potentials described in this work can be easily obtained by the

following relationships with those derived from the potential:

αe = −
6B2e
ωe

(
1 +

Re f3
3f2

)
(15)

representing the vibrational rotational coupling parameter, and

ωexe =

[
15

8

(
f3
f2

)2
− 3
2

(
f4
f2

)]
~

8π2cµ
=

[
5

3

(
f3
f2

)2
−

(
f4
f2

)]
2.1078 × 10−16

µ
(16)

representing the anharmonicity parameter.
The theoretical work of Dunham depends on the validity of its expression for the potential (2), and it is necessary to

evaluate if a molecular model with this form of potential expression can represent a molecular behavior. Two questions
arise [27]:

1. Even ifV is expressible near ξ = 0 by such an expression, it does not necessarily follow that the series will converge
over the whole range covered by the vibrational motion;

2. SinceV = const., for R → ∞, a model in whichV is represented by a power series is not necessarily the most
suitable approximation to use.

To justify themethod employed by Dunham, Sandeman [27] by expanding into power series of ξ such as in (2), two
of themost well known and important potentials of the time, Morse [7] and Kratzer [16], he showed that both were
convergent to all values which ξ assumes.

In order to establish criteria forwhich the expansion ofDunhamconverges, Sandeman [27] applying theGauss’s test,
he verified that themaximum value of ξ, which wewill call ξ during themotion should be given by the approximation:

ξ
2
=

(
ν +

1

2

)
ue (17)

where ue = 2Be
ωe
.

Since Be is inversely proportional to the reduced mass µ, for most H2 states ue is considered to be large when
compared to any other molecule.

This does not prejudice the validity of the Dunham expansion for this type of molecule, however, the convergence
of the series will be slower, which is not desirable to obtain good approximation results.

Thus, experimental functions can be developed based on anymathematical functions of ξ, which, when expanded as
power series in ξ, do not contain the first power. Since the series converged, this was themost flexible way to represent
a potential, taking into account the functions available at the time, which had amaximum of three constants, such as the
Rosen-Morse [28] and Pöschl-Teller [29] functions.
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TheDunhammethod is sufficient in the order to demonstrate the relation of the various spectroscopic constants
used in describing the observed energy levels of a nonrigid, rotating, anharmonic oscillator to the parameters of any
empirical function whichmay be expanded in a power series in (R − Re ) [15].

Themethod of expansion of Dunhamwas highlighted by presenting good accuracy in the region of theminimum in
the potential energy curve. However, themethod should be usedwith caution at higher vibrational levels as it diverges
as the energy approaches the dissociation limit [23].

2.2 | The Rydberg-Klein-Rees (RKR)method
The Rydbergmethod [8], which will be presented inmore detail in section 3.4, is a graphic procedure, quite laborious
and, although efficient to represent certain diatomic systems at the time, does not present good accuracy for low
vibrational levels. Klein [9] proposesmodifications in the Rydbergmethod, introducing amore practical and accurate
way of obtaining the PECs. He expressed the two internuclear distancesmaximum andminimum respectively for R1
and R2, corresponding to given potential energy (effective) of a diatomic molecule vibrating with an energyU as

R1,2(U ) = (f /g + f 2)
1
2 ± f , (18)

where f and g are the partials derivatives of an integral S ,

f =
∂S

∂U
(19)

and

g = − ∂S
∂κ

(20)

S is a function of the energy and the angular moment of themolecule, given by:

S (U , κ) = 1

π
√
2µ

∫ I ′

0

√
U − E (I , κ)dI , (21)

being E (I , κ) the sum of the vibrational and rotational energy of themolecule, with

I = ~
(
ν +

1

2

)
(22)

and

κ =

(
~2

8π2µ

)
J (J + 1) (23)

which are the expressions quantum-mechanics equivalents of the classical quantities I and κ .
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Here, ν and J are the vibrational and the rotational quantum numbers respectively, µ is the reducedmass of the
molecule and I = I ′ whenU = E .

According to Klein [9], the knowledge of the quantities f and g for a value of κ and different values ofU gives
directly the solution to the problem initially placed, because of the definition of these quantities follows immediately

R1(U ) =

√
f

g
+ f 2 + f and R2(U ) =

√
f

g
+ f 2 − f (24)

in which the potential curve is determined on both sides of theminimum. As you can see, theminimum of this curve is,
as it should, at the point I = 0, corresponding to amovement in which the two nuclei rotate in circular motions.

In fact, Klein [9] obtained the expressions for f and g from the period of vibration τν and of
(
1
R2 ν

)
, as well as the

Rydbergmethod (see the section 3.4) . The integral S was introduced for mathematical convenience and has a relevant
graphical interpretation in the Klein method since it represents half the area between the total constant energyU and
the effective potential energy curve, as shown by Vanderslice, Mason,Maisch, and Lippincott [30].

Klein [9] then reduced the problem to the solution of two integral equations:

f (U ) = 1

2π
√
2µ

∫ I ′

0

dI√
U − E (I , κ)

(25)

and

g (U ) = 1

2π
√
2µ

∫ I ′

0

(∂E /∂κ)dI√
U − E (I , κ)

(26)

whereas

f =
1

2
(Rmax − Rmin) (27)

and

g =
1

2

(
1

Rmin −
1

Rmax
)

(28)

However, the solution of Klein [9] for S , as well as of f and g , could only be obtained numerically, having a high
computational cost for the time [31].

In 1947, Rees [10] suggested that the expression to be integrated (21) was known, since the energy E (I , κ) can
be expressed in terms of quantum numbers ν and J , and the derived spectroscopic constantsωe ,ωexe ,ωe ye ,Be , αe and
De are given by the accuracy of the experimental data. Then f and g could be calculated and R (U ) can be obtained
in terms of such spectroscopic constants, as was desirable. In this way, he proposed towrite E (I , κ) as a quadratic in
I = ~(ν + 1/2), using the expansion of Dunham for energy (8):

E (I , κ) = E (ν, J ) = ωe
(
ν +

1

2

)
−ωexe

(
ν +

1

2

)2
+ωe ye

(
ν +

1

2

)3
+Be J (J +1)+De J 2(J +1)2−αe J (J +1)

(
ν +

1

2

)
· · · (29)
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which is the total energy of the nuclear motion, assuming the Born-Oppenheimer approximation [32], and can be
expressed by E (ν, J ) = E (ν) + E (J ), where

E (ν) = ωe
(
ν +

1

2

)
− ωexe

(
ν +

1

2

)2
+ ωe ye

(
ν +

1

2

)3
· · · (30)

and

E (J ) = Be J (J + 1) + De J 2(J + 1)2 − αe J (J + 1)
(
ν +

1

2

)
· · · . (31)

Substiting (29) in (21), considering only the three fist terms of E (I , κ) already introducing the variable I and κ , we
have:

S (U , κ) = 1

π
√
2µ~

∫ I ′

0

{
~[U − Be J (J + 1) − De J 2(J + 1)2] − [ωe − αe J (J + 1)]I +

[ωexe
~

]
I 2

} 1
2
dI , (32)

which leads to the following expressions for f and g for the rotationaless state (J = 0):

f =

(
~

8π2cµωexe

) 1
2 log e

{
(ωe 2 − 4ωexeU )

1
2

ωe − (4ωexeU )
1
2

}
(33)

and

g =

(
2π2µc

~(ωexe )3

) 1
2

[
αe (4ωexeU )

1
2 + (2ωexeBe − αeωe ) log e

{
(ωe 2 − 4ωexeU )

1
2

ωe − (4ωexeU )
1
2

}]
. (34)

being c is the speed of light.
Expressions for the energy of dissociation D and for the distance of equilibrium Re were also determined by

Rees [10]:

D =
ωe

2

4ωexe
(35)

and

Re =

(
~

8π2cBeµ

) 1
2
. (36)

Rees further considered the case where E (I , κ) is expressed as a cubic in I , however, wewill not cover it here (for
more details see Ref. [10]).

Vanderslice, Mason, Lippincott andMaish [30] extended the study of Rees, taking into account that in most cases,
energy E (I , κ) can not be represented throughout the experimental range by expression (29). Thus, they proposed to
represent it as a series of quadratics covering the interval in different regions. Thus, the integral S in Eq.(32) should be
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written as:

S (U , κ) = 1√
2π2µ~

n∑
i=1

∫ Ii

Ii−1

{
~[U − Bi J (J + 1) − Di J 2(J + 1)2] − [ωi − αi J (J + 1)]I +

[
(ωx )i
~

]
I 2

} 1
2
dI (37)

where I0 = 0 and In = I ′ and the sum extends over the vibrational energy levels.
From (37), for J = 0, the expressions for f and g will now be given by [30]:

f =

√
~

8π2µc

n∑
i=1

lnWi√
(ωx )i

(38)

and

g =

√
2π2µc

~

n∑
i=1


αi

(√
Ui −

√
Ui−1

)
4(ωx )i

+

(
2Bi − αi (ωx )i −1ωi

)
lnWi√

(ωx )i

 (39)

being

Wi =

√
ωi 2 − 4(ωx )iUi
ωi 2 − 4(ωx )iUi−1

[
ωi − 2

√
(ωx )i

√
Ui−1

ωi − 2
√
(ωx )i

√
Ui

]
(40)

Vanderslice et al. [30] perform tests and compare the Rydberg-Klein graphical procedure with the Rees analytic,
verifying that the Reesmethod is much faster andmore accurate.

Thus the Rydberg-Klein-Rees (RKR) method becomes one of themost accurate and fast methods of obtaining PECs
employing experimental data, without an analytical function. It is a method particularly favored compared to the others
when a large number of levels are known considering the situation close to the limit of dissociation.

One of the disadvantages of the RKR method is that the PEC can be constructed only in the region for which
sufficient spectroscopic data are available. However, this was great difficulty in the past decades, when there were
computational and technological barriers, which is no longer the case today. Incidentally, in the 1960s, there was a fair
amount of experimental data available [15].

Later work such as Singh and Jain [33], and later by Richards and Barrow [34] proposed even simpler ways to obtain
f and g, making it even easier to obtain an accurate PEC.

3 | POTENTIAL ENERGY FUNCTIONS
3.1 | The Kratzer function
Our starting point is to consider the wave equation [32] for the nuclear motion of a diatomicmolecule of nuclear masses
M1 andM2 and charges Z1 and Z2 is:

+2Ψ +
8π2µ

~2
[
E − (e2Z1Z2/R ) +Ve (R )

]
Ψ = 0 (41)
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where µ = M1M2/(M1 +M2) is the reducedmass, R is the internuclear distance andVe (R ) the electronic energy.
The function of nuclear potential energy will be a combination of the term representing the nucleus-nucleus

repulsion energy with the electronic energyVe :

V (R ) = e2Z1Z2/R −Ve (R ). (42)

Writting the wave function in the usual approximate form, which differs from the exact molecular equation by small
terms treated as perturbations (see for example Ref. [35]):

Ψ = Φ(φ, R ) · Θ(θ,φ) · R(R )/R (43)

then R satisfies the radial part equation of Schrödinger, given by:

d 2R
dR 2

− J (J + 1)R
R 2

+
8π2µ

~2
[E −V (R )]R = 0. (44)

Amongmany proposed diatomic potentials few are those that solve exactly the Schrodinger radial equation (44).
Proposed in 1920, the Kratzer [16] potential was one of the first to have this important characteristic, since thewave
function contains all the information necessary to describe a quantum system in its entirety. Work such as Bayrak,
Boztosun, and Ciftci [36] andHooydonk [37] emphasize the importance and applicability of obtaining the eigenvalues
explicitly in theoretical chemistry problems, especially when they result from the use of the Kratzer potential in the
place ofV (R ) in the Eq. (44).

The Kratzer [16] (KRA) potential is given by:

VKRA(R ) = −2De
(
Re
R
− 1
2

Re
2

R 2

)
(45)

whereD is the depth of the well and Re is the equilibrium internuclear separation.
The Kratzer potential is composed of a repulsive part and a long-range attraction. This potential presents three

characteristics that will be desirable to all the potentials. They are:

(i) V (R ) has aminimum at R = Re , and in this case it occurs forV (R = Re ) = −De ;
(ii) V (R ) → ∞, when R → 0, due to internuclear repulsion;
(iii) V (R ) → 0when R →∞, occurring the dissociation of themolecule 1.

In 1922, an approximate form of Kratzer’s potential was already considered [38], with the addition ofDe in (45), i.
e.,VKRA(R ) = −2De

(
Re
R −

1
2
Re

2

R2

)
+ De , resulting in:

VModf .KRA(R ) = De
(
R − Re
R

)2
. (46)

1In fact, the requirement is thatwhenR →∞ the potential curve is asymptotic for a finite value, which in general is very close to zero for systems in the ground
state that have a conventional potential curve, i. e., with only a global minimum, maxims.
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The spectroscopic constants for themodified Kratzer potential are quite problematic, as shown by Varshni [14].
When the conditions (i), (ii) and (iii) are satisfied, what one has is the relation:

keRe
2De

= 1 (47)

being ke =
(
d2VKRA
dR2

)
Re

. However, this can not be obtained for any of the 23molecules tested by Varshni [14].
Besides, C.Berkdemir, A. Berkdemir, and Han pointed in 2005, that Kratzer’s modified potential did not provide

an analytical solution for the Schrödinger equation if the centrifugal part was included in it. However, they provided a
method for eigenvalues to be obtained.(for more details see Ref. [39]).

The modified Kratzer potential (46) is still of the few to have only two adjustable parameters, De and Re . For
that reason, when compared to potentials such asMorse [7], Rydberg [8], Deng-Fan [40] and others with 3 or more
adjustable parameters, Kratzer will generally have the worst fit of the curve as a whole. This can be observed, for
example, in the work of Royappa, Suri, andMcDonought [41], where the Kratzer potential was compared to 20 other
potentials containing 3, 4, 5 and 8 adjustable parameters for 14 diatomic systems in the ground state. The Z-test
proposed by Murrell and Sorbie (can be seen in detail in section 3.26) was used, where the curves with the fitted
parameters are compared to the curve obtained by RKRmethod. Themean of the deviations for the Kratzer function
was only surpassed, surprisingly, by Lippincott [42] function (see section 3.19 of this work). With 4 parameters fitted,
the Lippincott potential does not have the expected behavior when R → 0, sinceV (R ) converges to a finite value. The
values of De are overestimated in relation to the RKR data in the attractive branch, and these high values lead the
potential, when R → 0, becomes smaller than the value of the potential with such R andDe , which does not happen
with themodified Kratzer potential.

Varshni [14] further proposed another way tomodify the Kratzer potential so that the spectroscopic constants
could be calculated. He called the generalized Kratzer (GENKRA) function:

VGENKRA(R ) = De
[
1 −

(
Re
R

)n ]2
, (48)

where

n2 = ∆ (49)

being∆ the Sutherland parameter [43] given for∆ = keR 2e /2De . The spectroscopic constants in this case are given by:

αe = ∆
1/2 6Be

ωe
(50)

and

ωexe = [8∆ + 12∆1/2 + 4]
2.1078 × 10−16

Re
2µ

. (51)
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3.2 | The Lennard-Jones function
For a molecule consisting of two atoms, we have known that there is a repulsive force between the atoms at close
separation distances which keeps the atoms from overlapping and an attractive force at large separation distances
which provides the binding of the atoms into amolecule. At some intermediate distance, these forces are in balance.
A potential form commonly used to describe this situation, first suggested byMie [44] in 1903, and later applied by
Lennard-Jones [45] in 1924.

The Lennard-Jones [46, 45] (LJ) spherical-symmetric potential, whose parameters are derived from the coefficients
of second virial or viscosity, was considered one of themost widely studied, especially between 1920 and 1990.

First, he considered the viscosity problem. The interest was to deduce the appropriate law of dependence of
the viscosity of a gas on temperature. To this end, Lennard-Jones considered the formula given by Chapman for the
coefficient of the viscosity of a gas whosemolecules may be regarded as spherically symmetrical [46]:

µ =
5

π

kT

κ0
(1 + ε), (52)

whereT is temperature, k the usual gas content, ε a small number which depends on themolecular model, and κ0 is
given by:

κ0 =
16

15
√
π

∫ ∞

0
e−y

2
φ(2)(τy )y 6dy , (53)

with

φ(2)(τy ) = 10τy
∫ ∞

0
[(1 − P2(cosχ)]pdp, (54)

being P2 a zonal harmonic of the second order, p is the perpendicular distance between onemolecule and the direction
of motion of a second relative to it before an encounter, and χ is the angle turned through by the relative velocity during
the encounter.

Further, τ is a function of the temperature and themass of the collidingmolecules given by [46]:]

τ2 =
2kT

m1 +m2
=

1

j (m1 +m2)
(55)

and

τy = CR =
V (m1m2)1/2
m1 +m2

, (56)

whereV is the relative velocity before collision,CR is a variable used by Chapman. In a simple gas,m1 = m2 and then
τy =V /2.

Firstly, anymodel χ has to be found in terms of p andV , and this required an investigation of the dynamics collision.
If the potential of the field between two molecules when separated by a distance R is φ(R ), then the motion of one
relative to the other during an encounter is the same as that of a particle of unit mass about a fixed center of force, of
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potential m1+m2m1m2
φ(R ).

LJ assumed that themolecules repel according to a inverse nth power law, and that they attract according to the
inverse third power, i. e.:

f (R ) = λn
R n
− λ3
R 3
. (57)

so that

φ(R ) = λn

(n − 1)R n−1
− λm

(m − 1)Rm−1
. (58)

The new formula to observed variation of viscosity with temperature is given [46]:

µ =
AT

n+3
2(n−1)

1 +
∑∞
R=1 SRT

−R n−3n−1
, (59)

The quantityA is independent of temperature andwe have:

A =
5
√
πmk

8I2(n)Γ
(
4 − 2

n−1

) (
2k

λn

) 2
n−1 (60)

and the “attractive constants” SR are given by:

SR =
πJR (n)

2f (R )I2(n)
λ3

λ
2/n−1
n

Γ
(
n−5−2Rn−3

2n−1 + 7
2

)
Γ

(
4 − 2

n−1

)
(2k )R

(
n−3
n−1

) (61)

and so are function only of the force constants λ3 and λn and of the index of the repulsive power law n . For details about
the calculations of IR and JR see Ref. [46].

When the attractive force is weak comparedwith the repulsive field, the formula for the coefficient of viscosity
reduces to:

µ =
AT 3/2

T
n−3
n−1 + S

(62)

whereA has the same value as before and S is given by:

S =
πJ1(n)

2I2(n)Γ
(
4 − 2

n−1

)
(2k )

n−3
n−1

λ3

λ
2/n−1
n

. (63)

Another case considered by Lennard-Jones [46] was the Sutherland model, consisting of a rigid sphere with an
attractive field surrounding it. The formula appropriate can be deduced from (62), making n →∞, such that:
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µ =
AT

1
2

1 + S/T (64)

which is a known Sutherland formula.
Based on the work of Enskog and James, it is possible to give a simple physical interpretation of S , since the value of

S for the Sutherlandmodel to be proportional to∆φ(σ), whereφ(σ) is the work required to separate twomolecules
from contact to infinity against the attractive field, and∆ is a pure number depending only on the nature of the field.
Thus, ifφ(R ) is the potential of twomolecules separated by a distance R , and σ is the diameter of a molecule, then the
value of S is given by:

S = ∆m
φ(σ)
k

(65)

being∆m depending only on the indexm of the attractive field (R−m ) and its value varies from 0.213 to 0.156 asm varies
from 4 to 9.

The physical interpretation of S is given supposing that twomolecules repelling each other according to a inverse
nth power lawmove towards each other in a direct encounter with a relative velocity of themolecules of a gas at first
absolute. At the closets distance of approach:

λn

(n − 1)σn−1
=
3

2
k (66)

and so

σ =

(
2λn

3(n − 1)k

) 1
n−1
. (67)

The distance σ is defined as the diameter of suchmolecules. If molecules are considered rigid spheres, the force
constant λn is infinite, and n is infinite, but λ1/n−1n has definite limiting equal to the diameter.

Thus, expression obtained for S , writing δ for the numerical values is given by [46]:

S = δ
λ3

λ
2/n−1
n

1

(2k )n−3/n−1
, (68)

and substituting λn in terms of the σ , we have:

S =
δ

32/n−1
λ3

2kσ2

(
4

n − 1

)2/n−1
= ∆

φ(σ)
k
, (69)

whereφ(σ) is the work required to separate twomolecules attracting according to the law R3/R 3 from a distance σ to
infinity.

S has the same formwhatever the attractive field for Sutherland’s case, and the rule is valid not only to the inverse
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third power law. Then, if λmR−m is the attractive field, S will be given by:

S =
λm

(m − 1)kσm−1
∆ =

∆′

k (n−m/m−1)
λm

λ
(m−1/n−1)
n

, (70)

where∆′ is a numerical factor. Thus, Lennard-Jones obtained that the coefficient of viscosity to general law of force
λ−nn − λmR−m is given by Eq.(62). He applied these results to argon and obtained good agreement with experiment, and
the repulsive field may have any index from 15 to 25, which led him to conclude that viscosity results alone are not
sufficient to determine uniquely molecular fields [46].

In a subsequent paper, Lennard-Jones [45] begins to consider potential whose parameters are derived from the
coefficients of second virial, more specifically B . This, however, can be applied only for two kinds of molecules: a van der
Waals molecule and amolecule repelling according to an inverse power law, without attraction.

First, he considered the equation of gas of moderately large dilution of the type:

pv = kNT

(
1 +

B

v

)
(71)

where, as usual, p , v andT denote pressure, volume and temperature respectively, k the Boltzmann gas constant, and B
the second virial coefficient. Themethodwas to determine the force constants, both attractive and repulsive, from a
comparison of the theoretical and experimental values for B . B is a function depending upon the temperature and the
forces exerted between themolecules of the gas. For molecules of spherical symmetry, which can be represented as a
potential function of the distance onlyφ(R ), the formula for B proves to be [45]:

B = 2πN

∫ ∞

0
R 2(1 − e2j π(R ))dR , (72)

where 2j = 1/kT , k being the usual gas constant (1.372 × 10−16 erg·K−1) andT the temperature, N the total number of
molecules in the gas. An alternative form B is:

B =
2πN

3kT

∫ ∞

0
R 3f (R )e2j π(R )dR , (73)

where f (R ) is the force between twomolecules when separated by a distance R , now is given by:

f (R ) = λn
R n
− λm
Rm
. (74)

and this is related to potential fieldφ(R ), by the equation:

φ(R ) = −
∫ ∞

0
f (R )dR . (75)

Lennard-Jones [45] obtained a general formula to B fromwhich one can deduce the two special cases of molecules
mentioned above. This is given by:

B =
2

3
πN

(
λn
n − 1

m − 1
λm

)3/(n−m)
F (y ) (76)
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where

y =
2j λm
m − 1

(
n − 1
2j λn

) (m−1)/(n−1)
(77)

and

F (y ) = y 3/(n−m)
∞∑
τ=0

y τ

τ!
{
Γ

(
τm − 1 + n − 4

n − 1

)
− m − 1
n − 1 γ

(
τm − 1 +m − 4

n − 1

)
y

}
. (78)

For molecules which repel according to an inverse power of distance λnR−n , we have:

B =
2

3
πN

(
2j λn
n − 1

)
Γ

(
n − 4
n − 1

)
, (79)

where was assumed y = 0 and λm = 0. For molecules which behave as rigid spheres of diameter σ , surrounded by an
attractive field of force λmR−m , we have:

B =
2

3
πNσ3

{
1 −

∞∑
τ=1

3(2j u)τ

τ!(τm − 1 − 3)
}
. (80)

observing that a rigid spheremolecules corresponds to a force λnR−n when n →∞, the diameter σ being given by:

σ = lim
n→∞

λ
1/n−1
n . (81)

Lennard-Jones related the function B theoretical and experimentally, assuming that the values of B at various
temperatures applied to a unit volume of a gas is given by expression

BN = f (T ) (82)

while theoretically, we have as above:

BN =
2

3
πν

(
λn
n − 1

m − 1
λm

)3/(n−m)
F (y ) (83)

being ν themolecular concentration.

He obtained two equation to determine λn and λm , given by [45]:
3

n − 1 log
λn
n − 1 =

3

n −m X +Y − log 2πν
3

+
3

n − 1 log k (84)

and
3

m − 1 log
λm
m − 1 =

3(n − 1)
(n −m)(m − 1)X +Y − log 2πν

3
+

3

m − 1 log k , (85)
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where (X ,Y ) is a parallel transformation, which:

log y + n −m
n − 1 logT = X (86)

and

logBN − log F (y ) =Y . (87)

Lennard-Jones applied this method to the argon gas [45]. In subsequent papers, he also applied it for helium
and neon gases [47], and for hydrogen, nitrogen, and neon gases (with some corrections) [48]. Next, Lennard-Jones
considered the problem of determining the forces between molecules of different kinds of a gaseous mixture from
second virial coefficients of a binary mixture [49]. In 1937, Lennard-Jones [50] considered that the force fields obtained
from this way are complicated functions of the distance and are not very convenient to apply in other investigations. He
observed that the interaction of neutral atoms at large distances can be represented by a potential function that varies
as the inverse sixth power of the distance. At smaller distances, he noted that the function is not so simple. Nevertheless,
it was convenient to adopt the asymptotic form of the function as valid over the whole range and tomake any necessary
modifications in the repulsive field which must be used in conjunction with it. In this case, the interaction of neutral
atoms at small distances can be represented by a potential function that varies as the inverse ninth, tenth, eleventh, or
twelfth power of the distance. For this, he considered the equation of state for a gas of small concentration given by:

pv = KNT +
B

v
(88)

or

pv = KNT +
B ′

v
(89)

where B and B ′ are functions of temperature depending on themolecular forces and the other symbols were defined
above. B and B ′ are given in terms of intermolecular fields by expressions:

B = B ′kNT = 2πN 2kT

∫ ∞

0
R 2[1 − exp(−φ(R )/kT )]dR (90)

whereφ(R ) is the potential energy of twomolecules at a distance R , given in Eq. (75). These equations are like that of
van derWaals, only first approximations and valid only for dilute gases. When van derWaals equation is written in the
form of equation (88), it appears that

B ′ = b − a

kNT
(91)

whereas the corresponding formula derived from (90) for molecules which behave as rigid spheres of diameter σ ,
surround by an attractive field, whose potential is λmR−m , is:

B =
2

3
πNσ3

{
1 −

∞∑
τ=1

3(φ0/kT )
τ!(τm − 3)

}
. (92)
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where

φ0 = λmσ
−m (93)

and is the potential energy of twomolecules in contact.
Equation (92) can be written as amore general formula which corresponds to interatomic forces whose potential is

the sum of inverse power laws:

φ = λnR
−n − λmR−m (94)

and this function can bewritten as [50]:

φ = −|φ0 |
{
1

n

(
Re
R

)n
− 1

m

(
Re
R

)m }/ (
1

n
− 1

m

)
(95)

where Re is the distance between twomolecules in equilibrium under the field (94), and |φ0 | is the energy required to
separate them from this configuration (dissociation energyD ).

The most appropriate values of n and m for the inert gases and some molecules have been given for m = 6,
corresponding to the theoretical value for van derWaals forces, and a value of n between 9 and 12.The values of λn
and λm were deduced from values of Re andφ0. For diatomic systemsHe2, Ne2, Ar2, H2, N2, O2 and CO the best value
obtained for n was 12[50].

Then, the general potential LJ(m,n), as it is better known, is a two parameter potential energy function given by:

VLJ (R ) =
D

n −m

[
m

(
Re
R

)n
− n

(
Re
R

)m ]
(96)

where Re is the equilibriumdistance andD is the dissociation energy. To have physicalmeaning, wemust have n > m > 0,
but neitherm or n need be an integer. However, the function LJ(6,12) is themost widely used for diatomic systems in
general.

Although it is still widely used in recent chemical research, mainly in computational simulations of liquids (see for
example Ref. [51, 52]), the LJ(6,12) potential fails to describe the viscosity of the inert gases in a satisfactorymanner [53]
andmeasurements of the second virial coefficients of argon and krypton [54] at low temperatures indicated further the
inadequacies of this model. Potential functions with more than two adjustable parameters were proposed in an attempt
to overcome these defects (see Section 3.43).

3.3 | TheMorse function
In 1929,Morse [7] (MOR) proposed a function that served later as a reference tomany other proposals. The functional
form to describe diatomic potentials has well represented in at short interatomic distances, being quite adequate to
represent atoms forming a chemical bond, providing greater precision in the region of theminimum potential.

The first potential energy functions proposed forV (R )were very complicated functions [7]. Proposals for such
a function were almost always based on the Dunham [23] method presented in the section 2.1, in which very general
power series were obtained from the infinite polynomial:
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E (ν, J = 0) = −D + ~ωe

[(
ν +

1

2

)
− xe

(
ν +

1

2

)2
+ K3

(
ν +

1

2

)3
− · · ·

]
. (97)

These provide the energy levels accessible, whose spectroscopic constants xe ,ωe , K3 · · · were known, and E thus
obtained empirically.

However, the use ofV as these very general expansions bring some drawbacks. The terms in (R − Re )with power 3
or greater in the expansion ofV must be calculated by perturbationmethods since these are not small as Dunham had
already pointed out [23]. Also, sinceV is obtained from known spectroscopic constants, it does not converge to large
values of R .

Morse, based on experimental data, found the spectroscopic constantsK3 as well as the higher-order parameters in
the expansion in E (ν, J = 0)were very small compared to those in the first and second terms of the E (ν, J = 0). Thus, he
proposed to truncate such a series up to the second term. Considering also, the deficiencies of the thus far presented
functions, Morse then proposed four criteria to be satisfied to obtain a simple andwell-behaved function to describe
these potentials [7]:

1. Converge asymptotically to a finite value when R →∞;
2. Possess minimum point only at R = Re ;
3. In R = 0,V (R ) → ∞;
4. Provide exactly the energy levels accessible as a finite polynomial E (ν, J = 0), being given by

E (ν, J = 0) = −D + ~ωe

[(
ν +

1

2

)
− xe

(
ν +

1

2

)2]
. (98)

whereD is the dissociation energy 2, Re represents the equilibrium distance,ωe = 1
2

√
f
µ is the vibration frequency, with

µ the reducedmass of diatomic molecule. Also, ke =
(
d2VMOR
dR2

)
R=Re

is the force constant and ωexe = ~ω2e /aDe is the
anharmonicity constant. The function proposed byMorse considering firstly only the vibrational levels, i. e., for J equal
to zero, has the form:

VMOR (R ) = Dee−2a(R−Re ) − 2Dee−a(R−Re ) (99)

being De the depth of the well. Note that the criteria 3 does not necessarily true for the Morse proposalVMOR (R ),
because when R → 0,VMOR (R ) assumes the finite valueDe (e2aRe − 2eaRe ).

In the cases where the quantum rotational number J is different from zero, the termVJ = J (J + 1)~2/8π2µRe 2

is added to the function (99). Morse showed his function reasonably satisfied all four criteria, still obtaining the first
notable case of a one dimensional Schrödinger equation providing a finite number of discrete energy levels given by
E (ν, J ), this being the empirical form of (98). The vibrational energy levels in the harmonic approximation are given by:

2D should not be confusedwith the depth of the wellDe , sinceDe − D =
1

2
~ωe .
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Eν =

(
ν +

1

2

)
~ωe , ν = 0, 1, 2 · · · . (100)

When dealing with realistic potentials, the distance between the energy levels decreases as the energy approaches
the limit of dissociation. This is due to the anharmonicity of real molecules, not well described by the harmonic
approach (100). Usually the vibrational and rotational energy levels of adiatomicmolecule are expressedas a convergent
double expansion in the variables (ν + 1

2 ) and J (J + 1) [55]3,

E (ν, J )
~c

= F (ν, J ) = ωe
(
ν +

1

2

)
− ωexe

(
ν +

1

2

)2
+ ωe ye

(
ν +

1

2

)3
− ωe ze

(
ν +

1

2

)4
+ · · ·

+

[
Be − αe

(
ν +

1

2

)
+ · · ·

]
J (J + 1) +

[
De + βe

(
ν +

1

2

)
+ · · ·

]
J 2(J + 1)2

(101)

where ν is the vibrational quantum number defined by (100) and J , the rotational quantum number (J = 0, 1, 2...).
At this point the Morse contribution becomes even more evident, not only with the functional form, but also

providing a finite polynomial E (ν, J ) suitable for the calculation of both vibrational and rotational energy levels given by:

E (ν, J ) = −D + ~ωe (ν + 1/2)[1 − ~ωe (ν + 1/2) /4De − ~2J (J + 1)/16π2DeµR 2e ]

+(~J (J + 1)/8π2µRe 2)[1 − ~2J (J + 1)/16π4µ2R 4eω2e ].
(102)

Dunham [23] questioned the accuracy of this finite series, truncated in the second-order term, representing energy,
since for light molecules like hydrogen, terms of order greater than two are not negligible. On the other hand, as for
the othermolecules the precision of the levels was considered good, this was not taken into account byMorse. Also,
Rees [10] showed that in the casewhere E (ν, J )was expressed considering the cubics terms in (ν + 1/2), the calculations
became much more difficult. Also, there was a dependence on the precision with which the second anharmonicity
constantωe ye was obtained, being the values ofωe ye are among the least reliable of the spectroscopic constants [30].

TheMorse function was also known as a three-parameter potential function,De , a and Re . De can be calculated by
integrating exactly the Schrödinger equation, usingMorse functionVMOR (R ), getting:

De = ω
2
e /4ωexe . (103)

Onceωe andDe are known, the a parameter is obtained as:

a = (8π2cµωexe/~)1/2 = 0.2454(µωexe )1/2, (104)

or equivalently,

a =

√
ke
2De

(105)

using that ke = 4π2µc2ω2e = 5.8883 × 10−2µω2e dyne/cm . Sometimes, this value of ke is approximates by ke = µω2e . This
3De appearing in expression (101) represents the centrifugal distortion constant, should not be confusedwithDe , the well depth in theMorse potential (99).
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approximation is due to Dunham [23] with a slight correction being omitted, for simplicity.
The expression (103) usually gives values for the dissociation energyD , that are too large, so that it is better to use

the experimental value when available [56].
To construct the potential energy curves, Morse used a different calculation for themolecular constant Re . The

relation used before his work was Re 2ωe = Cm , whereCm has a different value for eachmolecule, and it was necessary
to know at least one value of Re before obtaining C . Morse [7] proposed an empirical law associating Re and ωe .
Following Birges tests [57], where the values of Re and ωe for 21 molecules were known, and using the equation
logωe − p logRe = log k it was estimated that p = 2.95 and k = 2975. To test its function,Morse assumed, evenwith a
rather large error, p = 3, and then

Re
3ωe = 3000Å3/cm . (106)

He noticed that the values thus obtained reproducedwell the experimental data, with an approximate error of 4%.
Morse tested its function in neutral diatomicmolecules and ions, in ground electronic and excited states. Curves

were calculated for themolecules BeO, BO, AlO, C2, CN, CO, CO+, F2, H2, H+2 , I2, N2, N+2 , NO2, O2,O+2 and SiN.
Many comparative studies involving theMorse functionwere done later, such as those byVarshni [14] or Royappa et

al. [41]. Although theMorse function doesn’t give a correct description of the potential in the long-range, this potential
was still a reference for themost current ones.

Varshni [14] showed that the approximate expression for the vibrational rotational coupling constant αe obtained
by Pekeris [58], obtained solving the Schrödinger equation for theMorse potential by perturbationmethod is equivalent
to the his expression:

αe = 6Bexe

[(
Be
ωexe

)1/2
− Be
ωexe

]
= (∆1/2 − 1) 6B

2
e

ωe
(107)

where Be = ~/(8π2µR 2e c) is the rotational constant and ∆ =
keR

2
e

2De
is the Sutherland parameter. The anharmonicity

constantωexe in (107) is given by:

ωexe = 8a
2 2 × 2.1078 × 10−16

µ
= 8∆

2 × 2.1078 × 10−16

R 2eµ
. (108)

However, the expression (103) obtained byMorse presented better results than the expression (108) as verified by
Varshni. He analyzed 23 diatomic systems in their ground electronic states, and αe andωe showed very poor results for
these systemswith theMorse function. The Rydberg [8] and Lippincott [42] potentials presented amuch lower average
percentage error thanMorse.

On the other hand, in amore recent study, Royappa [41] et al. evaluated the behavior of the potential as a whole,
and compared it with the experimental RKR [8, 9, 10] curve using the Z-test method of Murrell and Sorbie [59] (see
details in Section: 3.26). He analyzed the average of the deviations of 21 potential energy functions for 14 diatomic
systems in their ground electronic states, and obtained that theMorse function present lower error than Kratzer [16],
Lippincott [42], Deng-Fan [40], Rydberg [8], Varshni III [14], Rosen-Morse [28], Linnett [60] and Posch-Teller [29]
potentials.
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3.4 | The Rydberg function
The potential functions used before the Rydberg proposal described only the lowest vibrational levels andwere not
useful in the extrapolation to dissociation limit [8]. It was then necessary to seek more general analytical ways to
describe potential energy functions for diatomic systems, to best fit also the dissociation region. Moreover, an accurate
representation of the series of nuclear vibrations was not known, and nuclear vibrations are experimentally measured
in terms of∆E , being∆E = E (ν + 1) − E (ν), where E (ν) is the nuclear vibrational energy corresponding to the quantum
number ν. Then∆E is assumed to be a linear function of the quantum number ν, approximation valid only for the simple
diatomic systemH2. For somewhatmore complex systems like N2 [61, 62], O2 [63] andNO [64, 65], a function of the
type (∆E )2 was used, more properly describing the nuclear vibrations. However, such a function still depended only on
the quantum number ν. Then, in 1931 Rydberg [8] developed amethod for calculating potential curves whichmakes use
of the experimental energy levels yourself and not depend on some derived formula for these levels. This a graphical
method designed to produce a curve that will give the observed vibrational and rotational energies, when these are
computed by Bohr theorywith half-integral quantum numbers. It is amethod of approximation to obtain the curves, and
to this approximation, the energy levels depend only on the form of that part of the potential curve which lies between
the classical motion of the system for the energy in question.

Rydberg [8] (RYD) suggested an empirical relationship between (∆E )2 and Bν :

(∆E )ν2 = ke · B3ν+1 (109)

where

Bν =
~

8π2µ

(
1

R 2

)
ν

, (110)

is the rotational constants, ke is the force constant and µ is the reducedmass.
Rydberg showed that for the diatomic systems CdH andHgH, the relation (109) had a good fit at several vibrational

levels [8]. Althoughwith slightly greater straight-line deviations at the lower vibrational levels, acceptable representa-
tions were also obtained for NO andO2 systems. These larger deviations were attributed to errors in the determination
of rotational constants Bν . Yet, the above-mentioned systems were considered as well represented in this frame.
However, for the LiH andNaH, an unexpected behavior occurred, plotting Eq. (109) produces a curve towards the origin
at the low levels, suggesting that for such systems, the relation (109) could be even applied for the highest vibrational
levels [66].

Rydberg used a graphical method involving the action integral, together with another integral related to the
spectroscopic constant Bν . The action integral for a rotating vibrator is [30]:

I =

∮
pR dR = 2

∫ R2

R1

pR dR = 2

∫ R2

R1

√
2µ[U −Veff(R )]dR , (111)

where pR is the radial momentum of the particle, R1 and R2 are the classical turning points and R is the internuclear
separation, µ is the reducedmass andU is the constant total energy given by:
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U =
pR

2

2µ
+Veff(R ). (112)

The termVeff(R ) is the effective potential curve, given by sum of the potentialV (R ) and the centrifugal potential:

Veff(R ) =V (R ) + κ

R 2
, (113)

where

κ =
p2
θ

2µ
. (114)

Here pθ is the angular momentum which is a constant the motion. The quantization of the radial momentum, and
therefore of the vibrational motion leads to:

I = 2

∫ R2

R1

√
2µ[U −Veff(R )]dR = ~

(
ν +

1

2

)
. (115)

Here it is clear that theRydbergmethod is based on theWBKapproximation [24, 25, 26], since in this approximation
the eigenvalues of the one-dimensional motion of a particle in a potential are given by phase integral condition (115).
This is also known as condition of Oldenberg [67], in which the potential curvemust be changed until the relation (115)
is satisfied [8].

To obtain a relation for the rotational energy, we start from the relation of Erot to a vibrating rotator [30], which
will lead us to amore explicit relation for Bν (110). We have:

Erot = κ
(
1

R 2

)
ν

=
κ

τν

∮
1

R 2
d t =

κµ

τν

∮
1

R 2pR
dR (116)

where τν is the period of vibration. Again, the quantization of the angular momentum phase integral leads to

κ =

(
~2

8π2µ

)
J (J + 1) (117)

where J is the rotational quantum number, and the relation (117) is again aWKB approximation [30]. Here κ is the same
of the Schrödinger equation (1) presented in the section 2.1, used to obtain the energy levels of a rotating vibrator.

Finally, replacing pR and κ , for equations (112) and (114) respectively, we have the following relation to Bν :

1

~2
√
2µ
· 1

8π2τν

∮
dR

R 2
√
U −Veff(R )

= Bν , (118)
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which can now be obtainedmore easily than by expression (118), and these is know as condition of Hulthén [68]. This
was of great importance in thework of Rydberg [8], since it was noticedwhen varying the values of the internuclear
distance R , an infinity of solutions satisfied the action integral. Thus, to determine the potential curve clearly, a second
condition other thanOldenberg [67] was required.

However, as the integrand of Eq. (118) becomes infinity at the classical turning points, graphical integration is not
very accurate.

Then, in 1932, Klein [9] presented amethod to solve the integral of condition (115) ofOldenberg [67]. Also,modified
the Rydberg’s procedure to calculate the classical turning points, led to the way to obtain PEC’s of the RKRmethod,
discussed earlier in section 2.2 this paper.

The relation for (∆E )2 (109), depends entirely on the behaviour of the potential curve, i. e., the forces acting on the
atomic nuclei. To construct the potential step by step, the energy E (ν) of the νth vibrational level and spacing of the
rotational levels of that vibrational level provinding the above two conditions (115), (118) on the construction of the
potential curve for energies between E (ν) and E (ν + 1).

Seeking a potential simultaneously fulfilling both conditions, Rydberg [8] proposed the following potential function:

VRYD (R ) = −De (a(R − Re ) + 1)e−a(R−Re ) (119)

where a = (ke/De ) 12 , being ke the force constant give for ke =
(
d2VRYD
dR2

)
Re

.VLJ (R ) becomes large, but not infinite when
R = 0, similarly thanMorse potential [7]. However, Rydberg showed that its potential provided best fitting compared to
Morse function for the three diatomic systemsmentioned before H2, CdH andO2.

From the third and fourth order derivatives ofVRYD (Re ) it is possible to obtain the values for the spectroscopic
parameters αe andωexe as shown by Varshni [14]:

αe =

[
2
√
2

3
∆
1
2 − 1

]
6Be
ωe

(120)

and

ωexe =

[
22

3
∆

]
· 2.1078 × 10

−16

Re
2µ

(121)

where Be is the rotational constant and∆ = keRe
2

2De
the Sutherland parameter.

Years after Rydberg’s work, his function was considered as good as the Morse function to represent various
diatomic potentials, surpassing it in divergent cases. Themean error in calculating the parameter αe for 23 diatomic
systems was 28% with the Rydberg potential, whereas, for Morse, the error was about 33%. In the case of ωexe ,
the corresponding error was of 23%with Rydberg versus 31%with Morse, showing then a good improvement [14].
Additionally, the Rydberg functionVRYD (R ), as was shown byMurrell and Sorbie [59], wasmore easily extended to fit
high order derivatives, adjusting the order of the polynomial in Equation (119).

3.5 | The Born-Mayer function
In 1932, Born andMayer [19] (BM) proposed a potential for diatomic systems with an extremely simple functional form,
yet limited to repulsive states, i. e., it is a potential to describe only the short-range region. They suggested the following
functional form:
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VBM (R ) = A exp (−bR ) (122)

where A and b are constants. Note that the potential of Born-MayerVBM (R ) → A, when R → 0, andVBM (R ) → 0 if
R →∞, presenting correct asymptotic behavior even for the long-range region of the potential.

In 1970, Gaydaenko andNikulin [69] presented amethod, based on statistical theory, to calculate the coefficientsA
and b for several pairs of neutral atoms in the ground state, with charges nucleus from Z = 2 to Z = 16. Themethod
of least-squares fit of Born-Mayer potential (122) at intervals of internuclear separation in which theVBM (R ) curve is
approximately linear is used. Themaximum error of fit in a given range was approximately 10%, and themean error was
approximately 4.8% for identical atom pairs.

To obtain the potential value for heteronuclear diatomic systems, Gaydaenko andNikulin propose to use the rule of
empirical combining proposed by Abrahamson [70] in which:

V12 ' (V11V22)1/2 = (A1A2)1/2 exp [−1
2
(b1 + b2)R ] (123)

where (A1,A2)1/2 is the geometric mean ofA1;A2 and 1
2 (b1 + b2)R is simply the arithmetic mean of b1;b2 . As pointed out

by Gaydaenko andNikulin [69], this model of calculation of the Abrahamson [70] potential is quite accurate, with an
error close to 1%only. Themethods of Abrahamson and Gaydaenko-Nikulin are differentiated only by the fact that the
first uses the Thomas-Fermi-Dirac approximation (TFD), while the second uses Hartree-Fock (HF) calculations to obtain
the interaction energies.

Themethod presented by Abrahamson allows the calculation of the potential of interaction based on the potential
of Born-Mayer tomore than 5000 different diatomic systems, using the table presented by him in Ref. [70].

As pointed out byMurrell et al. [55], the Born-Mayer potential is a special case of the extended Rydeberg function
that will be presented in section 3.26. Although we now have a few alternatives, the Born-Mayer role is extremely
important in accurately describing short-range interactions. As pointed out in the recent work (2016) of Van Vleet,
Misquitta, Stone and Schmidt [71], it is more than eighty years since the creation of the Born-Mayer function and very
little progress has beenmade in obtaining potentials with similar performance, especially in problemswheremolecular
electron density overlap cannot be neglected (for more details see Ref. [71]).

The potential of Born-Mayer still appears in problems involving triatomic systems, especially in those where there
is molecular ion interaction, and when the effect of the long-range attractive potential can be completely neglected (See
for example Ref. [72]).

3.6 | The Rosen-Morse function
Still in the year 1932, Rosen andMorse [28] (RM) proposed a functional functional form to describe the potential of a
single atom, whichmight even seem a little strange. However, their intentionwas to create a potential that could be
used to treat vibrational molecular energy from larger (polyatomic) systems:

VRM (R ) = B tanh
(
R

d

)
− C sech2

(
R

d

)
, (124)
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where

B = −2C tanh
(
Re
d

)
(125)

and

C =
De[

1 − tanh
(
Re
d

)]2 . (126)

This potential function accomplish the conditions:

(i) VRM (R ) → B if R →∞;

(ii) dVRM
dR

����
R=Re

= sech2
(
Re
d

) [
B + 2C tanh

(
Re
d

)]
, and then the depth of the well is given byDe = (B + 2C )2/4C ;

(iii) d2VFW J

dR2

����
R=Re

= 1
8d2C 3(4C 2−A2)2 = ke .

Note thatVRM → −C if R → 0, and then this potential does not attain the conditionVRM →∞ if R → 0.
Varshni [14] suggested the introduction of a new parameter p , in order to obtain a better fit of the curve. Once the

adjustable parameter p is obtained, it is possible to determine d . He defined:
Re
d

= p, (127)

where the new parameter p is related with the Sutherland parameter∆ = keR 2e /2De :

∆ = p2(1 + tanh p)2 . (128)

From this parameter, Varshni obtained also the expressions to αe andωexe spectroscopic parameters [14]:

αe = (2p tanh p − 1)6B
2
e

ωe
(129)

and

ωexe = 8∆(1 − e−2p + e−4p )
2.1078 × 10−16

R 2eµ
. (130)

Like theMorse [7] function, this potential was developed to satisfy exactly the Schrödinger equation, thus providing
exact levels of energy for polyatomic systems. Rosen andMorse [28] obtained the energy levels given by:

Eν = −
1

4

[(
4C +

~2

8π2µd 2

)1/2
− ~
√
8µπd

(2ν + 1)
]2
+ B2/

[(
4C +

~2

8π2µd 2

)1/2
− ~
√
8µπd

(2ν + 1)
]2

(131)
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where ν can be 0 ≤ ν ≤
[(
C 8πµd2

~2 + 1
4

)1/2
−

(
B8π2µd2

2~2

)1/2
− 1
2

]
, being ν the quantum number.

In the case whereC 8π2µd2

~2 � 1, the values of the energy become [28]:

Eν =V (Re ) + ~ωe
(
ν +

1

2

)
− ~2

8π2µd 2

(
1 +

3B2

8C 2

) (
ν +

1

2

)2
+ · · · (132)

whereωe is the classical frequency of oscillation about theminimum point Rm , being by:

ωe =
(4C 2 − B2)
4πd (2µC 3)1/2

. (133)

As an example, Rosen andMorse [28] used the ammonia molecule NH3 and the vibration of the nitrogen in this
molecule was chosen to be calculated by the potential (124).

The potential energy curve of nitrogen has twominimums and therefore two equilibrium positions, whichmay be
symmetrical (see discussion in Ref. [28]) and in this case theminimal points can be called Rm = ±Re . Since it is a peculiar
case, the potential must be given by the joining of two potential fields to represent the symmetry of the problem:

V (R ) =
{

B tanh(R/d − k ) − C sech2(R/d − k ), R ≥ 0
−B tanh(R/d + k ) − C sech2(R/d + k ), R ≤ 0 (134)

corresponding to half the distance between theminima Rm = k d − tanh−1(B/2C ).
One of the major difficulties of the Rosen-Morse method is to obtain the values for the parameters B , C , d , and

k . Thesemust be fitted satisfying the following conditions on potential: (i)V is reasonable in shape; (ii) |B | < 2C ; (iii)
the second level must be below the center hill and (iv) the hill should not be higher than the value ofV at∞. Thus it
is possible to delimit intervals where these values are contained, being 2200 ≤ C ≤ 3000 cm−1, 0 ≤ B ≤ 1000 cm−1,
0.16 ≤ d ≤ 0.185 Å and 2.20 ≤ k ≤ 2.24. For the value of the dissociation D , it was assumed that it would be where
V (∞) coincided withV (+Re ), but not so precisely, could assume values within the range 2200 and 4000 cm−1 in the case
of ammonia. The value of Re and in turn must be a fixed value at 0.38 Å for ammonia, however assuming any value
between 0.365 and 0.390Å, the error is only 1%within spectroscopic accuracy [28].

In a comparative study of empirical potentials presented in 1962 by Steele, Lippincott, and Vanderslice [15],
the Rosen-Morse potential presented good results for the spectroscopic constants and for the potential as a whole.
For example, spectroscopic constant calculated by Steele et al. ωexe presented a average error lower than that of
Morse [7], Pöschl-Teller [29], Frost-Musulin [73] and Varshni [14], some of these potential being more recent than
Rosen-Morse [28].

In this samework, Steele, Lippincott, and Vanderslice proposed a criterion to evaluate the accuracy of potential
energy curve from the RKR experimental curve, using as a parameter the dissociation energy D . The relationship
[ |VRKR −V |/D ]al l R (or/and [ |VRKR −V |/D ]R>Re ) is known as Lippincott criterion. This criterionwas applied to evaluate
the Rosen-Morse, and the average deviation of this potential from the curve obtained via RKR [10, 9, 8] for R > Re
was lower than that obtainedwith the potential ofMorse [7], Pöschl-Teller [29] and Linnett [60]. In addition, it is also
worth noting that the potential Rosen-Morse curve coincided exactly with the RKR experimental curve value in certain
internuclear distances for the H2 andN2 molecules in the ground stateX 1Σ+g , and for NO in the excited state B2Π [15].



30 ARAÚJO &BALLESTER

3.7 | TheDavidson function
In 1932, Davidson [74] (DAV) begins his research for a potential that provide the correct vibrational levels of energy
when using the Schrödinger equation (1). It was based upon an expansion in the neighborhood of R = Re such as that
proposed by Dunham, given by:

V (ξ) = k ξ2(1 + aξ + bξ2 + cξ3 + dξ4 + · · · ) (135)

where ξ = R
Re
− 1 and k = 2π2ωe 2µRec .

In general, the potential can be determinedwith considerable precision if known:

(i) Be , and therefore Re by the relation Be = ~
8π2µR2e c

;
(ii) The approximate value of the dissociation energyD , to whichV goes asymptotically;
(iiii) The constants in Eν , whereωe together with Be determines the radius of curvature ofV in Re .

For Davidson [74], these data leave the constants a , b , · · · in the ξ series undetermined, though they determine k in
(135). Thus, he proposes a functional form for the potential given by:

VDAV (R ) =
k

4

(
R

Re
− Re
R

)2
(136)

and this relates to the series (135) as follows [74]

k

4

(
R

Re
− Re
R

)2
= k ξ2

(
1 − ξ + 5

4
ξ2 − 6

4
ξ3 +

7

4
ξ4 · · ·

)
(137)

so that in the series wewill have only the first non-zero term, that is,VDAV (R ) is compared to a harmonic oscillator. As
the energy levels of a harmonic oscillator are given by the Eq.(100), we can already conclude that in Davidson’s potential,
the constant of anharmonicityωexe is zero.

Thus the exclusively vibrational part of the energy levels ofEν,J in theDavidsonpotential contains only thefirst term,
i. e. has only

(
ν+

1
2

)
~ωe . However, in the rotational part of Eν,J , the same does not happen. The complete expression for

the energy levels will be given by [74]

Eν,J =

(
ν+
1

2

)
~ωe + ~Be

(
J +

1

2

)2
− 4Be

3

ωe 2

(
J +

1

2

)4
+ · · · . (138)

The Davidson potential also has the following characteristics:

(i) VDAV →∞, when R → 0;
(ii) VDAV → ∞, when R → ∞, which is not desirable, since the curve does not have an asymptotic behavior, but was

already expected due to its harmonicity;
(iii) VDAV (R ) has aminimum in R = Re .
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In 1957, Varshni [14] further pointed out that the relationship

keRe
2 = 8k = constant (139)

where ke is the force constant, leads to

αe = 0 (140)

which is not valid for anymolecule [14].
The Davidson function was also used to improve the precision of potential curves obtained experimentally, through

the inverse perturbation analysis (see for example Ref. [75]).

3.8 | The Pöschl-Teller function
Pöschl and Teller [29] (PT), following the steps of Klein [9] in the search for potentials, proposed two functions and
investigated the extent to which there could be a relation between the frequencies of vibration of a diatomicmolecule
and the function ∆r (V ), where ∆r (V ) is the distance between two points of the potential curve that have the same
energy, i. e., the same potential valueV .

The first potential proposed by Pöschl-Teller [29] was

V1(R ) =
~2α2

8π2µ

[
β (β − 1)

sin2 α(R − R0) −
γ(γ + 1)

cos2 α(R − R0)
]
,
(
0 ≤ α(R − R0) ≤

π

2

)
, (141)

where µ is the reducedmass, R0 is an adjustable real parameter, α is a reciprocal length, β and γ are two numbers greater
than one, not necessarily integers.

The ansatz for the eigenfunctions that satisfy the Schrödinger equation proposed by Pöschl-Teller is given by [29]:

ψ = sinβ α(R − R0) · cosγ α(R − R0) · z , (142)

where z is given by the series

z =
∑
k

ak y
k (143)

being y another independent variable in (142) given by

y = sinα(R − R0). (144)

Substituting this ansatz into the Schrödinger equation gives:
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ak+2[(k + β + 2)(k + β + 1) − β (β − 1)] + a + k
[
−(γ + β + k )2 + 8π2

α2
µ

~2
E

]
= 0, (145)

which gives the following expression for the energy levels

Eν =
α2~2

8π2µ
(γ + β + 2ν)2 . (146)

The first Pöschl-Teller potentialV1(R ) assumes infinitewhenR −R0 = 0 andwhenR −R0 = π/2α , and has aminimum
in amore flat region of the curve in the smaller value of γ +β . The energy levels depend on the sum γ +β , and if this value
increases, for small quantic numbers ν, the energy levels become practically equidistant. The differences between the
levels aremore evident the higher the energy (or the greater ν), and the vibration frequencies will increase as the energy
increases [29]. This potential is most useful in the discussion of high excitation vibrations of polyatomic molecules.

Themost well-known and used potential form of Pöschl-Teller is the second, given by [29]

VPT (R ) =
~2α2

8π2µ

[
β (β − 1)

sinh2 α(R − R0) −
γ(γ + 1)

cosh2 α(R − R0)
]
,
(
0 ≤ α(R − R0) ≤

π

2

)
, (147)

where again β > 1 and γ > 1.
With the same treatment given to the first potential, the ansat z now so that the eigenfunctions remain finite, in the

region where α(R − R0) ≤ 0, it will be given by:

ψ = sinhβ α(R − R0) · cosh−γ α(R − R0) · z (148)

and z is now developed according to the powers of sinhα(R − R0). The condition to truncate this series becomes

En = −α2(−γ + β + 2ν)2 . (149)

Only when −γ + β + 2ν < 0, the values of the energy for (147) are discrete.
Again, when R → Re ,VPT →∞. The curve has aminimumwhen γ − β > 1.
Now the distance between levels depends on γ − β , and if this value increases, for small quantic numbers ν, the

energy levels become practically equidistant, just as occurred for the potentialV1.
Pöschl and Teller also pointed out that in quantummechanics for potentials with the same energy levels one can

have∆r (V ) different.
The rotational levels for potentialVPT (R ) are given by:

Bν = B0

(
1 − ν

√
2B0

f2

(f3)
3
2

)
, (150)

where f2 = d2VPT
dR2

����
R=Re

and f3 = d3VPT
dR3

����
R=Re

.
In this comparative study between theMorse [7], Rosen-Morse [28] and Pöschl-Teller [29] potentials, Davies [76]
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calculates the spectroscopic constants of hydrogen halidemolecules. For this, he used as base for the data treatment,
the expansion of the potentials in power series, centered in the equilibrium distance Re , that is, doing:

V (R ) = 1

2!
d 2VPT

dR 2

����
R=Re

(R − Re )2 +
1

3!
d 3VPT

dR 3

����
R=Re

(R − Re )3 +
d 4VPT

dR 4

����
R=Re

(R − Re )4 + · · · (151)

remembering that dVPTdR

����
R=Re

= 0.
When comparing the values of the derivative of the potentials, which provide relations between spectroscopic

constants, obtained with the three potentials, taking the parameters calculated by Kirkwood [77], the Pöschl-Teller
potential is the one that, in general, presents greater accuracy, being slightly better thanMorse function. Both, as we
have seen, depend on the same number of arbitrary constants, however, those derived from the Pöschl-Teller potential
aremore extensive, but do not difficult. The Rosen-Morse potential was the worst performance among the three [76].

Varshni [14] analyzed the simplest version ofVPT (R ),

VPT (R ) = M cosech2(aR/2) − N sech2(aR/2) (152)

where a = √
ke/4De , N = De/[(1 − y 2)2],M = N y 4 and y = tanh (aRe/2).

Following the calculations of Davies [76], Varshni also obtained the spectroscopic constants derived from the
potential, given by:

αe = [∆
1
2 coth∆ 1

2 − 1]6Be
2

ωe
(153)

and

ωexe = 8∆ ·
2.1078 × 10−16

Re
2µ

(154)

where∆ = keR 2e /2De is the Sutherland parameter.

3.9 | TheManning-Rosen function
In 1933,Manning and Rosen [78] (MR) proposed a new functional form to describe diatomic potentials given by:

VMR (R ) =
1

k ρ2

[
β (β − 1)e−2R/ρ

(1 − e−R/ρ )2
− Ae−R/ρ

1 − e−R/ρ

]
(155)

where k = 8µπ2/~2, A and β are two dimensionless parameters [79], but parameter ρ has dimension of length. This
potential remains invariant bymapping β ↔ β − 1, can be rewritten in simplified form as:

VMR (R ) =
Be−R/ρ + Ce−2R/ρ

(1 − eR/ρ )2
(156)
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where B = A andC = −A − β (β − 1). However, this form of theManning-Rosen potential is less well known.
The allowed values of the energy are given by [78]:

Eν = −
1

k ρ2

[
A − B
2(β + ν) −

ν(ν + 2β )
2(β + ν)

]2
. (157)

The potential (155) must satisfy the following conditions:

(i) dVMR
dR

����
R=Re

= 0, i. e.,VMR has aminimum in Re = ρ ln
[
1 +

2β (β−1)
A

]
, for β > 1;

(ii) VMR (∞) −VMR (Re ) = De , whereDe is the depth of the well;

(iii) d2VMR
dR2

����
R=Re

= ke , where ke is the force constant .

Using conditions (i) and (ii), we have a relationship forDe :

De =
A2~2

32µπ2ρ2β (β − 1)
(158)

or equivalently, a relationship for the parameterA:

A =
16µπ2ρ2

~2
(eRe /ρ − 1)De . (159)

From these relationships,Wang et al. [80] suggested rewrite theManning-Rosen potential as:

VMR = De

(
1 − e

Re /ρ − 1
eR/ρ − 1

)2
, (160)

where the termDe was added to the function (155) so thatVMR (Re ) = 0, without affecting the physical properties of
the potential function.

The expressions for the vibrational rotational coupling parameter αe and anharmonicity parameterωexe , can be
obtained fromDunham’s relations (15) and (16):

αe =

{
R 3e
ρ3∆

[
e2Re /ρ (eRe /ρ + 1)
(eRe /ρ − 1)3

]
+ 1

}
6B2e
ωe

(161)

and

ωexe =

{
15R 4e
ρ3∆2

[
e2Re /ρ (e2Re /ρ + 1)2

(eRe /ρ − 1)3

]
− R 2e
ρ4∆

[
e2Re /ρ (7e2Re /ρ + 22eRe /ρ + 7)

(eRe /ρ − 1)4

]}
2.1078 × 10−16

µ
, (162)

where Be is the rotational constant and∆ is the Sutherland parameter.
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According to condition (iii), we have the parameter ρ given by:

2Dee
2Re /ρ

ρ2(eRe /ρ − 1)2
= ke (163)

or, using that ke = 4π2µc2ω2e , we have

e2Re /ρ

ρ2(eRe /ρ − 1)2
=
2π2µc2ω2e

De
. (164)

The dissociation energyD for theManning-Rosen [78] potential differs from the value presented byMorse in the
Eq. (103), increased by δ

D =
ω2e

4ωexe
+ δ (165)

which causes even greater problems than those obtained with the Morse potential in this region, and is still less
asymptotic. Thus, the potential ofManning-Rosen is not considered adequate [14].

3.10 | TheNewing function
In 1935, based onMorse [7] potential, Newing [81] (NEW) begins his research by a functional form for the potential of
diatomic systems. He assumed a potential with three adjustable parameters,V (R ,De , Re , a) as well asMorse function,
and with the same basic characteristics:V must be infinite at R = 0,V tend to a finite value when R tend to infinity and
have aminimum value at R = Re . For 0 ≤ R ≤ ∞, the potential of Newing is given by:

VNEW (R ) = −De + Deβ 2
[
1 − e−a(R−Re )

β − e−a(R−Re )

]2
, (166)

where β = eaRe ,De is the depth of the well and the a parameter is different fromwhat appears in theMorse function
(99), and should be chosen to best agreement with experiment.

The vibrational levels are given by:

Eν = −

(
2A − 1

4

)2
K [4A(β − 1) + 1] +

(
2A − 1

4

) (
2βA + 1

4

)
2K

[
A(β − 1) + 1

4

] 3
4

(
ν +

1

2

)
− 1

4K


3A2(β + 1)2[
A(β − 1) + 1

4

]2 
(
ν +

1

2

)2
+ · · · (167)

where K = 8π2µ/~2a2 andA = KD (β − 1).
Newing estimated that the constant a is of the order of 108. Comparing with the expansion (97), he also observed

that just like theManning-Rosen [78] potential, the value of the dissociation energyD differs by a small value in relation
to the value of the dissociation obtained byMorse (103), and you can set this value toD + δ . Newing showed that δ/D
is of the order of 10−16, emphasizing that the difference in relation to the energy ofMorse dissociation is very small.

The great interest shown in thework ofNewingwas to obtain a relation between the nuclear distance of equilibrium
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Re and the frequency of vibration of themoleculeωe . In his work, he demonstrated such a connection between these
parameters, obtaining [81]:

a = 9.507 × 1018ωe
( µ
D

) 1
2

(
3

2
−Y

)
,

β =
2

(2Y − 1) , Y =

(
X − 3

4

) 1
2
, X =

4ωexeD

ωe 2

(168)

for 1 < X < 3.
ForX < 1, Newing obtained [81]:

β =
[2X − 1 +

√
(1 + 4X − 4X 2)]

4(1 − X )X ,

a =
3.8 × 1019

√
(Dµ) · ωexe [1 − β +

√
(β 2 − 1)]

ωe
.

(169)

Since the relationships between Re andωe are obtained byNewing involveD , further researchwas necessary to
obtain amore definite relation, as was pointed out by Varshini [82].

3.11 | TheHuggins function
Huggins [20] (HUG) in 1935, was dedicated to modifying the potential proposed byMorse [7] and, like Newing [81],
to obtain interesting relations between the spectroscopic constants. However, he was concerned with obtaining a
potential and its constants only for diatomic systems composed of elements of the first row of the periodic table and
having 12 ormore electrons, with the exception of Li.

First, he considered theMorse function (99) written in the form:

VHUG (R ) = Ce−a(R−Re ) − C ′e−a
′(R−Re ) (170)

with a = 2a′ andC ′ = 2C . HereC − C ′ is the dissociation energy.
To modify the Morse function, based on the Born-Mayer [19] repulsive potential, Huggins proposed that the

repulsive part of the original potential be replaced by a term that would be the same for all electronic states of a
particular diatomic system. Thus, he suggested the following change4:

C = ce−a(Re−R12) (171)

and replacing in Eq.(170)

Ce−a(R−Re ) = ce−a(R−R12) (172)
4Ce−a(Re−R12) is used as a repulsive term to calculate lattice energies and interatomic distances for the alkali halide crystals, with the same value a for all
these crystals (See for example Ref. [83]).
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where c is taken as 10−12 erg, R ,Re and R12 measured in Angstroms units and a and a′ in reciprocal Angstrom (108
cm−1). Once the value of a is determined, it is possible to obtain the values of the constants a′,C ′,C and R12 from the
spectroscopic constantsωe ,ωexe and Re .

For the types of diatomic systems considered by Huggins, the value a = 6 is the most usual, which leads him to
conclude that this value of a leads to the same value of R12 (approximately) not only for different states of the same
molecule but also for different molecules [20].

Huggins observed that using a = 6 to calculate the largest spectroscopic constants (i. e. exceptωe ye andωe ze ) and
the dissociation energyC − C ′ when R →∞, did not lead to correct values. This is probably explained by the fact that
theMorse curve does not have an adequate behavior for large values of R [7].

In the case of the dissociation energy he used the value a = 4 and the relation:

D = 0.8(C ′ − C ). (173)

When compared to the experimental values, the energy of dissociation calculated byHuggins from this equation
presented a result more accurate to that calculated by the original Morse equation for most of the diatomic systems in
several electronic states. The results were lower thanMorse only for O+2 in the states b 4Σ−g andX 2Πg , CN in the state
B 2Σ+, BeO in the states B 1Π and A 1Σ+, CO in the states F 1Π, B 1Σ and X 1Σ, NO in the states D , C 2Σ+ and A 2Σ+

and for BeF in the ground stateX 2Σ+.
The value ofC − C ′ in (173), as well as a′, is obtained from the spectroscopic constantsωe ,ωexe and the a :

(C − C ′) = 0.0585µω2e

(33a2/16 + 12ωexe/BeRe )
1
2 a − 7a2/4

(174)

with

a′ = (33a2/16 + 12ωexe/BeR 2e )
1
2 − 7a/4, (175)

being Be the rotational constant.
To obtain the values of Re , Huggins used [20]:

(R12 − Re ) = (2.303/a) log 1012C . (176)

For the diatomic systems tested, a = 6 provided practically constant R12 values, as desired, varying between 1.44Å
e 1.45Å.

The rotational constant αe was calculated from the relation:

αe = (2B2e /ωe )[(a + a′)Re − 3], (177)

and the best value for a in this case is a = 6, with average deviation from the observed value of αe of only 0.003 cm−1.
When compared to the Morse function the αe values calculated by Huggins did not present more accurate results,
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showing only better for the stateX 2Σg
+ of N+2 , for the states B 1Π, a 1Πu andX 1Σg

+ of N2, for the state 1Π of F2, for
the stateA 2Π of BO, for the statesA 1Π and a 3Π of CO and for the state B 2Π of NO.

Finally, Huggins showed that the spectroscopic constantωexe is given by [20]:

ωexe = (1/µ)(1.39a2 + 4.89aa′ + 1.398a′2). (178)

A year later, in 1936, Huggins [84] following the steps of Badger [85, 86] published a second paper onmolecular
constants, however the focus this timewas the relationship between the equilibrium distance Re and the constant force
ke . He further expanded the number of diatomic systems studied, now considering the first two lines of the periodic
table.

Badger [86] showed that Re is given approximately by the expression

Re = di j + C
1
3
i j
/ke

1
3 , (179)

whereCi j and di j are constant depending only on the rows in the periodic table in which the two elements comprising
themolecule are located.

Huggins then showed the relationship between his method and that of Badger to obtain Re via ke , and compared
themethods. Firstly, he considered the constant force (in megadynes per centimeter) [84]:

ke = 5.85 × 10−8µωe 2 (180)

and combining with Eqs. (174), (175) and (176), he obtained:

Re = R12 −
2.303

a
log

(
100ke

a2 − aa′

)
(181)

which is equivalent to

Re =

[
R12 +

2.303

a
log

(
100ke

a2 − aa′

)
− Ki j

]
+

[
Ki j −

2.303

a
log ke

]
(182)

where Ki j is any distance.
Through suitable choices for Ki j , Huggins notes that Eq.(182) is approximately equivalent to Eq.(179). Thus, he

obtained a relation between the constants di j andCi j of the Badger equation given by

di j = R12 +
2.303

a
log

(
a2 − aa′
100ke

)
−
Ci j

1
3

f
1
3

. (183)

In comparison with the experimental value of Re(exp) , the values obtained by Huggins are more accurate than those
of Badger. In 35 different states of the 24 types of molecules tested, the Re − Re(exp) deviations were smaller using the
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Badger formulation, whereas, for 61 different states of 35 types of molecules, the Huggins formulation showed the
smallest deviations (For more details see Ref [84]).

3.12 | TheHylleraas function
In 1935, Hylleraas [87] (HYL) proposes what he called the general expression for the potential of a diatomic system,
and ensures that themost important spectroscopic constants are theoretically derived from it. To build your potential,
Hylleraas initially, like most of the work shown so far in this article, imposes basic conditions so that its function is
minimally reasonable to describe diatomic potentials. Are they:

Be =
~2

8π2µ2e
,

V (Re ) = −D , V ′(Re ) = 0, V ′′(Re ) = µ(2πωe )2 = ~2ω2e
2BeR2e

.

 (184)

He introduces a new ρ variable, making

F (ρ) = V (R )
D
, ρ =

~ωe
2
√
BeD

R − Re
Re

or R
Re

= 1 +
2
√
BeD

~ωe
, (185)

where, is immediate that

F (0) = −1, F ′(0) = 0, F ′′(0) = 2. (186)

Like the others, it also treats the rotational energy of the problem separately, falling into a usual one-dimensional
oscillation equation: {(

~ωe
2D

)2 d 2

dρ2
+
E

D
− F

}
ψ = 0. (187)

Hylleraas, firstly showed that the potentials Rosen-Morse [28], Manning-Rosen [78] and Pöschl-Teller [29], and
their respective equivalents to calculate the vibrational energy, can be obtained in amuch simpler and faster way. By
transforming Eq.(187) in equations of the hypergeometric type, which can be solved in an elementary way associated
with the three potentials, nowwritten as:

I. F = −2 1 + k
e(1+k)ρ + k +

(
1 + k

e(1+k)ρ + k
)2
(Rosen-Morse) (188)

II. F = −2 1 − k
e(1−k)ρ − k +

(
1 − k

e(1−k)ρ − k
)2
(Manning-Rosen) (189)
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II. F = −2 (1 + k2)eρ − 2k2(eρ − k)(eρ + k) +
(
(1 + k2)eρ − 2k2
(eρ − k)(eρ + k)

)2
(Pöschl-Teller). (190)

In solving the three hypergeometric differential equations associated with each of the three potentials, in which
the same ansatz for the wave function can be used for the three cases, Hylleraas obtained the following formulas for the
vibrational energy, respectively:

I. 1k
√
1 +

k2
4

(
~ωe
2D

)2
− 1

1 + k
√
− ED −

1

1 + k
√
1

k2 −
(
1 +

E
D

)
=

~ωe
2D

(
ν +

1

2

)

⇒
√
− E
D
=

√
1 +

k 2

4

(
~ωe
2D

)2
− ~ωe
2D

(
ν +

1

2

)
−

1
2 (k − k 2)

(
~ωe
2D

)2
ν(ν + 1)√

1 + k 2

4

(
~ωe
2D

)2
− k ~ωe

2D

(
ν + 1

2

) (191)

II.
√
− ED =

√
1 +

k2
4

(
~ωe
2D

)2
− ~ωe
2D

(
ν +

1

2

)
+

1
2 (k + k2)

(
~ωe
2D

)2
ν(ν + 1)√

1 + k2
4

(
~ωe
2D

)2
+ k ~ωe2D

(
ν + 1

2

)
⇒ − 1

k

√
1 +

k 2

4

(
~ωe
2D

)2
− 1

1 − k

√
− E
D
+

1

1 − k

√
1

k 2
−

(
1 +

E

D

)
=

~ωe
2D

(
ν +

1

2

) (192)

III.
√
− ED =

√
(1 + k)4
16k2 +

1

16

(
~ωe
2D

)2
−

√
(1 − k)4
16k2 +

1

16

(
~ωe
2D

)2
− ~ωe
2D

(
ν +

1

2

)
⇒

√
(1 + k )4
16k 2

+
1

16

(
~ωe
2D

)2
−

√
(1 − k )4
16k 2

+
1

16

(
~ωe
2D

)2
+

√
− E
D
=

~ωe
2D

(
ν +

1

2

) (193)

Observing that the above all energy formulas result in ~ωe
2D

(
ν + 1

2

)
, and therefore approximate according to the

phase transitionmethod (see details in section 2.2), Hylleraas obtained the following relation:

1

2πi

∮ √
− E
D
+ F dρ =

~ωe
2D

(
ν +

1

2

)
. (194)

Analyzing the potential ofMorse with three parameters, and considered one of themost accurate at the time, and
that of Rosen-Morse that with four parameters showed a slight improvement, Hyleraas [87] proposes a potential that
contains six adjustable parameters. If on the one hand this potential really should guarantee more accurate results
and applicable to a greater number of different diatomic systems, on the other hand, a potential involving such a large
number of parameters generally requires quite sophisticated calculations.

The potential proposed by Hylleraas is given by [88]:
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VHY L (R ) = F + −D − Dξ2, 1 − ξ =
(1 + a)(1 + c)(x + b)
(1 + b)(x + a)(x + c) ,

x = e (1+k )ρ ,
1

1 + k
=

1

1 + a
+

1

1 + c
− 1

1 + b
,

ρ =
~ωe

2
√
BeD

(R − Re )
Re

(195)

whereD , Be and ~ωe are spectroscopic constants and Re is the equilibrium distance.
For b = a , c = −k we have the potentials ofManning-Rosen, for b = a , c = 0 the potential ofMorse and for b = a ,

c = k the potential of Rosen-Morse. Similarly, if we have b = c , a = −k , 0, k we have the potentials ofManning-Rosen,
Morse and Rosen-Morse respectively. Finally, if we have a = −k , c = k , b = −2k 2/(1 + k 2), we get the potential of
Pöschl-Teller.

For the potentialVHY L (R ), the energy equation will be calculated, using the same idea of (194), by:

1

2πi

∮ √
−

(
1 +

E

D

)
+ ξ2dρ =

√
−

(
1 +

E

D

)
+ ξ2

dρ

dξ
dξ =

~νe
2D

(
ν +

1

2

)
(196)

where dρ
dξ is expanded in power series of ξ

dρ
dξ = 1 + a1ξ + a2ξ

2 + a3ξ
3 + a4ξ

4 + · · · ,

ρ = ξ +
a1
2 ξ

2 + ξ +
a2
3 ξ

3 + ξ +
a3
4 ξ

4 + ξ +
a4
5 ξ

5 + · · ·

 . (197)

The energy formula can finally be expressed as [87]:

1 −
√
− ED = ~ωe

2D

(
ν + 1

2

)
+ 1
2 (1 − a2)

(
~ωe
2D

)2 (
ν + 1

2

)2
+

[
1
2 (a2 − a4) +

1
2 (1 − a2)2

] (
~ωe
2D

)3 (
ν + 1

2

)3
+ · · ·

= ~ωe
2D

(
ν + 1

2

)
+

1
2 (1−a2)

(
~ωe
2D

)2 (
ν+ 12

)2
1−

[
1−a2+

a2−a4
1−a2

]
~ωe
2D

(
ν+ 12

) + · · · .
(198)

The coefficients a1, a2, a3, a4 may be derived from the expression:

ρ = 1
1+k log 1

1−ξ

{
1 + k ξ − 2k1k2(1+k )ξ2

1+(k1+k2+2K1k2)+
√
[1+(k1+k2+2k1k2)ξ2]−4k1k2(1+k1)(1+k2)ξ2

}
k1 =

(
1
1+b −

1
1+a

)
(1 + k ), k2 =

(
1
1+b −

1
1+c

)
(1 + k ).


(199)
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or still,


a1 = 1 − k − 2k1k2
a2 = 1 − k + k 2 + 3k1k2[k + k1 + k2 + 2k1k2],
a3 = 1 − k + k 2 − k 3 − 4k1k2

[
k (k + k1 + k + 2 + 2k1k2) + (k + k1 + k + 2 + 2k1k2)2 + k1k2(1 + k1)(1 + k2) + 1+k

2 k1k2
]

a4 = 1 − k + k 2 − k 3 + k 4 + 5k1k2 {k (k + k1 + k + 2 + 2k1k2) · [(k + k1 + k + 2 + 2k1k2)2 + k 2 + (1 + k )k1k2]
+k1k2(1 + k1)(1 + k2)[k + 3(k1 + k + 2 + 2k1k2)]}.

(200)
As observed by Varshni [14], the potential of Hylleraas does not provide any relation between the spectroscopic

constants, unlike the potential ofMorse, Rosen-Morse, Manning Rosen and Pöschl-Teller.
Soon after proposing its potential function, Hylleraas [89] uses it to calculate the curves for the diatomic systemsN2

andCdH, both in the ground state. In the case ofN2 the accuracy that Hylleraas obtained for the series of the vibrational
energy Eν , with only two terms, is remarkable.

When comparing theMorse (N2) and Rydberg (CdH) curves, he sees a good agreement with Rydberg. However,
when compared toMorse, the potential curve of Hylleraas presents good agreement for the vibrational levels of 0 to 10,
presenting a very poor result in the long-range region (and in the levels ν > 21), where the Hylleraas curve tends to be
less infinity [89].

3.13 | The ExtendedMorse function
In 1938, Coolidge, James, and Vernon [31] (CJV) based on the Dunham [23] theory, have established that any potential
curve of a diatomic system, which has an asymptotic valueD , can bewritten as

V (ξ) = DF (ξ), ξ = (R − Re )/Re . (201)

Furthermore, for CJV all potential energy functionsmust have at least three parameters, that is, in addition toD
and Re , a third parameter β would always be present to ensure a good fit of the curve. The energy formulas will be
related to the Dunham coefficients (203) andwill be expressed in terms of the constantC , given by:

C 2 =
4R∞meβ 2

µRe
(202)

where R∞ is the Rydberg constant5 andme is themass of the electron. TheY ′l j will be related follow:

Y ′10 ∼ ωe −Y ′20 ∼ ωexe
Y ′01 ∼ Be −Y ′11 ∼ αe

(203)

To obtain terms of highest order, i. e., up toY ′′20,Y ′40,Y ′′11,Y ′31,Y ′′02,Y ′22,Y ′13 andY ′04, CJV [31] opted to determine by
numerical integration the values Rν and Bν for large ν, and so adjusting the values the higherY ′s as to reproduce these
values.
5TheRydberg constant is given byR∞ = me e

4

8ε0
2~3c

= 1.0973731×107m−1 for heavier elements andRH = 1.09677576×107m−1 for the hydrogenmolecule.
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The potential proposed by CJV is an extension of the Morse function, being known as Extended Morse (EM)
potential. Using the formulation (201), this potential is given by:

F (ξ) =
8∑
n=2

cn [1 − e−2βξ ]n (204)

or in terms of R ,

VEM (R ) =
8∑
n=2

cn [1 − e−2β
R−Re
Re ]n (205)

where cn are adjustable parameters. These can be obtained from the relationships with the coefficients of Dunham:

a0 = 4β
2Dc2

a0a1 = 4β
2D (−2c2 + 2c3)

a0a2 = 4β
4D (7/3c2 − 6c3 + 4c4)

a0a3 = 4β
5D (−2c2 + 10c3 − 16c4 + 8c5)

a0a4 = 4β
6D (62/45c2 − 12c3 − 342/3c4 − 40c5 + 16c6)

a0a5 = 4β
7D (−4/5c2 − 1121/45c3 − 531/3c4 + 1062/3c5 − 96c6 + 32c7)

a0a6 = 4β
8D (127/315c2 − 91/5c3 + 645/5c4 − 200c5 − 304c6 − 224c7 + 64c8).

(206)

The parameter β may be chosen so as to satisfy the auxiliary condition,∑n cn = 1, if it is desired to reproduce the
observed dissociation energyD , or as an adjustable parameter to satisfy other condition.

CJV exhibited potentials and energy formulas for the potential ofMorse, Pöschl-Teller, and Hylleraas, in addition to
the one proposed by them and presented a comparative study for the H2 system in the excited state 1sσ2sσ 3Σg .

The curve obtainedwith the potential ExtendedMorse function reproduces the values of the coefficientsY10 · · ·Y40 ,
Y01 · · ·Y31 given by Sandeman [90], who a priori used the H2 system in the state 1sσ2sσ 3Σg in his work. The curve
presents correct behavior, both short and long range with deviations within the spectroscopic limit for R between
1.5 aH

6 and 2.5 aH , and only one deviation of 2 cm−1 for R = 2.7 aH and of 8 cm−1 for R = 2.9 aH .
In relation to the energy formulas, both vibrational and rotational, the function of CJVwasmuch higher than that

of Morse, Poschl-Teller, and Hylleraas. The errors in the reproduction of energy levels by the potential curve using
Dunham’s terms supplemented by results of numerical integrations are practically zero in the first levels (0 ≤ ν ≤ 3) [31].

Among the comparative potentials, the one closest to the extendedMorse is the Hylleraas, however, this occurs
only when it is constructed by themethod proposed by CJV.

3.14 | TheMecke-Sutherland function
Firstly, in 1927,Mecke [91] based on thework of Born andHandb, used awell known analytical expression in those time
to develop his diatomic potential:

V = −e2
[ c1
R p
− c2
R q

]
. (207)

6Here aH is the ray of the first circle of Bohr, and aH = ~2
4πme2=0,529·10−8
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Here, the first term represents the potential of attractive forces in themolecular association, since they are supposed to
be purely radial forces, theymay, in any case, be inversely proportional to an initially arbitrary power p of the central
distance R . The second term represents the repulsive part of the potential. The inequality p < q must bemaintained.
For dimensional reasons, the total expression wasmultiplied by the square of the elemental charge e . The constants in
(207) are related with spectroscopic parameters (Re , a, b andD).

ForMecke, the equilibrium position, that is, the distance Re from the nuclei, caused by the compensation of the
repulsive and attractive forces that prevail in it, and thus corresponds to aminimum of the potential energy, was given
by

R
q−p
e =

q · c2
p · c1

. (208)

To obtain the elastic potential (207), he developed the expression for vibrationswith a small amplitude x (R = Re ±x )
in power of x , obtaining:

V = −
(
e2c1(q − p)
R
p
e · q

)
+
e2c1 · p(q − p)

2R
p+2
e

x2 · · · (209)

or more generally,

V = −D +
D2
2!

(
x

Re

)2
− D3
3!

(
x

Re

)3
+
D4
4!

(
x

Re

)4
· · · (210)

whereDj is a product of dissociation energyD by a simple (p, q ) function. In particular,D2 = p · q · D , and as is well
known, the x2 coefficient immediately gives us the value of themolecule’s natural vibration

2πν =

√
D2
J
=

√
e2c1p(q − p)

R
p
e J

(211)

which the two constants in (207) can be determined by ν (=a from oscillation equation an − bn2) and J .
Analyzing the expression (207)Mecke [91] observed that the values p = 1 and q from 3 to 4were adequate formost

hydrides, and p = 1 or q = 4were adequate for oxides and nitrides spectra. In particular, for most hydride the potential
curve in the immediate neighborhood of the equilibrium position is best characterized by particularly simple approach:

V = − e
2

R
+

e2

qRe

(
Re
R

)q
. (212)

Years later, Sutherland [43] suggested an analogous functional form to express themutual potential energy, known
asMecke-Sutherland (MS) potential, given by:

VMS =
α

Rm
− β

R n
, (213)
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where, since
(
dVMS
dR

)
R=Re

= 0, the relationship

mα = nβRm−ne (214)

can be obtained.
Sutherland derived the relations between force constant ke , equilibrium distance Re and the dissociation energy

D . He expandedVMS about Re in powers of (R − Re ), such the coefficient of (R − Re )2, i. e., the force constant ke was
obtained by:

ke =
nβ

R n−1e

(
n + 1

Re
− m + 1

Re

)
(215)

and using the relationship (214)

ke =
mα(n −m)
Rm+2e

=
nβ (n −m)
R n+2e

. (216)

The dissociation energy was obtained by Sutherland [43] from (214)

D =
α

Rme

(
1 − m

n

)
(217)

or from (216)

D =
keR

2
e

mn
= 2∆, (218)

where∆ is the Sutherland parameter.
This result once reminiscent of the rule ofMecke, presented during a congress in Leipzig (Leipziger Vorträge 1931).

In this congress, Mecke was criticized by prominent physicists that only normal vibrations involving all atoms of the
molecule are possible, but not vibrations of isolated groups of themolecule. However, Mecke’s opponents were wrong.
They did not consider the large difference in the stretching frequencies of CH, OH or NH groups due to the lowweight
of the H atom (as compared to frequencies where noH atoms are involved), nor the influence of the great differences
between single, double, and triple bonds and their respective frequencies, effectswhich allow amathematical separation
solution in the respective eigenvalue equations. Thus theMecke’s concepts are adequate and clear even today [92].

More some spectroscopic parameters can be obtained using the relation (218) [14]:

αe = (m + n) 2B
2
e

ωe
(219)

and

ωexe =

[
2

3
m2 +

7

3
mn +

2

3
n2 + 4(m + n) + 4

]
2.1078 × 10−16

R 2eµ
. (220)
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3.15 | TheHulburt-Hirschfelder function
TheMorse functionwas considered limited because is not flexible due to the reduced number of parameters, which
initially seemed to be an advantage, because it made the functional form simpler. To tackle this limitation, in 1940,
Hulburt and Hirschfelder [6] (HH) suggested the addition of two parameters, i. e., functions involving five spectroscopic
constants. These two parameters to be added in a so-called correction term were easily determined, and the five-
parameter functions proved satisfactory for a largemajority of diatomicmolecules. However, the problem to obtain
the potentialV (R ) already reported in the Morse function for large internuclear distances was not solved with this
correction. Since the high levels of vibrational energy are unknown for manymolecules, it is virtually impossible to find
a unique potential that could be universally used for diatomic systems.

For Hulburt andHirschfelder [6], any functional form intended to describe a potential energy functionmust have
as basic characteristics a value close to infinity when nuclei approach each other, passing then by a minimum in the
equilibrium distance and a value close to the dissociation energy when the nuclei become distant. They analyzed the
best-known functions with three, four, five, and six spectroscopic constants, and concluded that a function with five
parameters would be ideal, being able to be used by the largest possible number of diatomic systems.

From the fact that the spectroscopic constantsωe ,ωexe , Be and αe are known for most diatomic molecules, where
Be = ~/(8π2µR 2e c), the function proposed by them had three parameters used to recover the usualMorse function plus
two parameters, b and c , which corrected the curve of Morse, and at the same time were obtained by means of the
known constants. The function of Hulburt andHirschfelder has the form:

VHH (R ) = De [(1 − e−x )2 + (1 + bx )cx3e−2x ] (221)

where x = ωe

2(BeDe )
1
2

[
R−Re
Re

]
, and the constants b and c are given by the relation

c = 1 + a1(De/a0)
1
2 , (222)

b = 2 +

[
7
12 −

De a2
a0

]
c

(223)

being a0, a1 and a2 the Dunham coefficients given by expansion [23]

a0 = ω
2
e /4Be (224)

a1 = −1 − αeωe/6Be 2 (225)

a2 =
5

4
a1
2 − 2

3

ωexe
Be
. (226)

WhatmadeHHbelieve the potential they presentedwith five parameters was ideal, were tests performedwith
selected diatomic molecules in certain states which were not analytically well described until then, but when using
VHH (R ) as potential function presented good results. They are: H2 in 1sσ2sσ3Σg + state, CdH andN2 both in the ground
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electronic state. For H2 in 1sσ2sσ3Σ+g state the HH potential was the one that best fitted the curve, not better only
than the potential by Hylleras [87] with six parameters or than the Pöschl-Teller [29] that have the same vibrational
levels of theMorse function, but on account of a fourth parameter, provides better fitting for the rotational levels.

For the CdH, themaximum deviation in relation to the Rydberg [8] curve, which is a reference in the fitting of this
molecule, was very small (of the order of 0.35 kcal mol−1).

For N2 molecule, when comparedwith the Hylleras [87] fitting for the first 22 vibrational levels, the HH potential
again showed good agreement. Also comparing with the ExtendedMorse curve of Coolidge, James, and Vernon [31], it
presents exactly the same results, however, these are more easily obtained by the HH potential as parameters canmore
easily be determined in terms of Eq. (221).

For the H2 molecule, the required corrections to the Morse curve are rather small. With the constants b and c
introduced, theMorse curvewas corrected for small and large nuclear separations, andwith the potential HH, the curve
is much smoother, providing an improvement in the description of the asymptotic limit.

The potential of HHwas conceived with the purpose of giving the best fit for the spectroscopic constants. However,
it is difficult to find a suitable polynomial to express both the lowest and the highest vibrational energy levels. Then, the
polynomial function should also bemultiplied by an exponential term, such as:

Eν = A[1 − exp(−1/2(ν + 1/2))]
[
1 + 0, 1

(
ν +

1

2

)
− 0.005

(
ν +

1

2

)2]
. (227)

Thus, therewould have two different series for each case, the difference is because exponentials with large negative
values converge asymptotically to zero. For small values of (ν + 1/2), the energy levels are calculated by the series [6]:

Eν/kcal mol−1 = 0, 5
(
ν +

1

2

)
− 0.075

(
ν +

1

2

)2
+ · · · (228)

and for large values, the series in kcal mol−1

Eν/kcal mol−1 = 1 + 0, 1
(
ν +

1

2

)
− 0.005

(
ν +

1

2

)2
+ · · · . (229)

The method to obtain the corresponding energy levels would replace (221) in the Schrödinger equation and
perform numerical integrations.

In 1961, Hulburt and Hirschfelder [93] perceived an error in the first sign of the expression referring to parameter
b , the correct signal is negative and not positive, i. e.:

b = 2 −

[
7
12 −

De a2
a0

]
c

. (230)

This led researchers as Tawde [94] andHerzberg [95] to question the fit of their potential function, being considered
poorly fitted because of this error.

In a paper published in 1954, Tawde andGopalakrishnan [94] even stated that the fitting of the HH functionwas
good only for distances larger than the equilibrium distance, i. e., for R > Re in the case of the C2 molecule. However,
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after re-counting with the correct sign of parameter b , Tawde and Katti, who first notice it and communicated the
authors about the error in b , came to the conclusion that the function by Hulburt andHirschfelder was indeed a good
representation [96]. They also verified for other diatomicmolecules the function HH is far superior to several others
evenmore known than theMorse function considering the prediction of molecular constants.

3.16 | The Linnett function
After analyzing theMorse[7] andMecke-Sutherland[91, 43] potentials, the former being an double-exponential function
of typeV = a · e−mR − b · e−nR , and the latter a double-reciprocal function of typeV = a

Rm −
b
Rn , Linnett[60] proposed a

two terms function containing elements from both. Its intention was to improve the fitting of the potential energy curve
for several diatomic systems and to obtain satisfactory connections between the parameters ke and Re , which did not
occur in theMecke-Sutherland[91, 43] potential.

It was then that in 1940, Linnett [60] (LIN) introduced a potential functionmore generic than the thus far proposals,
involving four adjustable parameters, given by:

VLI N (R ) =
a

Rm
− b · e−nR . (231)

He called this potential of reciprocal-exponential function, consisting of two terms, both going to zero when R
becomes infinite. The first term represents the repulsion between atoms, going to +∞when R = 0, and the second term
represents the attraction of two atoms, going to −∞when R = 0. Thus, the behavior of the total function will depend on
the values assigned to the parameters that compose it.

Linnett devoted himself to testing its potential for diatomic systems composed of atoms belonging to the second
period of the periodic table. First, considering the relationships

(
dVLI N
dR

)
Re

= 0 e
(
d2VLI N
dR2

)
Re

= ke , the following
relationships were obtained for the dissociation energyD and for the constant force ke [60]:

D =
a

Re
m

(
m − nRe
nRe

)
(232)

and

ke =
a

Re
m+2
· m(m + 1 − nRe ) (233)

combining (232) and (233), and by eliminating nRe is obtained

keRe
m+2 = ma +

m2 · DRem

1 + DRem

a

. (234)

One of his major concerns was to explain the relationship between ke and Re since the functions of the double-
reciprocal type did not have the ability to do so. For this, it was necessary to assume the parametersm and a constants
for all states of the same molecule, with n and b calculated and fitted for each state conveniently from two other
parameters. Linnett [60] usedm = 3 for all studiedmolecules in his tests, since keR 5e according to Fox andMartin [97]
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was approximately constant, and when analyzing the behavior of this same expression when m = 4 came to the
conclusion that if a is constant, the expression keR 6e does not significantly change, that is, it can be considered constant
as well.

The probable reason for Linnett to have used the values m =3 and m = 4 in his tests is that when calculating
parameters such as vibration frequency and harmonicity, the potential is usually expanded in a series of powers around
the equilibrium interatomic distance and this series is truncated in 3r d or 4t h power, the other terms being generally
negligible. Thus, it was reasonable to consider only suchm values.

To the parameter a was given a different value for eachmolecule, taking into account the atoms involved, the charge
of themolecule, among other aspects.

Linnett [60] calculated Re from the observed values of ke andD for certain states of the following diatomic systems:
Li2, C2, N2, O2, BeF, BO, CN, CO, NO, N+2 , O+2 and CO+.

By using keR 5e = a and keR 6e = a , being a constant chosen for eachmolecule, Linnett [60] came to the conclusion
that in general, the expression with the 6th power of the interatomic distance provided better results than the 5th. For
the states of the molecules in general, the mean error in the calculation of Re using keRe 6 = a was 0.9%while using
keRe

5 = a was 1.5%.
For the calculation ofωexe from ke andD , Linnett expanded the potential function (231) on power series in (R −Re )

in the neighborhood of Re , neglecting the highest terms in the series to be able to use the Kratzer [16]method, obtaining
a value forωexe in function ofm , n and Re given by:

ωexe =
~

64π2cµRe
2

{
5
3

[
(m+1)(m+2)−(nRe )2
(m+1)−nRe

]2
−

[
(m+1)(m+2)(m+3)−(nRe )3

(m+1)−nRe

] }
(235)

where µ is themolecule reducedmass.
Except for Li2 andO2 ,ωexe values were better reproduced by the Linnett potential than by any other known before,

with an average error on all states of 16%, greatly improving corresponding error obtained with theMorse potential, of
about 46%[60].

When the values ofωexe were calculated using the same parameter a , but now starting from ke and Re , the average
error increases very little, being at the 18%, already the calculated average error for the dissociation energyD stands at
28%, not so good, but slightly better than the calculated viaMorse potential[60].

Also, the spectroscopic parameter αe can be obtained from equation:

αe =
6B2e
ωe

[
(m + 1)(m − 1) − (nRe )2 + 3nRe

3(m + 1 − nRe )

]
(236)

but this was not evaluated by Linnett in his paper published in 1940. Subsequent work, such as Varshni [14] and of
Steele et al. [15] approached this calculations for Linnett potential. Varshni [14] analyzed the behavior of αe for 23
diatomic systems and concluded that this was unsatisfactory for most of them, adequate only for CO, N2, NO andO2.
However, Steele et al. [15] obtained very different results, for the diatomic systems in their ground and some excited
electronic states: H2, I2, N2, O2, CO, NO, OH andHF. The average error for αe using the Linnett potential was less than
for theMorse [7], Rydberg [8], Rosen-Morse [28], , Pöschl-Teller [29], Frost-Musulin [73], Lippincott [42] and Varshni
(III) [14] potentials.

Still, in the same work, Steele et al. [15] showed that for the 8 diatomic systems above cited, the average error
for ωexe relative to Linnett potential was practically half of the error presented relative to Morse [7], Rydberg [8],
Rosen-Morse [28], Pöschl-Teller [29], Frost-Musulin [73] and Varshni (III) [14] potentials.
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Then, the Linnett potential provided a good representation of the potential energy curve, superior tomany others
functions that were known at that time, obtaining the best results for the diatomic systemsO2 and CO[60], especially
when using the observed values of ke eD .

In more recent research, such as Royappa et al. [41], has shown that if the parameters of the Linnett potential are
well fitted, using, for example, theMathcad (Mathsoft Inc.), this function has fewer deviations from the RKR [8, 9, 10]
curve than the Kratzer [16], Lippincott [42], Deng-Fan [40] and Rosen-Morse [28] potentials.

3.17 | TheHeller function
In 1941, Heller [21] (HEL) proposed a functional form for specific diatomic systems known as van derWaals molecules.
They present a very flat potential minimum at relatively large interatomic distances. Hewas interested in the diatomic
system, in the gaseous phase and in the lowest energy state: HgHe, HgNe, HgAr, HgKr, HgXe, Hg2 and in the polyatomic
systems (O2)2 and (NO)2 which can be treated as consisting of two bodies inasmuch as the two atoms in each normal
O2[NO] diatomicmolecule are fairly tightly bound and their internuclear separation 1.21[1.15]Å [95] is much smaller
than intermolecular distance, R0 say, of (O2)2[(NO)2].

The potential energy function is constituted by an attractive part,∆E (2), being considered the dispersion forces
only, and a repulsive partA(ρ)e−R/ρ in the form of Born-Mayer’s potential, given by:

VHEL (R ) = A(ρ)e−R/ρ −
(
c1

R 6
+
c2

R 8
+
c3

R 10
+
c4

R 12

)
. (237)

where∆E (2) = − c1
R6
− c2
R8
− c3
R10
− c4
R12

andA(ρ)e−R/ρ is the same kind of function used in Born-Mayer’s potential [19] to
treat the alkali-halide crystals (see section 3.5).

The coefficient of the first term, c1 is calculated by London general expression (see Ref. [98]) and the remaining
coefficients are found bymeans of perturbation calculation using theMargenau harmonic oscillatormodel (seeRef. [99]).

Heller observed the well depthDe of the potential (237) at Rm (minimum) is given by:

VHEL (Rm ) = −
[
c1

R 6m

(
1 − 6ρ

Rm

)
+
c2

R 8m

(
1 − 8ρ

Rm

)
+
c3

R 10m

(
1 − 10ρ

Rm

)
+
c4

R 12m

(
1 − 12ρ

Rm

)]
= De . (238)

However, this would be theminimum if and only if:

A(ρ) = 2

R 7m

(
3c1 + 4

c2

R 2m
+ 5

c3

R 4m
+ 6

c4

R 6m

)
· ρeRm /ρ , (239)

being ρ bounded by

ρ <

c1 +
4
3
c2
R2m

+ 5
3
c3
R4m

+ 2
c4
R6m

c1 +
12
7
c2
R2m

+ 55
21

c3
R4m

+ 26
7
c4
R6m

Rm
7

(240)

For the eight diatomic systems considered by Heller, ρ was considered equal to 0.28Å, ensuring that the energy of
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dissociation was in good agreement with experimental data.
The interatomic distance Rm considered by Heller was not identical to the equilibrium distance Re . Using a graphic

procedure that identifies the midpoint of the classical range of oscillation of the lowest vibrational level with the
equilibrium distance Re (for more details see Ref. [100]).

The coefficient of term R−12 is many times neglected, andwhen this is considered zero, the error for thewell depth’s
is only 2.1 percent or less, assuming ρ = 0.28Å, for the analyzed systems. However, although the contribution of the
term R−12 is small, it is important when R = Rm [21].

The typeof function (237)wasfirstly proposed in 1938, byBuckingham [101] for to treat diatomic systemcomposed
by rare gases, such as helium, neon and argon. He obtained the potential energy interactionVBUC (R ) for rare gas atoms
from the observed virial coefficients, using the classical equation of state:

VBUC (R ) = Ae−bR −
(
C6

R 6
+
C8

R 8

)
(241)

beingA and b constant,C6 andC8 parameters evaluated by Lennard-Jones and Ingham [102]. However, function (241)
has a deficiency. Although the exponential term increases rapidly as R decreases, it remains finite when R = 0, so
that the long-range term is dominant at R → 0when thenVBUC (R ) → −∞. These problems were fixed damping the
dispersion term by Tang-Toennies potential [103].

3.18 | TheWu-Yang function
In 1944, although intending to cover the most diverse types of diatomic systems, and not just rare gases or crystals
forces,Wu and Yang [104] (WY) proposed a potential function similar to Heller [21], which is also based on the potential
of Born-Mayer [19] and Buckingham [101]. They have applied their relation to diatomic systems composed by elements
of HH, KH, LH, KK, KL, and LL periods.

The potential used byWu-Yang is given by:

VWY (R ) = ae−R/p −
b

Rm
(242)

being a , b , p andm constants within amolecular period (see table 1 on p.296 in Ref. [104]).
When a new analytical formwas proposed, the first concern was to obtain relations to calculate the spectroscopic

constants related to the proposed potential. In particular,Wu and Yang [104] sought a correct relationship between Re
and the constant force ke . To this end, they analyzed the proposals that had been successful such as that of Clark [105],
Badger [85](see section 3.11), Allen-Longair [106] and Sutherland [43](see section 3.14).

Through the potential (242), with
(
∂VWY
∂R

)
Re
= 0 and

(
∂2VWY
∂R2

)
Re

= ke , Wu and Yang obtained the follows relations:

a

p
e−Re /p =

bm

Rm+1
(243)

and
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ke =
1

eRe /p

[
a

p2
− a(m + 1)

pRe

]
=

1

Rm+1e

[
− bm(m + 1)

Re
+
bm

p

]
. (244)

They plotted keeRe /p against 1/Re for various diatomics systems of the HH, KH, LH, KK, KL, and LL molecular
periods, in their ground and excited states. For diatomic molecules of HH, KH, LH periods, they obtained a good result
form = 4, and for systems in other periods, the best value obtained wasm = 6. As these constant values ofm ensured a
straight line for each period, they concluded that the values of b and p also remained constant in each period.

The average errors in ke calculated from Re for the periods HH, KH, LH, KK, KL and LL obtained for Wu and
Yang [104] were 7.1%, 5.3%, 4.5%, 12.0%, 13.1%and 19.0% respectively.

With asymptotic characteristics similar Buckingham’s function [101], theWu-Yang potential presented the same
deficiency when R = 0, whereV = −∞. However, this was not the only problemwith the potential proposed by them. As
observed by Varshni [107], in 1959, theWu-Yang assumption that the values ofm , p , and b were constant for different
states of diatomic molecules from the samemolecular period is not true evenwhen R = Re .

Using theWu-Yang rule for obtain ke , Varshni [107] calculated others spectroscopic constants, αe and ωexe for
diatomic systems fromKK period. To this end, Varshni first obtained:

αe = −
(
XRe
3

+ 1

)
6B2e
ωe

(245)

and

ωexe =

(
5

3
X 2 −Y

)
2.108 × 10−16

µA
(246)

where

X = −
1
p

2
R 2e − (m + 1)(m + 2)
1
p R

2
e − (m + 1)Re

and Y =

1
p

3
R 3e − (m + 1)(m + 2)(m + 3)

1
p R

3
e − (m + 1)R 2e

. (247)

Varshni [107] showed that, mainly, the values of the anharmonicityωexe were very different from the experimental
values. In addition, the average error in calculating the constant force for diatomics of that period was 12.1%, which is
not at all attractive. Varshni considers that even for the other diatomic systems, large deviations in the values of αe and
ωexe should occur.

3.19 | The Lippincott function
In 1953, Lippincott [42] (LIP) proposed a functional form for diatomic potentials still in the Hulburt-Hirschfelder and
Morse-type, involving an exponential of the interatomic distances, given by:

VLI P (R ) = De (1 − e−n(∆R )
2/2R )(1 + aF (R )), (248)

whereDe is the depth of thewell and R has the usual meaning, a and n are constants. ∆R = R −Re and F (R ) is a function
internuclear distance so that F (R ) = ∞, when R = 0 and F (R ) = 0, when R = ∞. In many cases, F (R ) has no great
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relevance, and can only be consideredVLI P (R ) as the first term of the product.
Considering a = 0 and using the relation for the constant force ke =

(
d2VLI P
dR2

)
Re

in its functionVLI P (R ), the
dissociation energyD is obtained from:

D (er gs/mol ecul e) = keRe/n (249)

where n is empirically given by:

n = 6.32 × 108(I /I0)
1
2
A
(I /I0)

1
2
B
cm−1 (250)

with (I /I0)
1
2
A
and (I /I0)

1
2
B
corresponding to the ionization potentials of the atomsA and B respectively relative to those

of the corresponding atoms in the same row and first column of the periodic table.
Lippincott [42] pointed out that most researchers were always in search of a good analytical way to represent

potential curves of diatomic systems, however, these were little used to predict the energy of bond dissociation D
and anharmonicity constants. He calculatedD using the relation (249) for 22 diatomicmolecules and obtained good
results compared to spectroscopically obtained values. The resulting mean deviation of 4.5%, was considered large
when compared to the experimental error for Re , ke and (I /I0) (around 0.1%).

For the calculation of the anharmonic constants, such asωexe , a second-order perturbation theory was used. The
potential (248) was expanded in power series, taking a = 0, so that the cubic and quartic terms of this expansion
represent the perturbation potential in the Schrödinger equation. The quadratic (harmonic) term of this potential
stands for the unperturbed potential. In this way, he obtained :

ωexe = 3~(n/Re + 1/Re 2)/64π2cµ. (251)

He calculated the value of ωexe by means of (251) for 22 different diatomic molecules, and compared with the
values obtained spectroscopically, reaching an average deviation of 5.7%. Thiswas considered as a good result compared
to the same process using theMorse function[7] (46%), or even compared with the Linnett [60] reciprocal-exponential
function (16%).

Now,D can be obtained as a function of known parameters, through (249) and (251):

D (er gs/mol ecul e) = ke/[(64π2cµωexe/3~) − 1/Re 2] (252)

and the results obtained from this method showed an average error of 4.8% in relation to the D values obtained
spectroscopically for 17 diatomic molecules.

In 1955, Lippincott and Schroeder [108] presented amore detailed study on the function (248). First, they consid-
ered the simple function already analyzed by Lippincott with a = 0, i. e.:

VLS (R ) = De (1 − e−n(∆R )
2/2R ), (253)
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where, if R → 0, thenVLS (R ) = De , not satisfyingVLS → ∞. However, for them this was not a serious problem. The
biggest problemwith this function is that it provides αe = 0 for all molecules, which is not correct. Then, they concluded
that this function would not be themost suitable to represent a generic potential.

Another important contribution by Lippincott and Schroeder was on the calculation of parameter n . This parameter
may be calculated bymeans of the following empirical relation:

n = n0(I /I0)
1
2
A
(I /I0)

1
2
B
cm−1 (254)

with (I /I0)
1
2
A
and (I /I0)

1
2
B
corresponding to the ionization potentials of the atomsA and B , as well as in the Eq. (250). For

H atoms I /I0 they assigned the value 0.88 and for most molecules where the binding is primarily covalent and including
all molecules of the fourth, fifth, sixth, and seventh columns of the periodic table, n0 has the value 6.32 × 108. For the
diatomic alkali metal and alkali hydrides, n0 had the value of 4.21 × 108 [108].

Now, since n was calculated separately it may be used to predict ωexe from Re values in the Eq. (251), without
needing ke orD . The average error forωexe calculated from n for diatomic systems As2, Br2, C2, CH, ClBr, Cl2, ClF, CLI,
CO, F2, HBr, HCl, H2, HI, IBr, I2, N2, NO, OH, O2, P2, S2, SO and Se2 is only 5.5% [108].

Lippincott and Schroeder [108] pointed out that the simple potential (253), which provided αe = 0, could be used as
a first approximation to an overall potential. In addition, they observed that since bonds in polyatomic systems usually
have values of αe aremuch smaller than the corresponding αe values for diatomicmolecules, it may be that Eq. (253)
represents an improved approximation to potential curves for the bond in polyatomic systems. In fact, they used this
function for this, see for example the Ref. [109] and [110].

Next, Lippincott and Schroeder [108] considered the complete potential (248), i. e., with a , 0. The term (1+ aF (R ))
was chosen such thatVLS →∞when R = 0 and away that the resulting function will allow a prediction of vibrational-
rotational coupling constants. At large distances it should give a Van derWaals energy of interaction. To accomplish this,
they used three terms of power series in the quantity [1 − exp(−b2n∆R 2R 11/2R 12e )] 12 :

1 + aF (R ) = 1 + (−1)a × (Re/R )6[1 − exp(−b2n∆R 2R 11/2R 12e )] 12
−(Re/R )12[1 − exp(−b2n∆R 2r 11/2R 12e )]

(255)

or for the general function

VLS (R ) = De [1 − exp(−n∆R 2/2R )]
×{1 + (−1)a × (Re/R )6[1 − exp(−b2n∆R 2R 11/2R 12e )] 12

−(Re/R )12[1 − exp(−b2n∆R 2r 11/2R 12e )]}.
(256)

For large values of R this function takes the form

V = De [1 − exp(−n∆R 2/2R ){1 + a[−(Re/R )6 + (Re/R )12]}, (257)

where F (R ) takes form of a Lennard-Jones(6,12) Van derWaals potential (see section 3.2). This fact ensures that the
curve from Eq. (256) is in good agreement with the observed curve.
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From Eq. (256), the spectroscopic parametersD , αe andωexe now are give by:

D = ω2e /2nReBe (258)

αe = 0 (259)

ωexe = 1.5Be [0.25 + nRe/4 + ab(nRe/2)
1
2 + (5a2b2 − ab2)nRe/2]. (260)

Note that Eq. (258) is equivalent to relation (249), since Be = ~/8π2µR 2e c and ke = 4π2µω2e c
2. Studies such as

Somayajulu [111] have suggested that in the relation (249), n could be a constant not depending on the ionization
potential of eachmolecule. However, Lippincott, Schroeder and Steele [112] have shown that such a relationship was
not valid for diatomic molecules in electronic excited states.

Although the function (256) is a function of 5 parameters, more complicated to calculate than (253), the parameters
ab and b can be considered as constants for most molecules, simplifying the computation of αe andωexe , for example.
Thus, the potential (256) was considered a good general approximation to the “true” potential function.

3.20 | The Frost-Musulin function
In 1954, Frost andMusulin [113] (FM) initially proposed, a general potential energy function for diatomicmolecules.
This kind of potential considers the possible relation between a “reduced” potential energy and a “reduced” internuclear
distance, analogous to a reduced equation of state. For this, they consideredV the potential energy of a diatomic
molecule in the ground state or in any attractive excited state taking the zero of the energy at infinite separation of the
nuclei. At the potential energyminimumV = −De , beingDe the depth of the well. Then, the reduced potential is defined
by:

V ′(ρ) = V (ρ)
De

with ρ(R ) = (R − R i j )/(Re − R i j ) (261)

where R and Re are the usual distances and R i j is a constant for a givenmolecules and is a measure of inner shell radii of
atoms i and j . Note that theminimum isV ′ = −1 and ρ = 1, since R = Re .

Frost and Musulin [113] assumedV ′ as a universal function of ρ for any diatomic system. At the minimum this
function, we have:

(
d 2V ′

dρ2

)
ρ=1

= K (262)

being K a dimensionless parameter. Since the force constant is given by ke = (d 2V /dR 2)R=Re , it follows that:

ke (Re − R i j )2/De = K (263)



56 ARAÚJO &BALLESTER

or that

R i j = Re − (KDe/ke )1/2 . (264)

For to analyze the behavior of reduce potential, Frost andMusulin [113] chose 23 diatomic systems: H2, H+2 , CH,
OH, HCl, HCl+, KH, ZnH, HBr, CdH, HI, HgH, Li2, O2, O+2 , ClF, Na2, P2, Cl2, K2, Br2, ICl and I2. Firstly, they calculated the
value ofK for the diatomic systemsH2 andH+2 , assuming that R i j = 0, obtainingK = 4.14 andK = 3.96, respectively. For
the other diatomic systems, they assumed themean value K = 4.00.

To check the validity of this properties, Frost andMusulin [113] examined the coefficients of the higher terms such
as L/6 andM /24 in the expansion:

V ′(ρ) = −1 + (K /2)(ρ − 1)2 + (L/6)(ρ − 1)3 + (M /24)(ρ − 1)4 + · · · (265)

where

L =

(
d 3V ′

dρ3

)
ρ=1

and M =

(
d 4V ′

dρ4

)
ρ=1

. (266)

For L andM they obtained the follow relations:

L =
(Re − R i j )3

De

(
d 3V

dR 3

)
R=Re

(267)

and

M =
(Re − R i j )4

De

(
d 4V

dR 4

)
R=Re

. (268)

The average values for 23molecules were L = −15.06 andM = 43.48. Themean deviations of L andM from their
averages were 13.2 and 42%, respectively. These results, although not very satisfactory, led Frost andMusulin to believe
that their universal potential was approximately correct. However, in 1961, Varshni and Shukla [114] showed that this
“universal” potential energy function does not exist. They still claim that it is possible to obtain universal relations for
spectroscopic parameters αe andωexe in terms of the Sutherland parameter∆ = keR 2e /2De [14].

While Frost andMusulin [113] used the third and fourth derivatives to obtainαe andωexe , Varshni and Shukla [114]
using a different method, obtained these parameters in terms of L,M and K :

αe =

[
− L
3K

Re
(Re − R i j )

− 1
]
6B2e
ωe

(269)

and

ωexe =

[
5

3

(
L

K

)2
− M
K

] [
Re

Re − R i j

]2 2.1078 × 10−16
µRe

(270)
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where µ is the reducedmass. The calculated values by Frost andMusulin [113] for αe andωexe presented the average
percent errors corresponding to 24.9 and 17.7, respectively, whereas with Varshni [14] methodwe have 22.1 and 11.1
for 23 diatomic systems, being 18 commonwith the analyzed by Frost andMusulin. Varshni and Shukla still guarantee
that the relatively low error forωexe is nothingmore than a happy cancellation of the errors [114].

In the same year, Frost andMusulin [73] suggested a semi-empirical potential energy function aiming to overcome
difficulties found in previous potentials, such as Morse [7], Hulburt-Hirschfelder [6], Lippincott [42]. For this, they
imposedmore conditions to be fulfilled by an adequate function. They are:

(i) The potential energy for nuclear motionV is the algebraic sum of two parts given by:

V =
e2

R
+Ve (271)

where the first term is the nuclear repulsive potential corresponding to Coulomb force Z1Z2e2/R , with e the
electronic charge, Z1 and Z2 the atomic numbers, and R the interatomic distance; and the second term is the purely
electronic energy defined asVe , which is also a function of R .

(ii) V becomes infinite as R approaches zero, being due to the nuclear repulsion term e2/R , assuming therefore thatVe
does not become infinite in equal and opposite sense.

(iii) Ve is finite in R = 0 and assumesV =V 0
e , beingV 0

e the known “united” atom energy.
(iv) Ve ∝ −e2/R for R large. This is based upon the choice ofV = 0 as R → ∞ and is required condition to cancel the

nuclear repulsion potential since the totalV goes to zero faster than inversely as the first power of R .
(v) V must be capable of going through aminimum as R varies.

The potential energy function with two adjustable parameters that accomplish these criteria presented by FM [73]:

VFM (R ) = e−aR
(
1

R
− b

)
(272)

being a and b these parameters.
In principle, the parameters a and b were fixed by demanding the function provides any two of the known experi-

mental quantities such as Re , equilibrium internuclear distance;De , dissociation energy from theminimum of the curve
(depth well);ke , force constant for infinitesimal amplitudes, which is related to the spectroscopic constant αe ; andωexe ,
anharmonicity constant. Again, they applied this function to the diatomic systemsH2 andH+2 in their ground states, so
that the corresponding electronic energy is given by:

Ve = −
1

R

(
1 − e−aR

)
− beaR . (273)

with the limiting value as R → 0:

V 0
e = −(a + b). (274)

For these systems, they calculated the usual parameters above described: Re ,De , ke , αe ,ωexe and also the critical
distance Rc which is the value of R , less than Re , at which V = 0, or the same as at infinite separation. For this
parameter Rc , in particular for the diatomic H+2 , they obtained (1.136a0) [73] in good agreement with the experimental
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values(1.12a0) [115].
Varshni [14] showed that the spectroscopic parameters αe andωexe are best represented in terms of a parameter

s , related to Sutherland parameter∆, defined by:

∆ = s2/2 + s or s = −1 + (1 + 2∆), (275)

so that,

αe =

[
2s2 + 3s

3(s + 2)

]
6B2e
ωe

(276)

and

ωexe =

[
11s4 + 66s3 + 156s2 + 144s + 36

3(s + 2)2

]
2.1078 × 10−16

R 2eµ
. (277)

Analyzing the behavior of these expressions in terms of s , Varshni [14] concluded that the FM function is very close
to theMorse potential [7], being FM slightly more complex.

In 1957, Chen, Geller and Frost [116] (CGF) provided a generalization of the function (272) for to be applied in a
more kinds of diatomic systems, beingV now given by:

VCGF = e
−aR

( c
R
− b

)
(278)

where the new parameter c is:

c = Z1Z2 (279)

with Z1 and Z2 some kind of effective nuclear charges of the two atoms.
With this new potential, the three parameters a , b and c can be now obtained by direct algebraic evaluate from

spectroscopic constantsDe , Re and ke , using the relations:

a = p/Re (280)

b = De (1 + p) exp p (281)

c = DeRep exp p (282)
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where

p =

(
1 +

f R 2e
De

)1/2
− 1. (283)

Although the potentialVCGF is more flexible than the original potentialVFM (R ), it does not present better results.
Steele et al. [15] in a comparative study for systemsH2 , I2 , N2 , O2 , CO, NO, OH andHF in their ground and excited states,
showed that the CGF potential does not give any appreciable improvement over theMorse [7] curve. They observed
also that the average errors for the quantities αe andωexe for the diatomic systems above cited were bigger using this
more general of Frost-Musulin potential thanwith the Rose-Morse [28], Rydberg [8], Linnett [60] and Lippincott [42]
potentials.

However, recent work such as Royappa, Suri andMcDonough [41] has shown that if the parameters of theVCGF
potential are well fitted, using for example theMathcad (Mathsoft Inc.), on the whole this function present good results.
They observed that the new Frost-Musulin potential (278) showed average error less fromRKR [8, 9, 10] curves than
the Kratzer [16], Lippincott [42], Rydberg [8], Morse [7], Rose-Morse [28], Linnett [60] and Pöschl-Teller [29] curves for
C2, CF, CH, CN, CO, H2, HF, Li2, LiH, N2, N+2 , NO, O2, andOH in their ground electronic states.

3.21 | The Varshni function
Although already quite convinced that a universal analytical function to represent “all” diatomic potentials did not exist,
as proposed by Frost andMusulin [113], Varshni [14], in 1957, presented a comparative study of the more relevant
functions known at that time. He analyzed the behavior of potentials energy functions fromMorse [7] to Frost and
Musulin [73] for 23molecules in their ground and excited electronic states. In addition, he calculated the rotational αe
and vibrationalωexe constants for these systems. From this analysis, Varshni concluded that, in fact, it is not possible
to have exact “universal” potential energy function for all diatomic systems, but it is possible to have a function for
molecules with similar linkages. As a result, Varshni (VAR) proposed seven different potentials.

For to construct his potentialsVVAR (R ), Varshni [14] established the criteria that a good potential must satisfy, such
as the potentials presented before. He divided them into criteria that are necessary and desirable:

1. Necessary:
a. VVAR (R ) should come asymptotically to a finite value as R →∞;
b. VVAR (R ) should have aminimum at R = Re ;
c. VVAR (R ) should become infinite at R = 0, but this need not be very strict, because ifVVAR (R ) becomes very

large in R = 0 it is enough.
2. Desirable:

a. The potential function should be capable of giving rise to a least onemaximum under certain conditions;
b. Ve is finite at R = 0;
c. Ve =V

0
e at R = 0, whereV 0

e is the known “united” atom energy;
d. Ve ∝ −e2/R for R large;
e. dVe

dR = 0 at R = 0;
f. Van derWaals terms should introduce terms of the form 1/R n .

The desirable criteria (b), (c), (d) and (e), were based on the Frost-Musulin [73] potential (see previous section 3.20), and
the criteria (a) to (f) need not be exactly true.
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The First potential proposed by Varshni [14] was a function similar toMorse [7]:

VVAR I (R ) = De {1 − exp [−b(R 2 − R 2e )]}2, (284)

where b is given by:

b =

(
ke

8DeR 2e

)2
= ∆1/2/2R 2e . (285)

being∆ = keR 2e /2De the Sutherland parameter.
The potential (284) satisfies the criteria 1.(a) and 1.(b), and as well as theMorse potential,VVAR I (R ) becomes large

at R = 0. Varshni obtained also expressions to calculate the spectroscopic parameters, αe andωexe , from his potential:

αe = (∆1/2 − 2)
6B2e
ωe

(286)

and

ωexe = [8∆ − 12∆1/2 + 12]
2.1078 × 10−16

R 2eµ
. (287)

For the 23 diatomic systems analyzed, this potential givesmuch lower values for αe than theMorse [7] function.
On the other hand,VVAR I (R ) gives lower values forωexe , but these presented average error (18.2%) lesser than that
Morse [7](31.2%) and Rydberg [8](23.1%) potentials.

The Second potential proposed by Varshni [14] was:

VVAR I I (R ) = De
{
1 − Re

R
exp [−α(R − Re )]

}2
(288)

where

α =
∆1/2 − 1
Re

. (289)

The potential (288) accomplish the three criteria 1.(a), 1.(b) and 1.(c). The parameters αe andωexe are given by:

αe =

[
∆1/2 +

1

∆1/2
− 1

]
6B2e
ωe

(290)

and

ωexe =

[
8∆ + 12 − 8

∆1/2
+
12

∆

]
2.1078 × 10−16

R 2eµ
. (291)
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In this case, the values αe andωexe were higher than those obtained fromMorse [7] potential, being considered
unsuitable by Varshni.

Due to the fact that the First potential provides low values and the Second provides very high values, Varshni bet
on a Third option that mixed the two functions.

Then, the Third potential energy function proposed by Varshni was a mixture of the first (284) and the second
potentials (288), given by:

VVAR I I I (R ) = De
{
1 − Re

R
exp [−β (R 2 − R 2e )]

}2
(292)

where

β =
1

2R 2e
[∆1/2 − 1]. (293)

This potential obeys the three necessary criteria, and in fact it was a good bet. The expressions for αe andωexe are
given by:

αe =

[
∆1/2 +

2

∆1/2
− 2

]
6B2e
ωe

(294)

and

ωexe =

[
8∆ + 12∆1/2 + 66 − 111

∆1/2
+
73

∆

]
2.1078 × 10−16

R 2eµ
. (295)

For αe , the average error fromVVAR I I I (R ) (22.9%) potential is significantly lower than that obtained fromMorse [7]
(33.1%) and Rydberg [8] (28.0%) potentials. In relation to ωexe , the Third potentialVVAR I I I (R ) presented a similar
behavior to that of Frost-Musulin [73].

The Fourth function proposed by Varshni was:

VVAR IV (R ) = B(A + exp (b/R ))2 (296)

with the conditions

A = exp (b/Re ), (297)

B =
De

[exp (b/Re ) − 1]2 (298)

b = Re lnA (299)



62 ARAÚJO &BALLESTER

and, here,

∆ =

[ lnA
1 − 1/A

]2
. (300)

For this function, αe andωexe are given by:

αe = (lnA + 1)6B
2
e

ωe
(301)

and

ωexe = [8(lnA)2 + 24 lnA + 64] 2.1078 × 10
−16

R 2eµ
. (302)

The Fourth potential fulfill the three necessary criteria. However, this functionwas discarded because this gives
much higher values for αe andωexe than theMorse [7] function.

The Fifth potential proposed by Varshni is a generalization of Kratzer [16] function and a special case of the
Mecke-Sutherland [91, 43] potential, being given by:

VVARV (R ) = De
[
1 −

(
Re
R

)n ]2
. (303)

Here, we have:

n2 = ∆ (304)

and the spectroscopic parameters are given by:

αe = ∆
1/2 6B

2
e

ωe
(305)

and

ωexe = [8∆ + 12∆1/2 + 4]
2.1078 × 10−16

R 2eµ
. (306)

As well as the Fourth potential, theVVARV (R ) function gives higher values than theMorse for the parameters αe
andωexe , being therefore considered inadequate.

The Sixth potential proposedwas similar to secondVVAR I I :

VVARV I (R ) = De
{
1 − Re

R
exp [−a(R − Re )]

}2
[1 + Kf (R )] (307)

where f (R ) is a function such that:



ARAÚJO &BALLESTER 63

f (R ) =
{
∞, at R = 0

0, at R = ∞

This function attain the tree necessary criteria. Note that if f (R ) = 0, we have the function very similar to Second
function:

VVARV I (R ) = De
{
1 − Re

R
exp [−a(R − Re )]

}2
(308)

which providesVVARV I = De at R = 0. For this function, we have:

aRe = ∆
1/2 (309)

and the spectroscopic vibrational rotational αe and anharmonicityωexe parameters given by:

αe =

[
∆1/2 − 1

∆1/2
− 1

]
6B2e
ωe

(310)

and

ωexe =

[
8∆ − 12 + 8

∆1/2
+
12

∆

]
2.1078 × 10−16

R 2eµ
. (311)

The behavior of αe is not suitable for the Sixth potential. However,ωexe is very close to the Rydberg function.
The Seventh and last potential proposed by Varshni is similar to Lippincott [42] potential:

VVARV I I (R ) = −AR
n exp (−aR )[1 + Kf (R )] (312)

and, as before, f (R ) = ∞ at R = 0, and at R = ∞, f (R ) = 0.
This function satisfies the tree necessary criteria, and as before, if f (R ) = 0, we have:

VVARV I I (R ) = −AR
n exp (−aR ) (313)

where,

a =
n

Re
(314)

A =
De

R 2e e
n

(315)
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n = 2∆. (316)

The constants αe andωexe are given by:

αe = −
1

3

6B2e
ωe

(317)

and

ωexe =

[
6∆ +

2

3

]
2.1078 × 10−16

R 2eµ
. (318)

This potential gives a negative value to αe , which is absurd. On the other hand, the values ofωexe obtained from the
Seventh potential were slightly lower than that the Lippincott [42] function, with the average error (13.6%) very near to
that of Lippincott (12.9%).

Varshni concluded that for the overall representation of the potential energy curves, the Third and Sixth functions
were themost useful [14].

In 1962, Steele et al. [15] in a comparative study of potential functions, analyzed 8 of the 23diatomic systems in their
ground and excited electronic states previously treated by Varshni [14]. The average error for the quantity αe calculated
from Third Potential (292) was less (15.57%) than fromMorse [7] (19.67%), Rydberg [8] (17.45%), Rosen-Morse [28]
(22.33%), Pöschl-Teller [29] (18.47%) and Frost-Musulin [73] (23.55%). On the other hand, the average error for ωexe
was the largest among the analyzed potentials.

Steele et al. [15] also compared the average error from RKR [8, 9, 10] curves for all R and for R > Re . For all
R , the Third potential by Varshni presented lower deviation (2.28%) than Morse [7] (3.68%), Rydberg [8] (2.94%),
Rosen-Morse [28] (3.71%), Pöschl-Teller [29] (3.48%), Frost-Musulin [73] (3.41%) and Linnett [60] (4.18%). Still, for
R > Re the Third potential by Varshni presented lower deviation (1.68%) thanMorse [7] (3.20%), Rydberg [8] (2.27%),
Rosen-Morse [28] (2.80%), Pöschl-Teller [29] (3.28%), Frost-Musulin [73] (3.30%) and Linnett [60] (5.07%), showing that
VVAR I I I (R ).

In a more recent, and similar to Steele et al. comparative study [41], the Third potential by Varshni again showed to
bemore accurate than the potentials before cited, and alsomore accurate that the Kratzer [16], Lippincott [42] and
Deng-Fan [40] potentials.

3.22 | TheDeng-Fan function
It is possible to note that for the various potentials analyzed until now, the Morse [7] function is still a benchmark,
although, as we have seen, it is not the ideal potential because it does not present correct asymptotic behavior when
R → 0.

In an attempt to correct this failure, in 1957, Deng and Fan [40] (DF) propose a simple modification in Morse
potential:

VDF (R ) = De
[
1 − e

aRe − 1
eaR − 1

]2
(319)
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where a is theMorse parameter (104). This potential is called a generalizedMorse potential.
The functionVDF (R ) has three parameters as the Morse potential. However, this function has correct physical

boundary conditions at R = 0 and∞. Note that, when R → 0we haveVDF → ∞, which was not the case withMorse
potential. Furthermore, when used as a potential function for the vibration of diatomic molecules, the Schrödinger
equation is exactly soluble as well asMorse (see in detail in Ref. [117]).

Using the relations, established by Dunham [23], we can obtain the spectroscopic parameters vibrational rotational
αe and anharmonicityωexe , in terms of the derivatives of the potential functionVDF (R ):

αe = −
6B2e
ωe

(
1 +

Re f3
3ke

)
(320)

and

ωexe =
Be
8

[
−R

2
e f4
ke

+ 15

(
1 +

ωeαe

2B2e

)2]
(321)

where Be and ke have theirs usual meanings

Be = −
~

8π2cµR 2e
, ke = 4π

2µc2ω2e (322)

and f3 and f4 are given by:

f3 =
d 3VDF

dR 3

����
R=Re

= −12a
3Dee

3aRe

(eaRe − 1)3
+
6a3Dee

2aRe

(eaRe − 1)2
(323)

and

f4 =
d 4VDF

dR 4

����
R=Re

=
72a4Dee

4aRe

(eaRe − 1)4
− 12a

4Dee
3aRe

(eaRe − 1)3
+
14a4Dee

2aRe

(eaRe − 1)2
. (324)

As the potential of Deng Fan brings supposedly greater accuracy than theMorse [7] function, many researchers
have conducted comparative studies involving both potentials.

For example, in 2003, Rong et al. [118] presented a comparative study betweenMorse andDeng-Fan potentials
involving only X-H bonds in small molecules. They observed that for a number of molecules theMorsemodel leads to
better agreement with the experiment while for other the reverse is true, which is somewhat inconclusive. However,
they easily obtained a set ofMorse potential parameters while for the DF potential different sets of parameters lead
to similar frequencies and intensities. In themolecular systems considered theDeng-Fan potential does not predict
observed energy levels and intensities significantly better thanMorse’s potential despite its correct asymptotic behavior.

In 2006, Royappa et al. [41] presented a comparative study involvingmanymore potentials thanMorse andDeng-
Fan (21 in total). They analyzed the average error of these potentials in relation to the RKR [8, 9, 10] curve usingMurrell
and Sorbie’s Z-test (see Section: 3.26) for 14 diatomic systems in their ground electronic state. The Deng-Fan [40]
potential present the has a deviation 3 times greater than theMorse potential, andwith one of theworst results, it is
only more accurate than the potentials of Kratzer [16] and Lippicott [42].

Still, in amore recent comparative study,Wang et al. [80] calculated the anharmonicityωe and vibrational rotational
coupling parameter αe for 16molecules in their ground electronic states. Although the proposal of Deng-Fand [40] was
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an improvement ofMorse function,Wanget al. showed that by choosing the experimental values of dissociation energy
D , equilibrium bond length Re and vibrational frequency ωe as input, the Deng-Fan potential is not better than the
Morse potential in simulating the atomic interaction for diatomicmolecules. Furthermore,Wang et al. concluded also
that theManning-Rosen [78], Deng-Fan [40] are the same potential energy function, actually (see details in Ref. [80]).

3.23 | The Tietz-Hua function

Whenever a new potential energy functionwas proposed, it was also analyzedwhether this potential exactly solved
the Schrödinger equation, or if this new potential was just another approximate solution. In view of the fact that
few potentials had this property until that time, in 1963, Tietz [119] (TIE) sought to obtain potentials that were an
exact solution to the Schrödinger equation (at least for the quantum number L = 0) and that at the same time were
mathematically simple functions, such as theMorse [7] potential.

The first proposal by Tietz [119] was a potential energy function with five parameters, given by:

VT I EI (R ) = De + De
(a + b)e−2βR − be−2βR

(1 + ce−βR )2
(325)

whereDe is the depth of the well. This potential, fulfill three standard conditions:

(i) dVT I EI
dR

����
R=Re

= 0;

(ii) VT I EI (∞) −VTI (Re ) = De ;

(iii) d2VT I EI
dR2

����
R=Re

= ke .

where ke and Re have their usual meanings. These conditions are also necessary to determine a , b , c and β , which are
constants. In addition, these constants depend that the Tietz potential curve give correct values for the vibrational-
rotational coupling constant αe , given by:

αe = −
[
1

3

(
d 3VT I EI (Re )

dR 3

)
Re
ke

+ 1

] (
6B2e
ωe

)
= Fe

(
6B2e
ωe

)
(326)

whereωe is the vibrational frequency and Be is the rotational constant.

Tietz [119] showed that the four constants β , c , b and a can be express using the Sutherland parameter∆ = keR
2
e

2De
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and the quantity Γ =
[
1 +

(
αeωe
6B2e

)]2
:

βRe = 2∆
1/2 − Γ1/2,

c = −
[ exp (βRe )

∆1/2

]
(Γ1/2 − ∆1/2),

b = 2 exp (βRe )
[
2 −

(
Γ
∆

)1/2]
,

a = 2b

[
−2 +

(
Γ
∆

)1/2] exp (βRe ).
(327)

From Γ and∆, Tietz also showed that the anharmonicityωexe is given by:

ωexe =
8[∆3/2 − (Γ1/2 − ∆1/2)3]
(2∆1/2 − Γ1/2)

2 × 1078 × 10−16

µR 2e
=
8[∆3/2 − (Γ1/2 − ∆1/2)3]

βRe

2 × 1078 × 10−16

µR 2e
. (328)

Tietz [120] calculated the anharmonicity using Eq. (328) and compared his values with the values obtained from Eq.
(108), for theMorse potential, and also compared with the experimental values for 23 diatomic systems in their ground
electronic states: H2, ZnH, CdH, HgH, CH, OH, HF, HCl, HBr, HI, Li2, Na2, K2, N2, P2, O2, SO, Cl2, Br2, I2, ICl, CO andNO.
For 16 these, the results obtained by Tietz presented less deviation from experimental values. The Morse function
showed better only for the systemsHCl, HBr, HI, N2, O2, SO, I2 andNO.

In an attempt to obtain amore general potential, Tietz [121] suggest a functionwithmore parameters, and therefore
more flexible, given by:

VT I EI I (R ) = De
(
R − Re
R

)2 (
H 2B
AF + HR

)
(F + HR ) (329)

whereDe and Re have their usual meanings, andA, B , F andH are constants. This potential is demanded to satisfy the
conditions (i), (ii) and (iii).

One of the advantages this potential (329) over the first proposed by Tietz (325) is that the potentialVT I EI I (R ) can
solve the Schrödinger equation exactly for arbitrary L and for both discrete and continuous energy parameters E .

As before, the requirement that the second Tietz’s potential (329) give the correct experimental values of Fe and
Ge is warranted by:

−
[
1

3

(
d 3VT I EI (Re )

dR 3

)
Re
ke

+ 1

]
= Fe =

αeωe

6B2e
(330)

and

5

3

(
1

ke

d 3VT I EI (Re )
dR 3

)2
−

(
1

ke

d 4VT I EI (Re )
dR 4

) R 2e = Ge =
ωexeµR

2
e

2 × 1078 × 10−16
. (331)
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The accuracy of potential (329) can be determined by calculating Fe andGe from Eq. (330) and (331) and comparing
them with the experimental values. The values of Fe calculated by Tietz from potential (329) have shown to be in
good agreement with experimental values for most of the evaluated systems [121]. However, in this potential, the
parameters A, B , and H don’t have a simple physical interpretation. Furthermore, curves generated by this function
showed unphysical features at very large or very small values of R . Then, the first Tietz’s potential (325) is better known
and used than the second Tietz’s potential.

In 1990, Hua [122] conducted a comparative study with the potentials ofMorse [7], Varshni [14] and Levine [123].
These three potentials had a common characteristic: all showed large deviations from the RKR curve [8, 9, 10] when the
domain of the potential extended to the limit of dissociation. Moreover, for the potentials of Varshni and Levine the
Schrödinger equation can be solved exactly, but with very difficult calculations [122]. With this in mind, Hua proposes a
potential of four parameters, in order tomeet both characteristics:

VT H (R ) = De
[
1 − e−b(R−Re )

1 − ce−b(R−Re )

]2
, |c | < 1 (332)

with

b = a(1 − c) (333)

being a the same of theMorse equation.
The parameter c is fitted to provide smaller absolutemean deviations. Hua calculated c for the systems: Li2, Na2,

K2, Rb2, Cs2, Cl2, ICl, H2 all in the state X 1Σ+g , HF and CO in the state X 1Σ+, XeO in the state d 1Σ+g , ICl in the states
A3Π1 andA′3Π2, I2 in the stateXO+

g and Cl2 in the state B3Π(O+
u ). Comparing the value of the absolute mean deviation

provided by the potential Hua with those provided by theMorse, Varshni and Levine potentials, only Cl2 and ICl, both in
the state X 1Σ+g , with values of 1.89% and 1.97% respectively, generated slightly larger variances with Hua than with
Varshni (1.08% and 1.30% for Cl2 and ICl respectively) and Levine (1.11% and 1.44% for Cl2 and ICl respectively), which
aremuch smaller than those provided by theMorse potential (6.06%and 5.68% for Cl2 and ICl respectively) [122].

Still, the average general of themean absolute deviation for themolecular states abovewas 1.63%using theVT H (R ),
while it was 7.72%usingMorse, 4.74%using Varshni and 4.67%using Levine [122].

For large-amplitude vibrations and for the extended potential domain, the Hua function (332) yielded amuch lower
absolutemean deviation compared toMorse, Varshni, and Levine, as shown for ICl in the stateA′3Π2, Cs2 in the state
X 1Σ+g and CO in the stateX 1Σ+ [122].

In addition to showing a better fit potential for the cited systems, the function of HuaVT H (R ) has the advantage
thatwhen inserted into the Schrödinger equation, it can be solved exactlywhen the angularmomentum J is zero and can
be treated precisely for J , 0, allowing to calculate the corresponding ro-vibrational energy levels for a given system.

The four parameters potential of Hua gained prominence because it presented a good fit for the systems veri-
fied [122] in the overall potential, both in the spectroscopic region and in the dissociation limit. Such results were
obtained even for large domains, dispensing a piecewise fitting of the potential without requiring spline functions
associated or other functions, as is the case of theMorse potential (see for example [55]).

Royappa [41] et al. compared the two Tietz’s potentials (325) and (329), and also the Tietz-Hua potential with
others 18 functions for 14 diatomic systems in their ground electronic states, 9 of which are in common with those
analyzed by Tietz [121]. Using the Z-test method ofMurrell and Sorbie [59], Royappa verified that the average error of
the second Tietz potential (329) wasmore than twice the average error of first potential (325).
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Royappa et al. further observed that the first Tietz potential was one of the most accurate. The Tietz potential
(325) gives an average error less than of the Kratzer [16], Morse [7], Rydberg [8], Rosen-Morse [28], Pöschl-Teller [29],
Linnett [60], Lippincott [42], Frost-Musilin [73], Deng-Fan [40], Varshni III [14], Levine [123] andNoorizadeh [124]. In
addition, Royappa showed that the first Tietz potential (325) proved to be evenmore accurate than Tietz-Hua’s own
potential [122].

Currently, the Hua potential is known as the Tietz-Hua potential, and so we have used the T H index in theV
function. Actually, the function proposed byHua (332) corresponds exactly to the first Tietz’s potential, according to
Jia et. al [125]. They observed that the Tietz potential in Eq. (325) definedwith five parameters, actually only has four
independent parameters, and this potential can be rewritten as an improved representation so that the similarity to
Hua’s potential is evident (seemore details in Ref. [125]).

3.24 | The Levine function
Considering the relative accuracy obtainedwith the Varshni III [14] potential, in 1966, Levine [123] (LEV) proposed a
similar function, but more general. This function can be considered amodified version ofVVARI I I (292), being given by:

VLEV (R ) = De
{
1 −

(
Re
R

)
exp [−a(R p − R pe )]

}2
(334)

where p is a function of known spectroscopic parameters ke , Re andDe . Levine defined p so that it vary for different
molecules, being obtained by:

p = 2 +
1

4

(∆1/2 − 4)(∆1/2 − 2)
(∆1/2 − 1)

, (335)

where∆ = keR 2e /2De is the Sutherland parameter.
The parameter a in Eq. (334) depends of p , and can be obtained by:

a =
(∆1/2 − 1)
pR

p
e

. (336)

The potentialVLEV (R ), such as that of Varshni III reach the necessary conditions (see Section 3.21). Furthermore,
we have:

d 2VLEV

dR 2
(Re ) = ke (337)

where ke is the constant force.
In this case, the vibrational-rotational coupling constant αe and the anharmonicityωexe are given by:

αe =

[
∆1/2 +

p

∆1/2
− p

]
6B2e
ωe

=
3

4
∆ − 1

2
(338)
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and

ωexe =

[
8∆ − 12(p − 1)∆1/2 + 8p2 + 4 −

(
20p2 − 12p

∆1/2

)
+
12p2

∆

]
. (339)

Note that these expressions are identical to (294) and (295) respectively, replace 2 by p .
To check the accuracy of potential (334), Levine [123] calculated the average percent error using the relation

|VLEV − VRKR |/De , where theVRKR represents the experimental data curve from RKR [8, 9, 10]. He analyzed the
diatomic systems: H2 , I2 , N2 , O2 , CO, NO, OH andHF in 19 states, and compared his results with the Lippincott [42] and
Varshni [14] potentials. The Levine potential can be considered a potential with three parameters because p is obtained
from ke , Re andDe . This is the reason for choosing the potentials of Varshni III and Lippincott tomake the comparison,
both have three adjustable parameters too. In addition, these are considered themost accurate (with three parameters)
in the comparative study by Steele et al. [15].

The Levine potential presented an average error in |VLEV −VRKR |/De for the 19 states of 1.99%, while Varshni
III given 2.31% and Lippincott given 2.21%. Moreover, the values obtained by Levine for αe were also more accurate
compared to the others, with an average error of 11.1%, against 15.6%of Varshni and 13.8%of Lippincott. Forωexe , the
Levine potential showed a slightly smaller error (14.5%) than Varshni (14.6%), while the Lippincott gave only 12.2%.

In 1974, in a comparative study, Blinkova [126] calculated the vibrational levels for N2, N+2 , O2, O+2 and CO in 31
electronic states using the Levine [123], Morse [7], Lippincott [42] and Varshni III [14] potentials, and compared them
with experimental levels. The Levine and Varshni potentials presented intermediate results, being the Lippincott and
Morse the best functions. However, it is verified only for some states of some diatomic systems. For example, the
relative errors in the vibrational levels for A3Σu state of N2 are: Lippincott 0.31%, Varshni 0.57%, Levine 0.77% and
Morse 2.09%. In this case, theMorse potential is the least accurate among the others. On the other hand, for a1πg state
of N2, we have the relative errors: Morse 0.39%, Levine 0.60%, Varshni 0.77%and Lippincott 1.0%, showing now, that
Lippincott is the least accurate among the others. Then, Blinkova concluded that not is possible to describe equally well
all the electronic states of variousmolecules using a single potential function of three parameters.

More recently, in 2006, in the comparative study by Royappa et al. [41], the Levine potential proved to be one of
themost accurate for the 14 diatomic systems analyzed. This potential given less average error than the Kratzer [16],
Morse [7], Rydberg [8], Rosen-Morse [28], Pöschl-Teller [29], Linnett [60], Frost-Musulin [73], Deng-Fan [40] andVarshni
III [14].

3.25 | The Simons, Parr and Finlan function
TheDunham expansion (101) to obtain potential energy for diatomic systemswas one of themost frequently used in
the 1970s and even in later years [23]. Essentially, the Dunham expansion is based on the calculation of the potential
VDUN (R ):

VDUN (R ) = a0[(R − Re )/Re ]2
{
1 +

∞∑
n=1

an [(R − Re )/Re ]n
}

(340)

as a Taylor series expansion in powers of the variable (R − Re )/Re , where the coefficients of this series are usually
calculated via the Rayleigh-Schrödinger [127] perturbation theory. However, the Dunham expansion presented some
convergence problems, especially in the long range region, making difficult to calculate the dissociation energy and also
converging very slowly when R → Re [128].
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Looking for corrections to these problems, in 1973, Simons, Parr and Finlan [128] (SPF) decided tomake a seemingly
minor modification in the expansion of Dunham, replacing (R − Re)/Re and (R − Re)/R , by placing the potential as a
series of powers in the variable (R − Re )/R :

VSP F (R ) = b0[(R − Re )/R ]2
{
1 +

∞∑
n=1

bn [(R − Re )/R ]n
}
. (341)

The expansion in the new variable given by (341) was properly justified and validated by SPF based on the perturba-
tion theory. They also showed the upper limit for the radius of convergence of the new potential was infinite, while that
of Dunham cannot converge to R > 2Re [128].

For the calculation of the coefficients in equation (341), SPF used and adapted the procedure proposed by Dun-
ham [23]. In the region where both potentialsVDUN (R ) andVSP F (R ) converge, the coefficients of the new potential bn
and the potential of Dunham an are related as follows:

a0 = b0, a1 = b1 − 2, a2 = b2 − 3b1 + 3,

a3 = b3 − 4b2 + 6b1 − 4;

an = bn +
n−1∑
i=1

(−1)i bn−i
(
n + 1

i

)
+ (−1)n (n + 1).

(342)

SPF compared their potential with Dunham expansion by analyzing the diatomic systems CO andHF, both in the
ground electronic state, taking as reference the curve obtained by the known Rydberg-Klein-Rees [8, 9, 10] (RKR)
method, considered to date as themost accurate curves for diatomic systems. In order to compare the convergence
rates, they established a potential expansion of order N , set the N t h order term of the potential as:

V N D (R ) = a0[(R − Re )/Re ]2
{
1 +

N∑
n=1

an [(R − Re )/Re ]n
}

(343)

V N SPF (R ) = b0[(R − Re )/R ]2
{
1 +

N∑
n=1

bn [(R − Re )/R ]n
}
. (344)

When testing V N SPF for zero-order potential (N = 0) of the CO system, the SPF potential showed correct
asymmetry, going to a finite value, when R becomes large, quite different from Dunham potential approaching a
harmonic oscillator, going to infinity to large R . When N = 1, the Dunham expansion was very different from the RKR
potential for R > 1.2Re , where the function presents amaximum in 1.2Re and goes to negative infinity for large R . The
SPF potential was well behaved for R up to 1.5Re , assuming a finite value for a large R . Also for the CO diatomic system,
when N = 4,V N SPF fitted almost perfectly to the curve provided by RKR, especially in the region where R assumes
larger values, whileV N D showed to be quite different, still close to that of a harmonic oscillator [128].

For the HF diatomic system, SPF used an expansion up to the fifth-order to compare the potentialsV N SPF and
V N D , using as reference the potential obtained by RKRmethod. Once again the SPF potential presented a good fit to
the RKR curve [129], whereas the Dunham potential showed amaximumwhen R →∞, similarly than for CO, indicating
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such series truncation provided a reliable result. However, for short-range, R ≤ 1
2Re ,V N SPF has an oscillatory behavior,

converging slowly. This latter problemwas not considered as relevant since the curve in the other regions converges
quickly and smoothly as is desired [128].

Another advantage over the Dunham expansion is that due to the good behaviour of the potential expansion of the
equation (341) for large R , the following boundary conditions are valid:

lim
R→∞

{[R 2(d/dr )]pVSP F (R )} = 0, p = 1, · · · , 5 (345)

fromwhich the following relations are obtained[
2 +

∞∑
n=1

(n + 2)1bn

]
= 0,[

2 +
∞∑
n=1

(n + 1)2bn

]
= 0,[ ∞∑

n=1

(n)3bn

]
= 0,[ ∞∑

n=1

(n − 1)4bn

]
= 0,[ ∞∑

n=1

(n − 2)5bn

]
= 0,

(346)

where (X )N is the Pochhammer function, with (X )0 = 1, (X )N = X (X + 1) · · · (X + N − 1).
These relationships are valid for the infinite expansion (341), however SPF [128] suggest that they can also be

used for truncated expression (344), using bN instead of bn , such coefficients being calculated only from bN+1 to bN+5,
neglecting others. To test their potential in this case, SPF performed the calculation of the dissociation energyD for CO
andHF again.

When assuming the convergence at R = ∞, the equation (341) provides:

D = b0

(
1 +

∞∑
n+1

bn

)
. (347)

For the potential of theCOsystem, SPFused thefirst two conditions of (346) to calculate twoadditional coefficients,
b5 and b6, and used these two extra coefficients to obtain the dissociation energy for CO. The value ofD differed by
only 7%of its value obtained experimentally. In addition, the sixth order potential fitted well again compared to the
curve provided by RKR. For the HF system the result was not so good. When calculated for large values of R , the
coefficients b6 and b7, and these coefficients used to obtain the dissociation energyD , differed by 44%with respect to
the corresponding value. In this case, the maximum values that occur in higher-order expansions can be used in the
dissociation energy calculation, differing between 10 and 15%of the experimental values [128].

3.26 | The Extended Rydberg function
In 1974, theMorse [7] potentialwas still consideredoneof themost popular to describe thePESof diatomic systems, and
that of Hulburt andHirschfelder [6] was alsowell known for its improvedMorse potential as it corrected the long region
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of the function, making it more asymptotic. Furthermore, the Rydberg [8] potential, largely used by spectroscopists,
with its simple functional form, differing little from the potential ofMorse, was also a reference at the time to describe
such systems.

Taking these three potentials into consideration, seeking for a functional shape best representing various diatomic
systems, Murrell and Sorbie [59] proposed a modification of the Rydberg function. They then compared this new
potential with results obtained using Morse and Hulburt and Hirschfelder functions, taking as reference the fitting
obtained by the RKRmethod [8, 9, 10]. This was done for eight benchmark diatomic systems: HF, H2 , I2 , O2 , N2 , OH, CO
andNO.

The original potential function of Rydberg [8]:

VRYD (R ) = −De [1 + a(R − Re )] exp [−a(R − Re )] (348)

whereDe is the depth of the well

a = (ke/De )1/2 (349)

being the derivatives of order n are given by the relation

ke
(n) = ke (−1)n (n − 1)a (n−2) (350)

where ke is the constant force.
MS began to investigate the properties of themodified potentials of Rydberg,

V =

(
−De

[∑n anR
n ]

[∑m bmR
m ]

)
e−γ(R ) . (351)

For the calculation of an and bn in (351), MS assumed a0 = b0 = 1, and for the others they used the following
spectroscopic expansion:

V = −De +
1

2

∑
n=2

fn (R )n = −De
∑
n=0

gnR
n ;

fn = 2ke
(n)/n!,

gn = −fn/2De and g0 = 1, g1 = 0
(352)

or more conveniently

an =
n∑
s=0

gn−s
s∑
t=0

bt γ
s−t /(s − t )!. (353)

Since f1 = 0, and the spectroscopic parameters f2, f3 and f4 are known,MS [59] imposed three conditions warranty-
ing the solutions of Eq. (353) are physically acceptable. There are:

(i) γ shall be positive;
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(ii) There shall be no zeros of the b-polynomial in the region physically significant R (i. e. all positive and small negative
R );

(iii) There shall be nomaxima in the attractive branch of the potential.

Murrell and Sorbie analyzed all cases of potential (351) which had the following non-zero coefficients: (a1, a2, a3);
(a1, a2, b1); (a1, a3, a4); (a1, a3, b1); (a1, b1, b2); and (b1, b2, b3). The only one of these that led to satisfactory potential to
describe the long-range region was the first. The function (351) then takes the form:

VMSor b (R ) = De (1 + a1(R ) + a2(R )2 + a3(R )3)e−γR (354)

where the constants a1, a2 and a3 and γ are obtained through the relations:

a1 = γ

a2 = g2 + γ
2/2

a3 = g3 + γg2 + γ
3/6

0 = g4 + γg3 + γ
2g2/2 + γ4/24.

(355)

In 1983, Huxley and Murrell [130] improved the Murrel-Sorbie potential, using (R − Re) instead R in Eq. (354),
obtaining:

VER (R ) = De (1 + a1(R − Re ) + a2(R − Re )2 + a3(R − Re )3)e−γ(R−Re ) . (356)

This function became known as Extended Rydberg (ER) potential. The coefficients of this function can be obtained in
the sameway as for theMurrel-Sorbie potential.

The last equation in (355) has at least one positive root, as condition 1 demands. Its solution is obtained numerically.
However, Huxley andMurrell [130] derivedmore explicit relations for the expansion coefficients an from fn , which are
the nth derivative of the potential (354) at the equilibrium distance Re , known as the Dunham’s expressions for the nth
force constant (Section 2.1). For this, first they solved the quartic polynomial for a1:

De a
4
1 − 6f2a

2
1 − 4f3a1 − f4 = 0 (357)

and, as before, if the roots are all real, since f4 is always positive, theremust be one or three positive roots. For a physical
acceptable (354), a1 must be positive. Now, if a1 is known, a2 and a3 can be obtained from expressions:

a2 =
1

2

(
a21 −

f2
De

)
(358)

and

a3 = a1a2 −
1

3
a31 −

f3
6De
. (359)
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Using the Dunham’s expressions for the nth force constants, where fn =
(
d nV
dRn

)
R=Re

, we have the an in terms of
spectroscopic parameters:

f2 = 4π
2µc2ω2e

f3 =
−3f2
Re

(
1 + αeωe

6B2e

)

f4 =
f2
R2e

[
15

(
1 + αeωe

6B2e

)2
− 8ωe xe

Be

]
.

(360)

To quantify the accuracy of their potential relative to that of Hulburt andHirschfelder [6], using the potential of
RKR,Murrell, and Sorbie [59] calculated the deviation ofVMSor b (R ) andVHH (R ) relative toVRKR , using the following
function:

Z =
1

ni∆R

∑
i

(VRKR −V )i 2 (361)

where ni is the number of RKR points and∆R is the range covered by these points.
The Z function was calculated for three potential regions, namely: the attractive region, the repulsive region, and

the potential as a whole. This was done for selected eight diatomic systemsHF, H2, I2, O2, N2, OH, CO andNO, using
the potential functionsVMSor b andVHH (R ) in place ofV in (361).

For the repulsive part of the potential, Murrell and Sorbie [59] functionVMSor b (R ), provided amore precise fitting
of Hulburt and Hirschfelder [6]VHH (R ) in five of the eight diatomic systems, offering a worse fitting only for the HF,
I2 and N2 systems. In the attractive branch of the potential,VER (R ) showed better results for practically all systems
except I2 andNO.

In the overall potential, the Extended Rydberg function performed better on all systems except for I2, thus showing
that theVMSor b (R ) potential offers, in general, a better fit to the systems tested [59]. However, this analytical empirical
potential does not produce accurate vibrational eigenvalues and eigenfunctions for highly vibrational excited states in
the asymptotic region of a stable diatomic system.

3.27 | The Thakkar function
Usually, curves of potential energy for diatomic systemswere obtained by one of four forms: by a table of points; by
an empirical function; by a series of powers truncated or through the Padé approximants [22]. Expansions in power
series are very interesting because they provide an analytical form for the potential curve, facilitating the interpretation.
In 1975, Thakkar [22] (THA) proposes a new and generalized power series expansion, with a nonlinear parameter p ,
containing both Dunham [23] and SPF [128] expansions as special cases corresponding to the particular choices of p in

VT HA(R ) = e0(p)λ2
[
1 +

∞∑
n=1

en (p)λn
]

(362)
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where

λ(R , p) = s(p)[1 − (Re − R )p ] (363)

being p a nonzero number, Re the equilibrium internuclear separation and s(p) an abbreviated notation for the sgn
function defined for:

s(p) = sgn(p) =

+1, p > 0

−1, p < 0
. (364)

For p = −1, the equation (362) becomes:

V (R ) = a0[R − Re/Re ]2
{
1 +

∞∑
n=1

an [R − Re/Re ]n
}

(365)

where an = en (−1), and the equation (365) is exactly the Dunham expansion (340).
For p = +1, the equation (362) becomes:

V (R ) = b0[R − Re/R ]2
{
1 +

∞∑
n=1

bn [R − Re/R ]n
}

(366)

where bn = en (1), and the equation (366) is exactly the SPF expansion (341).
Still, for p > 0 and en (p) = 0(p ≥ 1) the equation (362) becomes:

V (R ) = e0(p) + e0(p)[(Re/R )2p − 2(Re/R )p ] (367)

which is simply the Lennard-Jones (2p, p) potential [45] (see section 3.2).
The radius of convergence of the equation (362) is determined by the singularity ofVT HA(R ) closest to R = Re in the

complex R plane. For p < 0, the singularity occurs at (R |p | − R |p |e )/R |p |e = −1, which implies that for p < 0 the potential
(362) cannot converge for R > 21/|p |Re [22]. In the case of Dunham potential (p = −1), as appointed in SPF [128], the
expansion can not converge to R > Re . For p > 0, the pole at R = 0 occurs at (R p − Re p )/R p = −∞, and therefore the
radius of convergence of (362) is bounded by infinity.

Thakkar [22] conjectured that the equation (362) converges to R in the interval (0, 21/|p |Re ) for p < 0 and converges
to R in the interval (0,∞) for p > 0, converging faster only in the interval (Re/21/|p |,∞) for p > 0. For the calculation
of the coefficients en (p) in the expansion (362), Thakkar adapted the Dunham [23] procedure, and obtained a relation
between en (p) and an [22].

Regarding the choice of p , p > 0 values lead to a better result since the potential converges rapidly in the long-range
region, which is of great interest when onewants to studymolecular dynamics. Thakkar [22], proposes

p = −a1 − 1 (368)

and estimates some values for p through the extensive Calder and Reudenberg analysis of the Dunham coefficients for
160 diatomic molecules [22].

Thakkar analyzed the behaviour of the potentialVT HA(R ), with p given by the relation (368) for the CO and HF
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systems, both in the ground state. He compared the results obtainedwith the Dunham and SPF potentials, using the
truncated expansion:

VT HA
N (R ) = e0(p)λ2

[
1 +

N∑
n=1

en (p)λn
]
. (369)

For CO, Dunham potential proved to bewell below that of SPF andVT HAN (R ), showing that they agreewith the
RKR curve [129] for N = 3 or 4. In the calculation of the dissociation energy, the difference between SPF and Thakkar
potential is very significant, since while SPF provides a 229%error, the calculation ofD via Thakkar has an error of only
−3.9% calculated via [22]:

DN = e0(p)
[
1 +

N∑
n=1

en (p)
]
, p > 0 (370)

being p calculated by (368).
For the HF system, the result is similar to CO, with Dunham potential once again diverging from the RKR and SPF

curve, about 1193%deviation from the RKR curve for N = 4. In the calculation of the dissociation energy, the truncated
function of Thakkar, for N = 5, presents the best fit with amaximum error of only 7.2%, while the SPF expansionwith
the same number of terms presented an error of 204% [22].

Thakkar still calculated the values of the dissociation energy for 20 alkali halides: LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr,
NaI, KF, KCl, KBr, KI, RbF, RbCl, RbBr, RbI, CsF, CsCl, CsBr andCsI. For these systems, in comparisonwith experimental
values, only NaBr had smaller deviation using SPF than Thakkar, being that in average the deviation of SPFwas in 122%,
whereas by the Thakkar model the average deviation was only 28% [22].

3.28 | TheHuffaker function
Aswe can see, until the 1970s, most research involving potential energy functions was based on either theDunham
potential [23] or theMorse potential [7]. However, however, althoughMorse presented a good approximation for real
diatomic systems and the Dunham (theoretically) could be applied to any system, both have some disadvantages. The
Dunham series has a poor convergence whereas theMorse function fails to describe finer spectroscopic details and the
introduction of rotational effects is complicated [131].

Thinking about that, in 1976, Huffaker [132] presented a formula for the rotational-vibrational energy levels of a
diatomic system using a perturbedMorse potential along with additional perturbations describing rotational energy.

The potential function of the perturbedMorse oscillator (PMO) used by Huffaker (HUF) is given by:

VHUF (R ) = De [(1 − e−a(R−Re ))2 +
∑
n=4

bn (1 − e−a(R−Re ))n ] (371)

where Re andDe have their usual means. This series converges for all R , except for a singularity at R = 0, and it is related
with the dissociation energyD by:

D + ~cFν=0,J=0 = De (1 + b4 + b5 + · · · ) (372)
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where Fν,J = ∑
l j Yl j

(
ν + 1

2

) l
J j (J + 1)j as in Eq.(6) (see Section 2.1).

Note that thepotential (371) doesnot have the cubic term. This is possible only if theunperturbedMorsepotential is
specified by the location of its minimum and its second and third derivatives there. Huffaker described, for convenience,
the unperturbedMorse potential by the three parameters ρ, σ and τ , given by:

ρ = aRe (373)

σ =

√
2µDe
a~

(374)

τ =
De
~c
. (375)

The parameter σ is approximately the number of bound states of the Morse oscillator, then σ ≈ ωe
2ωe xe

. Then,
as a result of the perturbation calculation, Huffaker [132] obtained expressions for Dunham coefficientsYi j , with
i + j ≤ 4, as function of these ρ, σ , τ and b4, · · · , b8. Hemodified slightly the Dunham notation, expressing eachYi j as
Yi j = Y

(0)
i j

+Y (2)
i j

+Y (4)
i j

+ · · · , where the lowest-order term, of order i + j − 1 is given byY (0)
i j
and the terms of higher

order areY (2)
i j
,Y (4)
i j
, etc. Some of these coefficients for rotational-vibrational energy levels of a PMO are given by:

Y
(0)
10 ≡ ω

(0)
e = 2τ

σ

Y
(2)
10 ≡ ω

(2)
e = τ

8σ3

(
−3b4 − 15b5 + 25b6 −

67b2
4

4

)
Y
(0)
20 ≡ −ωex

(0)
e = −

(
τ
σ2

) [
1−3b4
2

]
Y
(0)
01 ≡ B

(0)
e = τ

σ2ρ2

Y
(2)
01 ≡ B

(2)
e =

(
τ

8σ4ρ6

) [
−5ρ3
6 +

21ρ2

4 − 14ρ + 15 − ρ2(7ρ + 9)b4 + 15ρ3b5
]

Y
(2)
20 ≡ −ωex

(2)
e =

(
5τ
16σ4

) [
9b5 − 15b6 − 35b7 + 49b8 +

237b2
4

20 + +
143b4b5

2 − 177b4b6
2 − 217b2

5
4 +

1707b3
4

40

]
Y
(0)
11 ≡ −α

(0)
e = −

(
3τ
σ3ρ4

)
[ρ − 1]

Y
(2)
11 ≡ −α

(2)
e =

(
τ

8σ5ρ8

) [
−3ρ5
2 +

43ρ4

3 −
411ρ3

6 +
1135ρ2

6 − 285ρ + 175 − ρ2
(
13ρ3

12 −
103ρ2

8 − 79ρ + 335
2

)
b4

+5ρ3
(
29ρ2

6 − 15ρ + 38
)
b5 − 15ρ4(17ρ − 15)

b6
2 + 175ρ5b7 + ρ

4(1043ρ + 1005) b
2
4
8 − 715ρ5

b4b5
2

]
Y
(0)
30 ≡ ωe y

(0)
e =

(
τ
2σ3

) [
−b4 + 5b5 + 5b6 −

17b2
4

4

]
Y
(0)
21 ≡ γ

(0)
e =

(
3τ

2σ4ρ6

) [
−7 ρ

3

6 +
23ρ2

4 − 10ρ + 5 + ρ2(ρ − 1)b4 − +5ρ3b5
]

(376)



ARAÚJO &BALLESTER 79

whereω(0)e and B (0)e correspond to Dunham’sωe and Be and have the values:

ω
(0)
e =

2τ

σ
(377)

and

B
(0)
e =

τ

σ2ρ2
. (378)

Making power series expansion of the exponentials in Eq.(371) and comparing with Dunham expansion (4), Huffaker
obtained the relations between the ai Dunham coefficients and his bi coefficients:

a0 = τρ
2,

a1 = −ρ,

a2 = ρ
(
b4 +

7
12

)
,

a3 = ρ
3
(
b5 − 2b4 − 1

4

)
,

a4 = ρ
4
(
b6 −

5b5
2 +

13b4
6 + 31

360

)
,

a5 = ρ
5
(
b7 − 3b6 +

10b5
3 −

5b4
3 −

1
40

)
,

a6 = ρ
6
(
b8 − 7b7

2 +
19b6
4 −

25b5
8 +

81b4
80 + 127

20160

)
.

(379)

Ignoring the higher-orders correctionω(2), etc., Huffaker obtained theMorse parameters ρ, σ and τ from experi-
mental values ofωe , Be and αe , given by:

ρ =
(αeωe + 6B2e )

6B2e
(380)

τ =
ω2e

4Beρ2
(381)

σ =
2τ

ωe
, (382)

andwith similar approximations, the first three perturbation parameter of Eq. (371) are given fromωexe , γe andωe ye :

b4 =
2

3

[
1 − σ

2ωexe
τ

]
(383)
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b5 =
1

5ρ3

[
2σ4ρ6γe
3τ

+
7ρ3

6
− 23ρ

2

4
+ 10ρ − 5 − 3ρ2(ρ − 1)b4

]
(384)

b6 =
1

5

[
2σ3ωe ye

τ
+ b4 − 5b5 +

17b24
4

]
. (385)

To evaluate the convergence properties of theYi j , Huffaker compared his methodwith Dunham’s formulas, and
concluded that his methodwas not only most convenient (mathematically), but also themost accurate.

Huffaker chose the (1Σ+) CO diatomic system for testing the perturbed potential MorseVHUF (R ). He compared his
results with the RKR [8, 9, 10] experimental curves. For this diatomic system, the eight parameters σ , ρ, τ , b4, cdot s , b8
were calculated using the equations from (380) to (385). Then, the higher-order correctionsω(2)e , B (2)e , α (2)e andωex (2)e
also were calculated. Although of these to be practically negligible, these small corrections were included to obtain the
eight parameters before cited.

In order to compare the accuracy of his analytical potential in relation to others existing at the time, Huffaker chose
those that were also given by a power-series expansion, such as Dunham [23], SPF [128] and Thakkar [22] potentials.
The unperturbedMorse potential obtained byHuffaker showed to be superior to all others with a series using only 3
parameters, presenting the smallest mean absolute deviation from the carbonmonoxide RKR potential. Moreover, the
percent deviation of predicted dissociation energy for CO, from the experimental value, wasmuch smaller using the
Huffaker potential than using SPF, Thakkar, or Dunham potential.

Camacho et al. [133] in 1994, confirms the good accuracy of Huffaker potential for (1Σ+) CO. Huffaker showed
again to bemore accurate than Dunham and SPF, and obtained similar results to Thakkar.

In a second paper, Huffaker [134] extended the calculations of PMOparameters up through b12 from spectral data
and applied this potential to somemore diatomic systems: HF, HCl and CO (again) in their electronic ground states
and also for the B(3Π+0u) excited state of I2. Then, knowing that the highest PMOparameters to contribute withY (2k )i j

is
b2i+j+2k , he obtained the following modified Dunham coefficients:Y (0)i0

for i ≤ 6;Y (0)
i1
for i ≤ 5;Y (2)

i0
for i ≤ 4;Y (2)

i1
for

i ≤ 3;Y (4)
i0
for i ≤ 2, andY (4)

i1
for i ≤ 1. Thus, using an iterative approach Huffaker calculated all twelve parameters: ρ, σ ,

τ , b4,· · · , b12.
Huffaker [134] showed that of the diatomic systems chose, COwas themost suited for a PMOanalysis including the

twelve parameters, with maximum discrepancy from RKR of only about 2 cm−1 at the ν = 19 vibrational level, whereas,
for HF, the error was about 200 cm−1 at the ν = 16. For HCl, the results were similar to HF, but problems of convergence
and truncation were not as bad. For the excited state of I2, he obtained that the values of b′n s were so large that the
perturbation finally became bigger than theMorse potential, and because of the very large value of σ , convergence
properties were good. Huffaker claims that an accurate PMOanalysis through b12 should be possible for the ground
state of any diatomic system, and for excited states, consistent results should be obtained.

However, in 1979, Goble andWinn [135] obtained a potential function for the X2Σ+ and A2Π of the weakly bound
system NaAr and the A2Π3/2 state of NaNe derived by inverting spectral data to analytic potential functions. For
NaNe(A2Π3/2), the Huffaker function presented an inadequate behavior, similarly for NaAr, which led the authors to
believe that this performancewas general for weakly boundmolecules when the Huffaker potential is used. For these
cases, the Thakkar [22] function is more appropriate.
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3.29 | TheOgilvie function
Ogilvie presented his first potential for diatomic systems at the Canadian Spectroscopy Symposium, in Ottawa, 1974.
He stated that although there aremany potential functions which can be fit to Re and ke , and other parameters derived
from vibrational-rotational spectra, for a lower portion of the potential well a flexible and accurate function which will
reliably reproduce all the fitting procedures by which the spectroscopic parameters are derived, is still the Dunham [23]
potential function given by Eq. (2). Most of the potential functions purposed by Ogilvie was Dunham type, because
he believed that the general form of the potential energy of a diatomic system should be given as a function of some
general parameter related to internuclear separation R to be represented as a truncated polynomial or power series of
ξ (see Eq. (2)). Also, Tipping andOgilvie [136] derivematrix elements appropriate to a generalized (Dunham potential),
and these were themost accurate analytic results to date and were computed in detail for HCl (see details in Ref. [136]).
TheOgilvie potentials are known as theOgilvie-Tipping series (O-T).

In 1976, Ogilvie and Koo [137] calculated the Dunham potential coefficients ai , 0 ≤ i ≤ 6 (except 4 for HI), derived
from spectroscopic data of diatomic systemsHF, HCl, HBr, HI and CO in their electronic states. For this, they used the
Dunham potential function:

VDUN = ~ca0ξ2(1 +
∞∑
i=1

ai ξ
i ) (386)

where ξ = R−Re
Re
. This function has the following properties:

(i) V = 0 at R = Re ;
(ii) dV 2

D

dR2

����
R=Re

= ke , being ke the constant force.

The coefficient a0 is related to the force constant according to equations:

a0 =
ω∗e
4B∗e

=
keRe
2~c

. (387)

being ω∗e and B∗e adjusted parameters where Dunham corrections toY01 andY10 were applied. The other Dunham
coefficients are determined by iterative procedure from equations (given by Dunham) using the energy level equation
(6). These coefficients ai , i ≥ 1 determine themanner in which the lower portion of the potential function,V ≤ 1

2De ,
deviates from the parabolic form of the limiting case, ai = 0, for all i ≥ 1, of the harmonic oscillator [137]. The results
obtained byOgilvie and Koowere in good agreement with the previous sets of ai existing at the time.

They computed correlationmatrices for the coefficients ai ,ω∗e , and B∗e and also for energy coefficientsYl j for all
diatomic systems. In general, the coefficients ai were not strongly correlated with each other andω∗e and B∗e (absolute
values of off-diagonal elements less than 0.9) except that a1 was fairly anti-correlated with a2 (matrix element ≤ −0.95).
The calculated coefficientsYl j alsowere not correlatedwith each other, exceptY04 andY12 forwhich thematrix elements
∼ 0.99. Nevertheless, the calculatedYl j are generally in good agreementwith observed values. Ogilvie andKooobserved
also that for the hydrogen halidemolecules the coefficient a0 varied little in this group and the other potential coefficient
a1 to a4 (except a4 of HI) showed a smoothmonotonic increase as the halogenmass increases [137].

Still in 1976, Ogilvie [138] following the suggestion of Tipping, examined the series expansion (386) in the variable
ξ = R−Re

R+Re
, with ξ = −1when R → 0, and ξ = 1when R →∞. Note that, in this case,V (R ) → ∞ at R = −Re andV (R ) = 0
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at R = Re , and at R = 0we haveV (R ) defined (or regular), what allows one to introduce correct behavior near the origin
by Coulomb subtraction, i. e., without the Coulomb repulsion (Formore details see section B of Ref. [139]). Then, the
truncated Coulomb-subtractionOgilvie-Tipping series (CS-OT) yield finite valuesV (R ) at both limits R = 0 and R ≈ ∞.

Engelke [139] in 1978, compared theO-T and CS-OT functions with Thakkar [22] and SPF [128] potentials, because
all have the same feature: are a Dunham-type power series. He consideredO-T function as:

VOT (R ) = c0ξ2
(
1 +

∞∑
i=1

ci ξ
i

)
(388)

where ξ = R−Re
R+Re

and the coefficients ci are related with Dunham coefficients. The first five coefficients are given by:

c0 = 4a0

c1 = 2(a1 + 1)
c2 = (4a2 + 6a1 + 3)

c3 = (4a3 + 8a2 + 6a1 + 2)
c4 = (16a4 + 40a3 + 40a2 + 20a1 + 5).

(389)

He calculated these coefficients ci for (1sσg )2 state of H+2 and obtained that for R/Re > 1 both Thakkar and SPF
were slight better thanO-Twhen a0, a1 and a2 Dunham coefficients were known. On the other hand, the CS-OT series
was superior to all the other series in this region. Now, for R/Re < 1, theO-T series wasmore accurate than Thakkar
and SPF potentials, and CS-OT is again better than all the other series [139].

The similar situation occurred when a0, a1, a2, a3 and a4 were known. In the region R/Re > 1 the Thakkar potential
was slightly superior and the SPF potential slightly inferior to theO-T series. On the other hand, for R/Re > 1 theO-T
series wasmore accurate than both potentials. For 0 < R/Re < 5 the CS-OT series was better than the all other, while
for R/Re > 5 the Thakkar potential became better [139].

In 1981, Ogilvie [140] proposed a general potential energy function for diatomic systems. This function more
flexible is showed as a family of functions including previous polynomial functions havingmore restricted validity, like
those presented before.

As before, Ogilvie considered the general form of potential energy as a function of internuclear separation R being
given by a truncated polynomial or power series of argumentw :

VOGI (R ) = d0w 2

(
1 +

k∑
i=1

diw
i

)
, (390)

He considered thatw can assumes three forms, and thereforeVOGI (R ) can be three different potentials series:

(i) ifw → x = R−Re
Re
,VOGI (R ) is the Dunham potential (386), and then, the coefficients di , 0 ≤ i ≤ k , are written as ai ;

(ii) ifw → y = R−Re
R ,VOGI (R ) is the SPF potential (341), and the coefficients are written as bi ;

(iii) ifw → z = 2(R−Re )
(R+Re ) is the new form proposed byOgilvie, and the coefficients are written as ci (actually, this is the

same form presented byOgilvie in 1976 [139], but using the 2ξ variable).

In all cases, the expansion series is made about R = Re , and thus z = 2x
2+x −

2y
2−y . Note also that for R ∼ Re , x ∼ y ∼ z

and a0 ≡ b0 ≡ c0, and for R → 0 and R → only z remains finite at both limits, with z = −2 and z = 2 respectively.
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For convenience, Ogilvie [140] considered a potential energy function of a general type of truncated polynomial
that could representV (x ),V (y ) andV (z ) in a single expression. This is given by:

V (wmn ) = dmn0 w 2
mn

(
1 +

n∑
i=1

dmni w imn

)
, (391)

where the argumentwmn becomes a function of two integer parametersm and n as well as R and Re :

wmn =
(m + n)(R − Re )
(mR + nRe )

. (392)

Note that these relations define a family of functions which, as earlier:

(i) if n = 0we haveV (x );
(ii) ifm = 0we haveV (y );
(iii) ifm = m , 0we haveV (z ).

To check the accuracy of your family potentials, Ogilvie [140] chose the diatomic systemAr2 in X1Σ+g state. For this,
he used a sample of 85 points in the range 2.5 < R/10−10m < 6.7, with geometrically increasing interval, in a general
routine LMM1 for fitting parameters in the same initial estimates of parameters dmn

i
were applied to each set ofm and n .

Two sets of coefficients, numbering either seven (dmn0 − dmn6 ) or nine (dmn0 − dmn8 ), were tested. The data demonstrated
that theV (y )was slightly superior in these cases thanV (z ), but four times asmany iterations were required.

Ogilvie highlighted that, actually,V (y ) andV (z )were not absolutely the best, but the casem = 4, n = 1was the
best for determination of seven coefficients, whereas the casem = 4 and n = 3was best for the set of nine coefficients.

The coefficients dmn
i
are related with ck coefficients in V(z) by equations:

c0 = d
mn
0

c1 = d
mn
1 + n−m

n+m

ck = (k + 1)
[ ( −m
m+n

)k − 1
(−2)k

]
+ dmn

k
+
k−1∑
i=1

(k+1
i+1

) [ ( −m
m+n

)k−i
dmn
i
− ci
(−2)k−i

]
,

(393)

where (m
n

) is the combinatorial m!
(n!(m−n)!) and k > 1.

Thus, theV (z ) function defined according to the equation forV (wmn ) is a useful function, and among the others,
it is the only one in which thew11 = z parameter possesses the desirable equivalence of magnitude of limiting values,
corresponding to R = 0 and R →∞, that ensure convergence within the entire range of accessible, real nuclear separa-
tion [140]. The same result was obtained by Engelke [139] as cited before, in which the function CS-OT corresponds to
V (z )without the Coulomb repulsion.
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3.30 | TheMattera function
From the 1970s, potentials began to present functional forms in power series expansions of Dunham-type, and closed
formulas began to appear less frequently. Simons et al. [128], Thakkar [22], Huffaker [132] andOgilvie [137] are some
of the potentials presented earlier that are given in this way, and these proved to be accurate.

Then, in 1980,Mattera et al. [141] (MAT) presented a new representation of potential energy curves for diatomic
systems using a function Dunham-type:

VMAT (R ) = d0f 2(x )[1 + d1f (x ) + d2f 2(x ) + · · · ], (394)

where x = R−Re
Re

and f (x ) as well as the Thakkar proposal, which contains a free parameter:

f (x ) = 1 −
(
1 +

γx

p

)−p
(395)

with p > 0.
The coefficients di are given in terms of Dunham coefficients ai , the first five being:

d0 =
a0
γ2

d1 =
a1
γ + 1 1p

d2 =
a2
γ2
+ 3
2

(
1 + 1

p

) [
d1 − 1

18

(
11
p + 7

)]
d3 =

a3
γ3
+ 2

(
1 + 1

p

) [
d2 − d1

8

(
7
p + 5

)
+ 1
24

(
10
p2
+ 11

p + 3
)]

d4 =
a4
γ4
+ 5
2

(
1 + 1

p

) [
d3 − d2

15

(
17
p + 13

)
+
d1
20

(
15
p2
+ 19

p + 6
)
− 1
900

(
274
p3

+ 401
p2

+ 194
p + 31

)]
.

(396)

These coefficients can be determined since the Dunham coefficients are known, and if p and γ are properly chose.
Themain advantage of the present expansion is the high flexibility of its leading term:

V0(R ) = d0
{
1 −

[
1 +

γ

pRe
(R − Re )

]−p }2
, (397)

and this function has a interesting property, becauseV0(R ) becomes theMorse potential [7] for p → ±∞, the Lennard-
Jones (6,12) potential [50] for p = 6 and the Kratzer potential [16] for p = 1 [142].

Mattera et al. also obtained the νth vibrational level Eν of a particle in the potentialV0(R ) [143]:

Eν = d0 − d0

[(
1 +

δ

A2

)−1/S
−
ν + 1

2

AS

]
, (398)

where m is the mass of particle, A =
(2md0)1/2Re

2~γ , δ =
(
1+ 1p

)
32p , 1S = 1

2 −
3+ 1p
4p . The Eq. (398) is more accurate than the
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Dunham [23] expansion of Enu evaluate forV0 up to the cubic term in
(
ν + 1

2

)
.

For obtain the termV0(R ) appropriate for a given diatomic system,Mattera et al. proposed twoways:

(i) p and γ are obtained fromDunham coefficients ai by setting d1 = d2 = 0 in Eq. (396), producing:

p =
12a2 − 11a21
12a2 − 7a21

, γ = − a1(
1 + 1

p

) , d0 =
a0

γ2
; (399)

(ii) d0, γRe and p are determined by a direct fit of the vibrational spectrumwith Eq. (398).

The procedure (ii) with the correct choice of Re proved to bemore suitable, leading to a termV0 that accurately
reproduces the RKR curves [8, 9, 10]. The procedure (i) showed to be less satisfactory in most cases, depending on quite
accurate knowledge of the Dunham coefficients. TheV0 termwas calculated using both procedures for HHg and CO,
whereas for Ar2,V0 was obtained from the procedure (ii) only. Here, all diatomic systems considered are in their ground
electronic states.

Mattera et al. obtained that for CO both procedures yield accurate results and for HHg the procedure (ii) was more
adequate. Furthermore, the p values obtained in both ways, (i) or (ii), differed significantly from those obtained by
Thakkar [22]. They also showed that large p values aremore suitable in describingmolecular interactions, indicating
that theMorse potential was still a good representation of diatomic potentials.

In 1994, Camacho et al. [133] presented a comparative study of the eight most important power-series expansions,
including Dunham [23], SPF [128], Thakkar [22], Huffaker [132], Ogilvie [140], Mattera [141] and Šurkus et al. [144](see
the next section), as fitting functions for approximating rotationless RKR potentials [8, 9, 10]. The eight potentials given
by truncated power series expansions were analyzed for CO (X 1Σ+), H2 (X 1Σ+g ) and LiH (X 1Σ+ and A1Σ+) diatomic
system and for CO (X 1Σ+) was analyzed also the behaviour ofV0 term.

Camacho et al. showed that the worst fit for CO corresponded toOgilvie function due to the convergence of this
potential, which is very slow and its limits give a finite small number when R → 0. On the other hand, the Mattera
potential presented the smallest standard andmean deviations for this diatomic system. For the ground electronic state
of LiH, the best fitting was obtained by Thakkar potential, and in this case, the Dunham potential presented theworst fit,
followed by theOgilvie potential, which also showed greater deviations than the others. For LiH (A1Σ+) and H2 (X 1Σ+g ),
theMattera potential presented, in both cases, lower deviations than Thakkar, SPF, Huffaker, Ogilvie, and Dunham.
Moreover, a good fit with onlyV0 term of a power series expansionwas obtainedmore accurately from functions with
two nonlinear parameters, such as theMattera or Šurkus potential.

However, Camacho et al. observed that for fitting power series expansions with an intermediate number of
fundamental basis functions it was better to use a type of function with only one non-linear parameter, such as the
Thakkar or Huffaker potential, because the effort in calculating the second optimum non-linear parameter of the
Mattera function, for instance, was not the precision of the fits.

3.31 | TheDmitrieva-Zenevich function
In 1983, Dmitrieva and Zenevich [145] (DZ) proposed a four-parameter potential energy function also inspired by the
Dunham expansion, following the trend of the proposals at the time. Inspired by Simons, Parr, and Filan [128], the
potential was proposed using the power series on ξ(R ) = R−Re

Re
, and they presented the function as a closed-form.
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The potential proposed is given by:

VDZ I (ξ) =
a0ξ

2

(1− 13 a1ξ)3
, ξ ≤ ξm

VDZ I I (ξ) = De − C

R6e (1+ξ)6
, ξ > ξm ,

(400)

where a0 and a1 are Dunham’s coefficients [23]

a0 =
ω2e
4Be

(401)

and

a1 = −1 −
αeωe

6B2e
(402)

where αe ,ωe and Be have their usual meanings.
The constantsC and ξm are obtained by relations:

VDZ I (ξm ) =VDZ I I (ξm ) (403)

ensuring also the continuity of the function in ξm and
dVDZ I
dξ

����
ξ=ξm

=
dVDZ I I
dξ

����
ξ=ξm

. (404)

These conditions result in the quartic equation:

ξm

[
− 53 a1ξ2m +

(
8 + 1

3 a1

)
ξm + 2

]
6
(
1 − 1

3 a1ξm

)4 =
De
a0

(405)

and the smaller positive root of this equation gives the desired ξm . Then, theC parameter can be obtained from:

C =
a0ξm

(
2 + 1

3 a1ξm

)
(1 + ξm )7R 6e

6
(
1 − 1

3 a1ξm

)4 . (406)

Note that Eqn (400) fulfills:

(i) As ξ →∞, the potential converges asymptotically to a finite value, and in this case, we have,VDZ I I → De ;

(ii) The potential has aminimum (in the region ξ ≤ ξm ) at R = Re , i. e., VDZ IdR

����
R=Re

= 0 ;

(iii) VDZ I I →∞ at ξ = −1(or equivalently at R = 0).
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Dmitrieva and Zenevich [145] analyzed their potential for H2, I2, N2, O2, CO, NO, OH and HF diatomic systems
in their ground electronic states, and compared them with RKR [8, 9, 10] experimental curves [15]. Their potential
presented themean error from 0.52% for HF andO2 to 1.8% for NO and 1.9% for I2.

To calculate the anharmonicityωexe , they suggested to use the expression:

ωexe =
7

8
Be

(
1 +

αeωe

6B2e

)2
(407)

and tested for the eight diatomic systemsmentioned above, giving an average error of 7.9%,much lower than those pro-
ducedwith thepotentials: Morse [7], Rosen-Morse [28], Rydberg [8], Pöschl-Teller [29], Linnett [60], Frost-Musulin [113],
Lippincott [42] and Varandas [146].

3.32 | The Šurkus function
Wehave seen several potential energy functions represented as a power series, all based onDunham’s expansion,

VDUN = a0ξ
2

(
1 +

∞∑
i=1

ai ξ
i

)
(408)

with different proposals for ξ, being:

(i) ξ = (R−Re )Re
byDunham [23];

(ii) ξ = (R−Re )R by SPF [128];

(iii) ξ = s(p) [1 − (
Re
R

)p ] by Thakkar [22];
(iv) ξ = 2 (R−Re )R+Re

byOgilvie [140].

Then, in 1984, Šurkus, Rakauskas and Bolotin [144] showed that actually, all these potentials (i)-(iv) could be
obtained from a generalized form for ξ, given by:

ξSUR = s(p)
(R p − R pe )
(R p + nR pe )

(409)

where n and p are real numbers with the conditions that p , 0 and n , −1, and s(p) = 1 if p > 0 and s(p) = −1 if p < 0,
like defined by Thakkar [22] (see Section 3.27).

Here ξ is a parameter in the Šurkus (SUR) potential, given by:

VSUR (R ) = g0ξ2
(
1 +

n∑
i=1

gi ξ
i

)
. (410)

Šurkus observed that:
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(a) if n = 0 and p = −1 in (409), we have (i);
(b) if n = 0 and p = 1 in (409), we have (ii);
(c) if n = 0 in (409), we have (iii);
(d) if n = 1 and p = 1 in (409), we have (iv).

Note that the parameter ξSUR remains finite for any value of R , ensuring that the Šurkus generalized potential may
produce a qualitative approximation of the potential curve for all parts of the internuclear separation.

The Dunham’s formulas to coefficients ai are defined by the derivatives of the potential energy function at the
minimum, in this case, given by:

a0 =
1

2
R 2e

(
d 2VSUR

dR 2

)
R=Re

(411)

and

ai =
R i+2e

[a0(i + 2)!]
(
d i+2VSUR

dR i+2

)
R=Re

. (412)

Šurkus et al. [147] considering the case when p > 0, he obtained the parameters gi relating them to theDunham
parameters ai by equations:

g0 = a0ξ
−2
1

g1 = a1ξ
−1
1 − ξ2ξ

−2
1

g2 = a2ξ
−2
1 −

1
4 ξ

2
2ξ
−4
1 −

1
3 ξ3ξ

−3
1 −

3
2 g1ξ2ξ

−2
1

g3 = a3ξ
−3
1 −

1
6 ξ2ξ3ξ

−5
1 −

1
12 ξ4ξ

−4
1 −

3
4 g1ξ

2
2ξ
−4
1 −

1
2 g1ξ3ξ

−3
1 − 2g2ξ2ξ

−2
1

g4 = a4ξ
−4
1 −

1
36 ξ

2
3ξ
−6
1 −

1
24 ξ2ξ4ξ

−6
1 −

1
60 ξ5ξ

−5
1 −

1
8 g1ξ

3
2ξ
−6
1 −

1
2 g1ξ2ξ3ξ

−5
1 −

1
8 g1ξ4ξ

−4
1 −

3
2 g2ξ

2
2ξ
−4
1 −

2
3 g2ξ3ξ

−3
1 −

5
2 g3ξ2ξ

−2
1

g5 = a5ξ
−5
1 −

1
72 ξ3ξ4ξ

−7
1 −

1
120 ξ2ξ5ξ

−7
1 −

1
360 ξ6ξ

−6
1 −

1
8 g1ξ

2
2ξ3ξ

−7
1 −

1
12 g1ξ

2
3ξ
−6
1 ξ
−6
1 −

1
8 g1ξ2ξ4ξ

−6
1 −

1
40 g1ξ5ξ

−5
1 −

1
2 g2ξ

3
2ξ
−6
1

−g2ξ2ξ3ξ−51 −
1
6 g2ξ4ξ

−4
1 −

5
2 g3ξ

2
2ξ
−4
1 −

5
6 g3ξ3ξ

−3
1 − 3g4ξ2ξ

−2
1 (413)
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where

ξ1 ≡ Re dξdR

����
R=Re

=
p
(n+1) ,

ξ2 ≡ R 2e
d2ξ

d2
R

����
R=Re

= ξ1(p − 1) − 2ξ21,

ξ3 ≡ R 3e
d3ξ

d3
R

����
R=Re

= ξ1(p − 1)(p − 2) − 6ξ21(p − 1) + 6ξ
3
1,

ξ4 ≡ R 4e
d4ξ

d4
R

����
R=Re

= ξ1(p − 1)(p − 2)(p − 3) − 2ξ21(p − 1)(7p − 11) + 36ξ
3
1(p − 1) − 24ξ

4
1,

ξ5 ≡ R 5e
d5ξ

d5
R

����
R=Re

= ξ1(p − 1)(p − 2) · · · (p − 4) − 10ξ21(p − 1)(p − 2)(3p − 5) + 30ξ
3
1(p − 1)(5p − 7)

−240ξ41(p − 1) + 120ξ
5
1,

ξ6 ≡ R 6e
d6ξ

d6
R

����
R=Re

= ξ1(p − 1)(p − 2) · · · (p − 5) − 2ξ21(p − 1)(p − 2)(31p
2 − 132p + 137)

+90ξ31(p − 1)(6p
2 − 19p + 15) − 40ξ41(p − 1)(39p − 51) + 1800ξ

5
1(p − 1) − 720ξ

6
1,

ξ7 ≡ R 7e
d7ξ

d7
R

����
R=Re

= ξ1(p − 1)(p − 2) · · · (p − 6) − 14ξ21(p − 1)(p − 2)(p − 3)(9p
2 − 39p + 42)

+42ξ31(p − 1)(p − 2)(43p
2 − 141p + 116) − 840ξ41(p − 1)(10p

2 − 29p + 21) + 4200ξ51(p − 1)(4p − 5)

−15120ξ61(p − 1) + 5040ξ
7
1 .

(414)

In the case that p < 0, relationships can be obtained from (413) by substituting −g1, −g3, −g5 for g1, g3 and g5
respectively. Thus, if the spectroscopic constants FνJ are known, the coefficients ai can be calculated with Dunham’s
formulas [23], and substituting ai into (413) and (414) the parameters gi of the potential (410) can be obtained.

Šurkus et al. [144] also obtained relations between the dissociation energyD and the coefficients gi . If p > 0 and
R →∞, then ξ → 1, and thus we have:

D = g0

(
1 +

N∑
i=1

gi

)
. (415)

On the other hand, if p < 0 and R →∞, then ξ → 1
n , and thus we have:

D =
g0

n2

(
1 +

N∑
i=1

gi
ni

)
. (416)

Since the dissociation energy is known, relations (415) and (416) can be used to estimate the following coefficient
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gi on the basis of the coefficients determined.
Firstly, Šurkus et al. [144] applied their potential for (X1Σ+g ) H2 diatomic system. In order to obtain coefficients gi of

theVSUR (R ) from Eq. (413), the values of p and n were estimated using the relationships:

n =

[
2p

(p − a1 − 1)

]
− 1 (417)

and

p2 − 9
2
a21 + 6a2 − 1 = 0. (418)

The roots of Eq. (418) provide two potentials [147], being:

(i) VSURI : p = 1.1634, n = 0.3170, g0 = 0.465369 (au), g1 = g2 = 0;
(ii) VSURI I : p = 1, n = 0.5, g0 = 0.817083 (au); g1 = −0.4050, g2 = −0.0096.

To evaluate their potential to (X1Σ+g ) H2, Šurkus et al. [144] compared it with the Kolos-Wolniewicz potential (VKW )
using the expression∆i = ( |VKW (R i ) −V (R i ) |/D ) × 100%, whereD is the dissociation energy of the ground state of H2.
Themean error forVSURI andVSURI I potentials was 5.3%, whereas for SPF it was 5.9%, for Thakkar it was 6.2% and for
Ogilvie it was 7.5%.

The Šurkus potential showed to be accuratemainly for diatomic systems containing cations in their ground elec-
tronic states. In 1991, he applied his generalized potential to SiF+ [148] and obtained better results than SPF, Thakkar,
Ogilvie, andHuffaker. In 1992, he obtained the potential energy function of PO+ [149], and in 1994, he obtained the
potential energy function of KrH+ [150], standing out for the correct long-range behavior for both.

In 1994, the good result of the Šurkus potential for (X1Σ+g ) H2 was confirmed by Camacho et al. [133] which showed
that the Šurkus potential was better andmore accurate thanMattera [141], Huffaker [132], SPF [128], Thakkar [22],
Ogilvie [140], Engelke [139] andDunham [23] potentials.

3.33 | The Pseudogaussian function
Still in 1984, Sage [151] introduces a new potential with three parameters, and as well as Morse [7], it can be used
for discussing large-amplitude stretching vibrations. Sage called his potential a Pseudogaussian (PG), and energy
levels andwavefunctions can be found for the three-dimensional rotating system using the samemethods as for the
one-dimensional oscillator for this potential, in contrast with theMorse oscillator.

The Pseudogaussian potential proposed by Sage is given by:

VPG (R ) = De
{
1 −

[
1 +

β

2

(
1 − R

2
e

R 2

)]
exp

[
β

2

(
1 − R

2

R 2e

)]}
(419)

where β = −2 + (4 + 2∆)1/2 with Re andDe having their usual meanings and∆ = keR
2
e

2De
the Sutherland parameter.

This function is similar to the three parameter Varshni III potential (292) (presented in Section 3.21) in some aspects.
Note thatVPG (R ) satisfies:
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(i) VPG (R ) come asymptotically to a finite value, in this caseDe , as R →∞;

(ii) VPG (R ) has aminimum at R = Re , i. e., dVPGdR

����
R=Re

= 0 and d2VPG
dR2

����
R=Re

= ke ;

(iii) VPG →∞ at R = 0.

We obtained the expressions for the spectroscopic parameters αe andωexe , fromDunham’s relations (15) and (16):

αe =

{
8 + 3∆ − (4 + 2∆)(4 + 2∆)1/2

3∆
+ 1

}
6B2e
ωe

(420)

and

ωexe =

{
64(10 + 9∆) − 4(20 + 3∆)(4 + 2∆)(4 + 2∆)1/2

∆2
+ 22(6 + ∆)

}
2.1078 × 10−16

3R 2eµ
, (421)

where, forωexe we use the approximation suggested by Varshni (see Eq. (7) in Ref. [14]).
For comparison only, if we use the equations (420) and (421) to calculate αe andωexe with the same experimental

value ∆ used by Varshni (see table VIII in Ref.[14]) and with Re , µ and ωe collected by Herzberg [95] for OH diatomic
system, the errors correspond to −23.15%and −15.1% respectively. However, for theMorse potential the errors are
only 0% and +13.9% for αe and ωexe , respectively. The results forVPG (R ) potential also are less accurate than the
Varshni potentialsVVARI andVVARI I I , both with three parameters.

Aswell as theMorse potential, PG function yields a soluble Schrödinger equation [152], but inmany aspects, the PG
potential is easier than theMorse function. This can be seenwhen dealing with a non-rotatingmolecule, for example.

To obtain the PG eigenfunctions, Sage suggested an expansion of the Schrödinger equation in terms of a complete
set of three-dimensional pseudoharmonic (PH) oscillator functions given by [151]:

VPH =
1

8
keR

2
e

(
R

Re
− Re
R

)2
. (422)

The PH basis set corresponds to functions with the same equilibrium force constant ke and bond length Re as the
PG oscillator. Furthermore, these functions have reasonable behavior at R = 0, near the equilibrium bond length Re
and at∞ [153], and for small amplitudemotion they correspond to the rotating and harmonically vibrating diatomic
molecule. As well as the PG potential, the PH oscillator provides exactly the energy levels andwavefunctions for any
angular momentum using the polynomial method, as demonstrated by Sage and Goodisman [154].

Sage analyzed the PG potential to the electronic ground state of the non-rotating OH system, and he compared his
results with theMorse [7] potential. The RKR [8, 9, 10] experimental curve was used as a reference to calculate the
deviations from these potentials.

The vibrational energy levels related to the PG potential were obtained from a linear variational calculating using a
PH basis set with amaximum of fifty basis functions. Sage observed that with 25 functions the lowest 8 energy levels
were determined to 0.1 cm−1, but all states ν ≥ 10 had errors larger than 100 cm−1, and even for 50 functions accurate
energy were found for ν ≤ 11. Thus, if there is interest in states near the dissociation limit, the PH functions should
bemodified using smaller values of ke or larger values of Re . For example, using the force constant equal to 0.6ke and
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equilibrium bond length equal to 1.2Re , Sage showed that only 25 PH functions gave comparable results to the original
calculations with 40 PH functions, a considerable improvement.

Sage observed that to OH system, the PG potential coincides with the Morse potential if R → Re and when
R →∞, but in other regions, the PG potential lies above theMorse. Although the potential PG itself has not promoted
major improvements over the potential ofMorse, a modified version of this was able to accurately represent the true
internuclear potential. This modified version calledMODPG is the sum of one PG potential with force constant 0.6ke
and dissociation 0.4D and onewith 0.4ke and 0.6D , respectively [151].

In 1985, Sage andGoodisman [154] showed the advantages that the pseudoharmonic function possess over the
harmonic, such as the pseudoharmonic potential has a lager force constant inside the equilibrium distance than outside
and becomes infinite for R = 0; its eigenfunctions and eigenvaluesmay be obtained in closed form, including when a
centrifugal force is present. Thus, pseudoharmonic functions are one of the best for building potential energy curves.

Royappa et. al [41], in a comparative study already cited before, compared for 14 diatomic systems in their ground
electronic state the Pseudogaussian potential with the potentials: Morse [7], Rydberg [8], Lippincott [42], Varshni
III [14] andDeng-Fan [40], all with three parameters, and also with others potentials with 2, 4, 5 and 8 parameters (as
can be seen in before sections). In relation to the functions with three parameters, the Pseudogaussian potential energy
curve, on average, presented a lower error than Lippincott and Deng-Fan, but it proved to be less accurate than Varshni,
Rydberg andmainly in relation toMorse, with almost twice the average error. Particularly for OH diatomic system, the
same results were observed.

3.34 | The Varandas function
The construction of Varandas potential [155] was inspired amethod known asmany-body expansion (MBE). Themany-
body expansion was proposed by Sorbie andMurrell [156], in 1975, when they presented themethod for constructing
analytical potential energy surfaces for stable triatomic system from spectroscopic data. The analytical potential for
triatomic system are an extension of Extended Rydberg function [130]. They chose as variables, for the potential of the
ABC system, the three internuclear distances R1(RAB ), R2(RBC ) and R3(RCA). The three bond lengths are independent
coordinates but theymust accomplish the triangulation restriction R i ≤ R j + Rk . The complete potential is written as a
sum of two and three-body terms as follows:

V (R1, R2, R3) =VAB (R1) +VBC (R2) +VAC (R3) +VI (R1, R2, R3), (423)

where the two-body potentialsVAB (R1),VBC (R2) andVAC (R3) are given byMurrell-Sorbie potential (354):

VXY = −De (1 + a1R + a2R 2 + a3R 3)e−a1R (424)

and the three-body potential has the form:

VI (R l , R2, R3) = P (s1, s2, s3)
3∏
i=1

(1 − tanh γi si /2) (425)

being P a polynomial up to quartic terms and si the internuclear distance relative to the triatomic equilibrium configura-
tion.VI becomes zero at all dissociation limits, i. e., when any two of the three coordinates becoming infinite.

The essential feature of themodel is to take the potential as amany-body expansion the individual terms of which
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are determined by the potential functions for the dissociation fragments. TheMBEwas first applied to H2O system by
Sorbie andMurrell [156]. In 1976,Murrell, Sorbie, and Varandas [157] applied the same potential toO3, making the
first application to a system in which there is more than one stable minimum in the triatomic surface.

Then, in 1977, Varandas and Murrell [158] extended the Sorbie and Murrell potential (423) to deal with larger
polyatomic systems. This extension is based upon a many-body expansion of the total potential energy and has the
objective of reproducing both the equilibrium properties of any stable molecule on the surface and the asymptotic
dissociation limits. In this work, they presented a general N-body potential which consists of expressing the total
molecular potential energy as amany-body expansion in the energy of all the fragments. According to this approach, the
potential of a polyatomic molecule is written as:

VABC ···N (R) =
∑

V
(2)
AB
(R1) +

∑
V
(3)
ABC
(R1, R2, R3) + · · · +

∑
V
(n)
ABC ···N (R) (426)

where the summations extend to all distinct interactions of a given type, and the energy of the separated atoms, in the
states which are produced by adiabatically removing them from the polyatomic, is taken as the zero of energy. The
coordinateR denotes the set of all interatomic separations and is assumed that only one atomic state is produced upon
dissociation. Analogously,V (2)

AB
(R1) represents the two-body interaction potential for atoms A and B separated by R1,

andV (2)
AB
(R1) → 0 asymptotically, when R1 →∞. Still,V (3)ABC (R1, R2, R3) represents a three-body term that must become

zero as any of the three atoms is infinitely separated from the other two, and so on for the higher-order N-body energy
terms.

In the same year, Varandas andMurrell [159] presented anMBE type functionwhich covered a limited region of the
ground state surface of ammonia. This region contains the twominima and the inversion barrier. They concluded that
the surface, in general, was in fair agreement with the experimental data. However, the barrier to inversion however
wasmore than twice as great as the experimental value. In 1983, Špirko [160] showed that several approximations to
the ammonia potential functionwere introduced and this potential functionwas, unfortunately, of very limited accuracy.
At the time, Špirko presented a significantly better description of the genuine ammonia potential function by using a
modified Pliva potential function (seemore details in Ref. [161]).

In 1982, Varandas and Brandão [162] expressed the interaction diatomic potential in terms of the Hartree-Fock
(HF) interaction energy,VHF (R ), and the interatomic correlation energy as approximated semi-empirically from the
second-order dispersion energy calculated including the effect of charge overlap between the electron clouds of the
two interacting species,Vi nt er /d i sp (R ). The total interaction energy by the sum of the Hartree-Fock interaction energy
and the interatomic correlation energy that goes asymptotically to the dispersion energy:

V (R ) =VHF (R ) +Vi nt er /d i sp (R ) (427)

The dispersion energy calculated, including the effect of charge overlap, is given by:

Vi nt er /d i sp (R ) = −
∑
lA ,lB

C lA ,lB χlA ,lB (R )R
−2L (428)

with χlA ,lB being R-dependent dispersion damping functions which account for the charge overlap effects. These
functions are given by general form [162]:

χlA ,lB (R ) = {1 − exp [−d1(2L)x (1 + d2(2L)x )]}2L (429)
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with

x =
R

ρ
, (430)

ρ =
(Re + γR0)

2
, (431)

R0 = 2(〈rA2 〉1/2 + 〈rB 2 〉1/2), (432)

where Re is the equilibrium diatomic geometry, is to be self-consistently determined, R0 is the Le Roy [163] distance at
which the undamped dispersion energy, and d (2L)

i
(i = 1, 2;L = 3, 4, · · · ) are universal numerical constants which are

obtained from existing ab initio data on the 3Σ+u state of H2. Still, 〈rA2 〉 is the expectation value of the square of the
radius of the outermost electrons in the interacting speciesA.

As the dispersion damping functions corresponding to a given value of L have the same R-dependence irrespective
of the specific pair (lA, lB ) involved,Vi nt er /d i sp (R ) assumes the approximate form to:

Vi nt er /d i sp (R ) = −
∑
L=3

C2L {1 − exp [−d1(2L)x (1 + d2(2L)x )]}2LR−2L (433)

with

ρ =
(Re + 2.5R0)

2
, (434)

The short range repulsive region of the potential can be approximately described by Hartree-Fock theory. In many
cases the potential shows, in this region, an inverse exponential dependence in R which is commonly approximated by a
Born-Mayer [32] type function:

VHF (R ) = A exp
(
−

N∑
i=1

bi R
i

)
(435)

being N usually 1 or 2. Varandas and Brandão [162] obtained an equally good functional form given by:

VHF (R ) = AR−1 exp
(
−

N∑
i=1

bi R
i

)
. (436)

They showed that by combining the asymptotic power series expansion of the dispersion energy suitably damped
to account for charge overlap effects at a small R with the generalizedHartree-Fock repulsion good agreement was
obtained with the available information on the lowest triplet state potential of the alkali dimers. In all other applications
made including rare gas-rare gas, H-rare gas, and alkali-rare gas interactions as well as Mg2(1Σ+g ), and the isotropic
components of the H-H2, He-H2 and H2-H2 potential energy surfaces, the model given in (427) produced results in
excellent agreement with ab initio and experimental data. Thus, themodel provides a physically correct description of
the interaction potential particularly at the intermediate regions close to the van derWaalsminimum [162]. This success
indicated that a general potential for N-body systemswas about to be born which would bewidely usedworldwide.
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Then, in 1984, Varandas [164] suggested using a double many-body expansion (DMBE) of potential energy surfaces
which, being an extension of the previous approach (426) leading to a reliable description of the potential surface
from short to large interatomic separations. He used for this a well-known approach making a further partition of
themolecular potential energy by splitting eachN-body energy term into Hartree-Fock and correlation energy type
components.

In the DMBE approach the two-body energy terms is given by:

V
(2)
AB
(R1) =V (2)AB , HF (R1) +V

(2)
AB , cor r

(R1) (437)

and analogously, the three-body energy terms is given by:

V
(3)
ABC
(R1, R2, R3) =V (3)ABC , HF (R1, R2, R3) +V

(3)
ABC , cor r

(R1, R2, R3). (438)

As the two-body energy terms are written as a sum of the near Hartree-Fock energy, which is purely repulsive in
the case of interactions involving neutral closed-shell atoms, and approximate representation of the correlation energy
which is generally an attractive contribution, Varandas referred to thismodel byHFACE, i. e., Hartree-Fock-approximate
correlation energy [164]. From this moment, the long-range termVi nt er /d i sp (R ) is referred asVcor r (R ).

This model was applied to the triatomic system HeH2, and the results were in good agreement with available
accurate ab initio calculations. Varandas [164] highlighted some advantages of using the DMBE approach:

Firstly, one expects different rates of convergence of the many-body expansion at short distances where the
Hartree-Fock energy is the dominant component, and at large distances where the interatomic correlation
energy dominates. Secondly, there are practical advantages in treating the Hartree-Fock and correlation
energy components separately due to their different functional forms. The third reason is related to our main
goal which is to interpolate the potential energy surface at intermediate distances, where a fully correlated
ab initio electronic structure calculation is prohibitively expensive, from its asymptotic energy components
at short and large distances which are much easier to compute. Finally, one should refer the advantages of
following current quantum chemical ideas on the partitioning of the total interaction energy, thus conveying
the model a sound full basis lying on physically meaningful energy components (VARANDAS, 1984).

In 1986, Varandas and da Silva [165] showed how to obtain diatomic potential energy surfaces, in special, using the
Hartree-Fock Approximate Correlation Energy (HFACE) model. As before, the total potential is given by:

V (R ) =VHF (R ) +Vcor r (R ) (439)

whereVHF (R ) stands for the (extend) Hartree-Fock energy including the amount of correlation energy which is nec-
essary to guarantee the proper behavior on dissociation, andVcor r (R ) is the interatomic correlation energy which is
semiempirically represented by the dispersion energy damped.

The global short-range energy was chose as

VHF (R ) = −DRα
(
1 +

3∑
i=1

ai r
i

)
exp(−γr ), (440)



96 ARAÚJO &BALLESTER

being r = R − Re ,D the dissociation energy and α can be zero, and in this case, it represents the Hartree-Fock energy by
the Extended-Rydberg potential, as suggested byMurrell and Sorbie [59]; or α = −1, which was imposed the proper
Coulombic behaviour at small values of R [165].

The γ value can be obtained using the similar method (355) proposed byMurrell and Sorbie in the section 3.26,
from the quartic equation:

U (4) + 4γU (3) + 6γ2U (2) + 4γ3U (1) + γ4D = 0, (441)

and then, the coefficients ai , i = 1, 2, 3, by the relations:

a1 =
U (1)

D
+ γ (442)

a2 =
1

2

[
U (2)

D
+ 2γ

aU (1)

D
+ γ2

]
(443)

a3 =
1

6

[
U (3)

D
+ 3γ

U (2)

D
+ 3γ2

U (1)

D
+ γ3

]
(444)

being

U (i ) =
d iU (R )
dR i

(445)

the ith derivative ofU (R ) = −R−α [V (R ) −Vcor r (R )]with respect to R . The largest γ-root gives the best potential in
general.

To representVcor r , they used:

Vcor r = −
∑

n=6,8,10,···
CABn χn (R )R−n (446)

where now, the damping functions are defined as:

χn (R ) = [1 − exp (−Ax − Bx2)]n (447a)
x = 2R/(Re + 2.5R0) (447b)

An = α0n
−α1 (447c)

Bn = β0 exp (−β1n) (447d)

where α0 = 16.36606, α1 = 0.70172, β0 = 17.19338 and β1 = 0.09574 are universal parameters dimensionless for all
isotropic interactions, and R0 is given by Eq.(432).

Varandas and da Silva [165] suggested the universal relationship:

CABn

CAB
6

= knR
[a(n−6)/2]
0 , n = 8, 10 (448)
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where α = 1.57, k8 = 1 and k10 = 1.13, and the coefficient CAB6 is known (see Ref. [166]). From this correlation, they
obtained:

C6C10

C 28
= k10, (449)

and in particular, for homonuclear interactions:
CAA
8

CAA
6

= 8.82(〈r 2 〉1/2)1.57

CAA
10

CAA
6

= 88.59(〈r 2 〉1/2)3.14 .

(450a)

They analyzed the behavior of theHFACEmodel for 77 diatomic systems in their ground electronic state. For bound-
state interactions, if α = 0 in Eq.(440), in general, in the valence region their potential and the Extended-Rydberg [59]
showed similar accuracy and, in the long-range region, the HFACE potential proved to be superior with correct behavior
at R →∞. Still, if α = −1, the results proved to be slightly less accurate thanVHF with α = 0, when both are compared to
RKR data [30]. The HFACEmodel proved to be a real general analytic representation of the potential energy curves for
diatomic interactions. This potential was considered themost realistic and accurate to represent bound-state and van
derWaals diatomics systems, which is still widely used today. This model is known as EHFACE2 (extendedHartree-Fock
approximate correlation energy to diatomic systems).

Then, in 1992, Varandas and da Silva [167], following previous work, presented the best version of the general
potential for diatomic systems, called EHFACE2U then given by:

VEHF ACE2U =VEHF +Vdc (451)

where now, the first term represents the extended-Hartree-Fock type energy and the second term provides the
dynamical correlation energy. Here,Vdc corresponds exactly toVcor r in Eq.(446), with the same characteristics of the
damping functions in Eq.(447).

One of the changes in relation to the potential previously proposedwas the definition of the parameter γ, which is
now given as:

γ = γ0[1 + γ1 tanh (γ2R )] (452)

adding two new parameters to potential proposed in Ref. [165]. However, these parameters provide the correct
asymptotic behavior at R →∞.

To obtain the ai and γi parameters, three fit methods were proposed by Varandas and da Silva. We discussed one of
these here, and the others can be seen in Ref. [167].

The ai and γi parameters were determined from a least-squares fit. The second essential difference between the
EHFACE2 and EHFACE2U is that, now, to make this least-squares fit, the total kinetic field of the total potential must be
normalized to give the correct description of the potential energy at R → 0, i. e. [167],∫ ∞

0
[T (R ) −T (∞)]dR = ZAZB (453)
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where the electronic kinetic energy is given by:

T = −VEHF ACE2U (R ) − R
dVEHF ACE2U (R )

dR
(454)

and ZA and ZB are the nuclear charges of the atoms A and B . This expression together with the expression for the
potential energy,

U = 2VEHF ACE2U (R ) + R
dVEHF ACE2U (R )

dR
(455)

provides thewell known virial theorem relating the electronic kinetic energyT , the potential energyU and the total
Born-Oppenheimer energyV (R ) = T (R ) + U (R ). Furthermore,T (0) = −W (0) is the energy of the united-atom (this
condition is represented by U in EHFACE2U).

From Eqs.(453) and (3.34), the integral form of the virial theorem is obtained:

V =
1

R

{
ZAZB −

∫ ∞

0
[T (R ′) −T (∞)]dR ′

}
(456)

and thus, the normalization condition ensures also the correct Coulomb potential [167]:

lim
R→0

VEHF ACE2U (R ) =
ZAZB
R
. (457)

Varandas and da Silva also observed that, ifT (∞) = −VEHF ACE2U (∞) = 0, the normalization condition forVEHF
with α = −1, corresponds to impose:

D

[
1 +

3∑
n=1

ai (−Re )i
]
exp {γ0[1 − γ1 tanh (γ2Re )]} = ZAZB . (458)

The EHFACE2U potential energy function proved to be quite accurate to describe the 13 chemical stable diatomic
systems, which were evaluated: H2, Li2, Na2, K2, Rb2, Cs2, Cl2, N2 and O2, HF, CO, OH and NO, all in their ground
electronic state. In addition, Varandas and da Silva presented a case study of Ar2 van derWaals molecule and obtained
themost accurate potential energy curve reported at the time (see the details in Ref. [167]).

The EHFACE2U potential energy curve is considered one of the best and more accurate function to describe
diatomic interactions, it is still widely used in recent researches [168, 169, 170]. In a recent work presented by da Silva
and Ballester [171] the diatomic potential energy curves for triplet electronic states, X3Σ− and B3Σ− of SO has been
described using the approach proposed by Varandas and da Silva [167]. Another recent application this potential can
be seen in Ref. [172]. In a detailed investigation about the vibronic transition parameters as Franck-Condon factors,
r-centroids, Einstein coefficients, and radiative lifetimes for some bands of the second positive (C3Πu − B3Πg ) and
Herman infrared (C′′5Πu − A′5Σ+g ) band systems of N2. Again, the diatomic potential energy curves for all electronic
states studied have beenmodeled using the approach proposed by Varandas and da Silva [167].

3.35 | The Schiöberg function
Wehave seen that theMorse potential [7] is still, in relation to some potentials, more accurate. However, as mentioned
in the Section 3.3, theMorse potential presents some problems, such as not warranting proper asymptotic limits, i. e., if
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R → 0,VMOR (R ) assumes a finite value. Although this should not affect the bound states properties, it will give a rise to
some difficulties in solving the collision problems considered. TheMorse function also is inaccurate for large R , due to
the replacement of the Van derWaals term by an exponential.

In an attempt to obtain a potential that could improve the accuracy of theMorse potential, Schiöberg [173] (SCH)
proposed in 1986, a hyperbolic potential function with three parameters given by:

VSCH (R ) = D [1 − σ coth (aR )]2 (459)

whereD , a and σ are adjustable positive parameters. Using the relation coth (aR ) = eaR+e−aR
eaR−e−aR , the function (459) can be

rewrite as:

VSCH (R ) = D
[
1 − σ − 2σ

(e2aR − 1)

]2
. (460)

The Schiöberg potential must satisfy:

(i) dVSCH
dR

����
R=Re

= 0;

(ii) VSCH (∞) −VSCH (Re ) = De , whereDe is the depth of the well;

(iii) d2VSCH
dR2

����
R=Re

= ke ;

(iv) VSCH →∞ at R = 0.

Wang et al. [80] observed that to satisfy the condition (i), wemust have:

σ =
e2aRe − 1
e2aRe + 1

. (461)

Now, by using the condition (ii), we obtain:

D (1 − σ)2 − D
[
1 − σ − 2σ

(e2aRe − 1)

]2
= De , (462)

and using the relation (461), we can obtain a relation to parameterD given by:

D =
De
4
(e2aRe + 1)2 . (463)

Substituting the expressions (461) and (463) into the potential (460), we have a new expression to Schiöberg
potential:

VSCH (R ) = De
(
1 − e

2aRe − 1
e2aR − 1

)2
. (464)

where 2a = b , being b a parameter in the Tietz-Hua potential(332).
Wang et al. [80] used this expression to compare the Schiöberg potential with theManning-Rosen potential [78]
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andwith the Deng-Fan potential [40], and they concluded that these three functions correspond to the same potential,
actually.

The expressions for the vibrational rotational coupling parameter αe and anharmonicity parameterωexe , can be
obtained fromDunham’s relations (15) and (16):

αe =

{
8a3R 3e
∆

[
e4aRe (e2aRe + 1)
(e2aRe − 1)3

]
+ 1

}
6B2e
ωe

(465)

and

ωexe =

{
120a3R 4e
∆2

[
e4aRe (e4aRe + 1)2

(e2aRe − 1)3

]
− 16a

4R 2e
∆

[
e4aRe (7e4aRe + 22e2aRe + 7)

(e2aRe − 1)4

]}
2.1078 × 10−16

µ
, (466)

where Be andωe have their usual meanings, and∆ is the Sutherland parameter.
Schiöberg [173] claimed that his potential was a better description for the potential energy of amolecular vibration

than theMorse function, and he showed it for H2 in its ground electronic state. In special, in the region of large R , the
Schiöberg potential is closer to reality than theMorse potential for some diatomic molecules [174]. However, in 2012,
Wang et al. [80] showed that the Schiöberg potential is not better than the traditional Morse potential in simulating the
atomic interaction for diatomic molecules.

3.36 | The Reduced function
In this moment of history, the problem of obtaining reliable diatomic potentials is considered solved, especially after the
EHFACE potential described earlier (Section 3.34). However, in 1989, according to Tellinghuisen et. al [175], there was
still a search for the “magic potential” which he called theHoly Grail of Spectroscopy.

The Holy Grail of Spectroscopy would be a universal analytical function that would describe the potential energy
curve accurately andwithout prior knowledge of the potential. Some researchers claimed that this functionmust also
satisfy the Lippincott criterion [15], which the average absolute deviation of less than 1%ofD between experimental
energies and those calculated by the function at the distances of the spectroscopic potentials, i. e.:

σav = 100
∑
( |Vexpt −Vcal c |)/(NpD ), (467)

where Np is the number of points on the spectroscopically derived potentials.
The Reduced Potential Curves (RPC) methodwould produce such a universal potential with ideal characteristics.

The idea of the reduced state equation of gases in thermodynamics introduced by Puppi [176], in 1946, is analogous to
the reduced potential. Frost andMusulin [113] were the pioneers to use this method (see Section 3.20), proposing, in
1954, the first Reduced Potential Curve:

VRPCI (ρ) =
V (ρ)
De

with ρ(R ) = (R − R i j )/(Re − R i j ) (468)

with

R i j = Re − A (469)
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beingA = (KDe/ke )1/2.
Later, in 1963, Jenč and Plíva [177] observing the reduced Frost-Musulin model, they tested to obtain reduced

potential curves from experimental potential curves calculated by the RKRVmethod. The RKRVmethodwas proposed
by Vanderslice and coauthors (see the references 7-16 in Ref. [177]) and was a modification of the Rydberg-Klein-
Rees [8, 9, 10] analytical method, being applied to calculate the potential functions of a series of diatoms.

By analyzing the diatomic systemsH2, H+2 , LiH, BeH+, OH andOF in their ground electronic states, they concluded
that the mean value K in Eq. (263) should be K = 3.96 instead K = 4.00 used by Frost and Musulin, yielding better
coincidence of the reduced curves. In addition, the coincidence of the reduced curves for O2 , N2 , CO, and NO, all in their
ground electronic states, were also analyzed, and for these a pronounced discrepancy using the Frost-Musulin potential
was observed, even using K = 3.96. This suggested somemodifications to FM potential.

They observed that, for R = 0, the value ρ is negative and assumes different values for different diatomic systems.
Then, they proposed the reduced internuclear distance given by:

ρ = [R − (1 − e−R/ρi j ) · ρi j ]/[Re − (1 − e−R/ρi j ) · ρi j ] = (ξ + e−ξ − 1)/(ξe + e−ξe − 1) (470)

where ρi j was introduced instead R i j , ξ = R/ρi j and ξe = Re/ρi j . This new definition for the parameter ρ satisfies the
conditions:

(i) ρ ≥ 0;
(ii) if R → 0, then ρ → 0;
(iii) if R = Re , then ρ = 1.

The parameter ρi j is determined, assuming the universal value K = 3.96, as:

ρi j = (Re − A)/(1 − e−Re /ρi j ), (471)

whereA has been defined before.
For the modified Frost-Musulin potential the hydrides coincided remarkably, similarly, the curves of the other

molecules also showed a close coincidence. However, the two groups of molecules do not quite coincide. Then, Jenč and
Plíva concluded that Frost-Musulin curves exist for groups of closely related diatomicmolecules, but not universally.
They also compared the reduced RKRV potential for LiH, BeH+, and HFwith theMorse [7], Rydberg [8], Varshni I and
VI [14] and Lippincott [42] potentials and concluded that the approximations afforded by the individual functions are
different for different diatomic systems.

Then, in 1989, Tellinghuisen et. al [175] suggested that evenwhere the reduced potentials presented poor agree-
ment, their repulsive brancheswere often in good agreement, and this behavior could be until in approximating unknown
potentials.

Tellinghuisen et. al to use a similar potential proposed by Frost andMusulin [113]:

VRPCI I ≡
V (R )
De

= x2 (472)

with

x ≡ (2π2cµ/De~)1/2ωe (R − Re ). (473)
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They evaluated the behavior of their potential for 35 molecular states. The reduced potential curves for alkali-
metal diatomic systems in their ground electronic states were represented practically by a unique curve, coinciding
in the attractive region and slightly different in the repulsive region. For the ground electronic states halogens good
coincidence in the repulsive and spectroscopic region, but not so good in the attractive branch. However, for the excited
halogen states, the curves in the attractive region showed poor agreement and good coincidence in the repulsive branch.

Tellinghuisen et. al also obtained the reduced potential for homonuclear diatomic systems Cl2, N2, O2, P2, S2, Se2
and Te2 in their ground electronic states, and in addition, for N2(A) and ICl(X). The reduced potentials for all diatomic
systems coincided quite well in both branches.

The same alkali-metal diatomic systemswere analyzed by Tellinghuisen et. al [175] using the Jenč and Plíva [177]
reduced potential (described above). For this group of themolecules, the Jenč and Plívamodel showed considerably
less agreement in the attractive branch than the Tellinghuisen et. al approach.

Thus, it is possible to observe that obtaining a universal function to represent “all diatomics” in a unique reduced
potential curve is not a simple task.

3.37 | The Aguado and Paniagua function
One of the simplest and generally successful methods of obtaining potential energy curves for diatomic systems directly
from spectroscopic data is through the RKRmethods [8, 9, 10], as alreadymentioned in previous sections, and used
in the vast majority of cases as a parameter for comparing whether the potential is well fitted. However, the results
obtained by the RKRmethod are presented in the form of tables containing, in general, the numbers ν,G (ν), Bν , R+ and
R−, not being very convenient for a rapid interpretation of the potential behavior.

Aiming at producing accurate and well-behaved potential energy curves in 1992, Aguado, Camacho, and Pani-
agua [178] (ACP) presented a simple functional form, similar to the perturbed-Morse-oscillator (PMO) potential, with
better results mainly for the long-range region. ACP presented analytical potential energy curves for the CO and LiH
systems, both inX 1Σ+ electronic state, obtained by fitting the RKR values in the Chebyshev sense [178].

For a tabulated function yi = f (xi ) (i = 1, 2, · · · , n), where yi are the observedG (ν) +Y00 and xi are the turning
points rotation-less potential curve, they suggested a approximated potential functionVACP (R ) written as a linear
combination of functionsφ that will be conveniently chosen,

VACP (R ) =
m∑
k=0

ckφk (x ) (474)

whereφk (x ) belongs to the basis of functions {φk }, k = 0, 1, · · · ,m .
To calculate error vectorQ , with components qi given by qi =V (xi )−yi , relatedRKRdata, themethod themaximum

norm that uses the Chebyshev technique was chosen. Such a methodology was selected because of the interest in
getting an error vectorQ with a limited value point by point [178].

The chosen basis function was one that contains functions similar to PMO

φk (x ) = [1 − eβx ]k , k = 0, 1, · · · ,m . (475)

where β is a nonlinear parameter independently set to obtain the best approximation and x = R − Re , with R and Re as
already defined in this work.

The procedure proposed by ACP [178] to obtain the energies and consequently of the potential energy curves
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for the systems of interest, starts with the use ofVACP (R ) (474) and the functions φk (475) in the radial equation of
Schrödinger for J = 0:

(
−~
4πµc

d 2

dR 2
+V (R )

)
ψν = Eνψν (476)

Its resolution is carried out through the diagonalization of theHamiltonianmatrix, in order to obtain the eigenvalues
Eν . For this is used as a basis the orthogonal functions of Hermite given by:

χn (x ) = e−αx
2/2Hn (α1/2x ), n = 0, 1, 2 · · · (477)

whereHn are the Hermite polynomials and α ≈ 2πνeµ/~.
The Hamiltonianmatrix obtained through of the integralsVnm =< χn |e−β j x |χm >, which can be calculated using the

recurrence relation,

Vnm = − β j

α1/2
Vn−1m + 2mVn−1m−1 (478)

where the first column (m = 0), providesV00 = ( π
α

)1/2
eβ

2 j 2/4α .
ACP [178] showed that for the systems CO and LiH, both in the X 1Σ+ electronic state, the optimal numbers of

fundamental functions were 15 and 8 respectively. This already represents the first advantage of themethod, because it
is a finite and relatively small set of parameters facilitating further calculations.

In general, the ACP [178] method provided an optimum fit for the potential energy curves of the tested systems. It
also presents an excellent degree of self-consistency for all evaluated parameters Eν , Bν and for the potential curves
themselves CO and LiH, both in the stateX 1Σ+.

However, still in 1992, Aguado and Paniagua [179] (AP) proposed a functional form to obtain analytical potentials
of triatomic molecules ABC, in which the full potential was written as anmany-body-expansion (MBE) [55]:

VABC =
∑
A
VA(1) + VAB(2)(RAB) + VABC(3)(RAB,RAC,RBC) (479)

where RAB,RAC and RBC are the internuclear distances and the sums are over all the terms of a given type andwhere
VA(1) is the energy of atomA in its appropriate electronic state; VAB(2) is the two-body energy that corresponds to the
diatomic potential energy curve which vanishes asymptotically when RAB → ∞ and goes to infinity when RAB → 0;
VABC(3) is the three-body energy.

The diatomic terms VAB(2) of the potential (479) are expressed as a sum of two terms corresponding to the short-
and long-range potentials, and will be called VAP [179]:

VAP(2)(RAB) = Vshort(2) + Vlong(2) (480)
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where

Vshort(2) = c0e
−αABRAB
RAB (481)

and

Vlong(2) =
N∑
i=1
ciρiAB (482)

where (481), with the restriction c0 > 0, ensures that the diatomic potential goes to infinitywhen RAB → 0. Aguado-
Paniagua [180] showed that amodified form of the functions, introduced by Rydberg [8], in the polynomial variables ρ,
given by (480)

ρAB = RABe−βAB(2)RAB , βAB(2) > 0. (483)

The linear parameters ci , i = 0, 1, · · · ,N and the nonlinear parameters αAB , both in the Eq.(480) and βAB (Eq. (483))
are determined by fitting the ab initio energies for the diatomic fragments computed at the same level of theory than
the used in the triatomic system [179].

Although it is a proposition for a triatomic potential, the two-body termVAP(RAB) in Eq. (480) was known as a new
diatomic potential of Aguado-Paniagua, being very used today due to its high precision for several systems, in excited
states including (see for example Ref. [181]).

In 2019, a recent work by Araujo et. al [182] has compared four potential energy functions: Rydberg [8], Hulburt-
Hirschfelder [6], Murrell-Sorbie [59] and Aguado-Paniagua [180] to N2, O2 and SO diatomic systems in their ground
electronic states. Based on PECs obtained by fit ab initio points, the spectroscopic parameters Re , De , ωe and ωexe
of themolecules have been computed. Although, in overall potential the Aguado-Paniagua function proved to be the
most accurate for all diatomic analyzed, the same did not happenwith the spectroscopic parameters. Surprisingly, the
Rydberg potential, the oldest of the functions considered, showed less deviation in the calculation of the parameter Re
for N2 and SO diatomic systems. In addition, the Rydberg function proved to be the secondmost accurate, behind AP, in
relation to the overall potential of the SO (seemore details in Ref. [182]).

3.38 | TheWilliams-Poulios function
Potential energy functions that are exact solutions to the Schrodinger equation are extremely desirable, as we have
already seen throughout this article. Thinking about that,in 1993,Williams and Poulios [183] proposed a simple method
for generating exactly solvable quantummechanical potentials. This methodwas applied to Gegenbauer polynomials
(see Ref. [184]) to generate the attractive radialWilliams-Poulios (WP) potential, given by:

VWP (R ) =
a2

4

[
e−4αR + (A − 8)e−2αR + (4 − A)

(1 − e−2αR )2

]
(484)

whereA is a real constant and α > 1
2 is given by:

α =
A − 2 − 4ν2
8ν + 4

(485)
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being ν the quantum number.
The energy for this solvable potential is obtained from:

E =
a2

4

{
1 − 4

[
ν2 + ν + (A − 2)/4

2ν + 1

]2}
. (486)

Ovando et. al [185] observed that the standard potentialVWP was not aminimum. Then, they proposed to use the
negative of theWilliams-Poulios potential, given by:

V −WP (R ) =
b2

4

[
Af (R ) + 3f 2(R ) + (A − 4)

]
(487)

where

f (R ) = e−2αR

1 − e−2αR
. (488)

The potential (487) has aminimum provided that [185]:

−2De (e2αRe − 1) =
Ab2

4
(489)

and

De (e2αRe − 1)2 =
3b2

4
(490)

leading to

De =
b2

48
A2 (491)

and

f (Re ) =
−A
6
, (492)

for which

Re =
1

2α
ln 1 − 6

A
. (493)

Ovando et. al obtained the relationships for parameters b andA, given by:

b =
2
√
3De

3f (Re )
(494)

and

A = −6f (Re ) (495)
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using the expression (488).
They also showed that the multiparameter exponential-type potentials byManning-Rosen [78], Deng-Fan [40],

Schiöberg [173], Tietz [119], Tietz-Hua [122], Modified Extended Rydberg [186] and the negative Williams-Poulos
potential are equivalent. In this equivalence, the potential (487) can be rewrite as:

V −WP (R ) = De
(
1 − e

2αRe − 1
e2αR − 1

)2
. (496)

Note that it is now easy to see that this potential meets the conditions:

(i) dV −
WP
dR

����
R=Re

= 0;

(ii) V −WP (∞) −V
−
WP (Re ) = De .

The vibrational rotational coupling parameter αe and the anharmonicityωexe can be obtained fromDunham relations
(15) and (16), and are equivalent to the potentialsmentioned above. In the Section3.49wewill detail themultiparameter
exponential-type potentials.

3.39 | The Fayyazudin function
In 1995, Fayyazudin and Rafi [187] (FR) proposed an empirical potential function to describe the bound states of
diatomic systems. The potential has four parameters, which can be related to spectroscopic parameters well known.

The potential is given by:

VF R (R ) =
K

R n
+ λRe−aR (497)

where K , λ and a can be determined fromDe , ke and Re , and n is a free parameter greater than one.
This potential satisfies the desirable features, i. e.,VF R → ∞ at R = 0, andVF R → 0 at R → ∞. In addition, this

potential must satisfy:

(i) dVF R
dR

����
R=Re

= 0;

(ii) VF R (∞) −VF R (Re ) = De , i. e.,VF R (Re ) = −De ;

(iii) d2VF R
dR2

����
R=Re

= ke = 4π
2c2µω2e .

From this conditions, Fayyazudin and Rafi obtained the relationships:

λe−aRe =
nK

R n+1e (1 − aRe )
, (498)

KR−ne = −De (1 − aRe )
n + 1 − aRe

(499)
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and

aRe =
(n2 + 3n + 2∆) ±

√
(n4 + 2n3 + 5n2) − 4∆n(n − 1) + 4∆2

2n
(500)

where∆ = keR
2
e

2De
is the Sutherland parameter. Only the negative sign in this equation is relevant.

The vibrational rotational coupling parameterαe and the anharmonicityωexe wereobtained fromDunhamrelations
(15) and (16), but using the Varshni [14] method given by:

αe =
6B2e
ωe

F (501)

and the anharmonicityωexe , is given by:

ωexe =
1

8
BeG (502)

where

F = −
[
1

3
XRe + 1

]
(503)

and

G =
5

3
(XRe )2 −Y R 2e (504)

Here,

X =
f3
f2

(505)

and

Y =
f4
f2

(506)

being f2 =
(
d2V

d2
R

)
R=Re

, f3 =
(
d3V

d3
R

)
R=Re

and f4 =
(
d4V

d4
R

)
R=Re

. We canwriteX andY in terms ofωexe and αe :

X =
−3
Re

[
ωeαe
2Be

+ 1

]
(507)

and

Y =
5

3
X 2 − 8ωexe

BeR
2
e

. (508)

The expressions to ReX and R 2eY obtained for the potential (497) can be seen in Ref, [187].
To evaluate the accuracy of their potential, Fayyazudin and Rafi calculated the values of αe and ωexe for eight

diatomic systems in different electronic states: H2 (X 1Σ+g ), I2 (X 1Σ+g ), HF (X 1Σ+), N2 (X 1Σ+g ), N2 (A3Σ+u ) N2 (a1Πg ),
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N2 (B3Πg ), O2 (X 3Σ−g ), O2 (B3Σ−u ), O2 (A3Σ+u ), OH (X 2Πi ), OH (A2Σ+), NO (X 2Π), NO (B2Π), CO (X 1Σ+), CO (a3∆),
CO (a′3Σ+), CO (A1Π) and CO (e3Σ−). Then, they compared their results with other potentials already treated here:
Morse [7], Rosen-Morse [28], Rydberg [8], Pöschl-Teller [29], Linnett [60], Frost-Musulin [73], Varshni [14] III and
Lippincott [42]. The average error for both spectroscopic parameters using the FR potential was less than for all other
potentials.

In addition, they analyzed the deviation of their potential from the RKR curve to H2 (X 1Σ+g ) diatomic system, and
then, they compared with the same potentials. The FR potential provides good accuracy, being inferior only to the
potentials of Hulburt-Hirschfelder, Rydberg, and Pöschl-Teller.

Then, in 1996, Fayyzudin et. al [188] extended the FR potential to five-parameters (F AYI ) given by:

VF AYI (R ) = e
−t ξ

[
K

ξ
− a − bξ − cξ2

]
(509)

where ξ = R/Re , K , a , b , c ans t are parameters which can be obtained from known spectroscopic parameters.
They also considered the three-parameters potential function (F AYI I ), doing a = c = 0 in Eq. (509):

VF AYI I (R ) = e
−t ξ

[
K

ξ
− bξ

]
(510)

Thesepotentialsmust satisfy theequations (i), (ii) and (iii) above, so that their parameters canbeobtained. Fayyzudin
et. al [188] showed that forVF AYI the parameters K , a , b and c can be expressed in terms of parameter t determined
from polynomial:

t 4 + 4t 3 − 12∆t 2 + 24∆t − 6∆
[
(1 + F )(5F + 1) − G

3

]
= 0 (511)

where F andG are defined in Eqs.(503) and (504). Only the root real positive is considered.
ForVF AYI I , the parameters can be obtained, using the relationships (i)-(iii), and are given by:

Ke−t =
De (t − 1)

2
, (512)

be−t =
De (t + 1)

2
(513)

and

t 2 + t − (1 + 2∆) = 0, (514)

choosing the positive root again.
To evaluate the accuracy of their potentialsVF AYI andVF AYI I , seven diatomic systems in different electronic states

were chosen (practically the same used by Fayyazudin and Rafi described above, see Ref. [188]) and compared with the
Morse [7], Rosen-Morse [28], Rydberg [8], Pöschl-Teller [29], Linnett [60], Hulburt-Hirschfelder [6], Frost-Musulin [73],
Varshni [14] III and Lippincott [42] potentials. They used the deviations from the RKR curve to check the behavior of the
potentials, using Lippincott’s criterion [15].

The five-parametersVF AYI wasmost accurate than all the others, except for the Hulburt-Hirschfelder potential
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which the average error was almost equal. The three-parametersVF AYI I perform slightly worse, but still showedmore
accuracy thanMorse, Rosen-MOrse, Pöschl-Teller, Linnett, and Frost-Musullin.

In 2006, Lim [189] showed that the parameters of the Fayyazudin potentialVF AYI I can be related to the parameters
of the Extended-Rydberg potential proposed byMurrell and Sorbie [59]. From conversionmatrices that convert the
former’s parameters into the latter and vice versa, they obtained a list of 71 sets of Fayyazuddin diatomic parameters
applying one of the conversion matrices on the Huxley–Murrell [130] data. Potential energy curves of the OSi, FO,
BeS, and HH diatomic parameters exhibit very good agreement between the two potential functions considered,
confirming the conversionmatrices validity. Based on theHuxley–Murrell parameters, the Fayyazuddin parameters
were calculated for a total of 71 combinations of diatomic systems (see table 1 in Ref. [189]).

3.40 | TheModified Extended Rydberg function
In 1997, Sun [190] by analyzing the Extended Rydberg potential [59], observed that it is still necessary to obtain a better
theoretical method to easy calculate vibrational potential for stable diatomic systems, and for this, he suggested a
Modified Extended Rydberg potential (MER) as a alternative to calculate potential energy curves:

VMER (R ) = −Deβ
(
β−1 +

m∑
n=1

an (R − Re )n
)
e−βa1(R−Re ) (515)

where β is an adjustable width parameter, and the potential width can be changed by varying the value of β .
The coefficients an can be obtained using the same equations (352) and (353) proposed byMurrell and Sorbie [59],

and derived from:

Dan1 −
n∑
k=2

1

2

n!
(n − k )! an−k1 Fk = 0, (516)

and

an = −
Fn
2D

+ (−1)n (n − 1)
n! an1 +

n−1∑
k=2

(−1)n−k+1
an−k1 ak

(n − k )! (n ≥ 2). (517)

The general expression for coefficients Fk can be obtained as:

Fn = (−1)n
2(n − 1)
n! F

n/2
2 D

−
(
n
2 −1

)
(n ≥ 3). (518)

HereD is a quantity related withDe :

D = βDe . (519)

Sun [190] considered the series to be truncated at fifth power and obtained the potential energy curve for N2 and
ClF in their ground electronic states. He compared his results with theMorse [7] potential and themain difference for
N2 occurred in the asymptotic region, precisely where theMorse potential fails.

In 2006, Royappa [41] showed that on average theModified Extended Rydberg potential by Sun [190] provides the
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best accuracy among all 21 potential energy functions analyzed, including theMurrell-Sorbie potential [59].

Although theMER potential has better qualities thanMS potential, it did not show satisfactory results in molecular
asymptotic region for diatomicmolecular electronic excited states. Then, in 1999, Sun and Feng [186] tried to find a
physically better potential. For this, they proposed an energy-consistentmethod (ECM)which uses a new analytical
potential to calculate numerical vibrational potentials. They built a new analytical potential by adding a potential
correction Λ(R )δV (R ) to the Extended Rydberg potential (356):

VSF (R ) =VER (R ) + Λ(R )δV (R ) (520)

where the potential correction Λ(R )δV (R ) remedies theVER (R ) potential such that the new potentialVSF behaves well
enough not only in the equilibrium internuclear distance region, but also in themolecular asymptotic region. For δV (R ),
they suggested:

δV (R ) =VER (R ) −VMOR (R ) (521)

whereVMOR (R ) = De [e−2a(R−Re ) − 2e−a(R−Re )] is theMorse [7] potential.

Λ(R ) is Eq. (520) is a force-field function andwas chosen as:

Λ(R ) = λ (R − Re )
R

[1 − e−λ2(R−Re )/Re ]. (522)

where λ is an adjustable parameter. This function should play two roles:

(i) It scales the potential changes δV (R ) in Eq. (521) properly to ensure the potential correction Λ(R )δV (R ) behaves
correctly;

(ii) It ensures that the new potential satisfies the physical property that its nth-order derivative equals the nth force
constant, fn , at equilibrium.

Thus, the new potential proposed by Sun and Feng [186] is given by:

VSF = [Λ + 1]VER (R ) − ΛVMOR (R ) (523)

which is physically well defined potential.

The numerical values of this new potential agreemuch better with the known exact diatomic potential than other
analytical empirical functions, in particular for electronically excited states of diatomic systems as H2 andO2 . Therefore,
for Sun and Feng [186] the ECM generates muchmore accurate theoretical vibrational eigenvalues and eigenfunctions
for the corresponding stable molecular states than other analytical potentials.

In 2006, Royappa [41] showed that on average theModified Extended Rydberg potential by Sun [190] provides the
best accuracy among all 21 potential energy functions analyzed, including the Extended Rydberg potential [59].Then,
although the potential has eight parameters,
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3.41 | The Rafi function
In 2000, Rafi et. al [191] (RAFI ) proposed a four-parameter potential energy function to describe stable diatomic
systems. This function is a modification of theMorse [7] potential, and is given by:

VRAFI (R ) = De [1 − e
−a(R−Re )]2[1 + c tanh (R − Re )] (524)

or

VRAFI (R ) = De [1 − e
−a(R−Re )]2

[
1 + c

ea(R−Re ) − e−a(R−Re )

ea(R−Re ) + e−a(R−Re )

]
(525)

where a is theMorse parameter given by a =
√

ke
2De

and c can be determined from known spectroscopic parameters.
This potential satisfies the conditions:

(i) dVRAFI
dR

����
R=Re

= 0;

(ii) VRAFI (∞) −VRAFI (Re ) = De ;

(iii) d2VRAFI
dR2

����
R=Re

= ke = 4π
2c2µω2e .

(iV) d3VRAFI
dξ3

����
R=Re

= Xke , whereX is the cubic force constant.
(v) d4VRAFI

dξ4

����
R=Re

=Y ke , whereY is the cubic force constant.

Here,X andY are the relationships defined by Varshni [14] given in Eqs. (505) and (506). See Eqs. (507) and (508) to
remember how these parameters are related withωexe and αe .

In 2005, Birajdar et. al [192] derived the vibrational rotational coupling parameter αe fromDunham relation (15):

αe = −
[
−3Re (a − c)

3
+ 1

]
6B2e
ωe

(526)

where they obtained the relationship for parameter c:

c =

[
∆1/2 − 1 −

(
αeωe

6B2e

)]
1

Re
(527)

where∆1/2 = aRe is the Sutherland parameter.
Using this expression for c , the anharmonicityωexe , is given by:

ωexe = [8∆ − 18∆1/2 + 15(cRe )2]
2.1078 × 10−16

R 2eµ
. (528)

Birajdar et. al [192] obtained the potential curves for I2 and CO diatomic systems in their ground electronic states
using the Rafi potentialVRAFI , with the c parameter given by Eq. (527) and their results presented large deviations from
the experimental RKR curves.
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Then, in 2007, Rafi et. al [193] (RAFI I ) proposed a new four-parameter empirical potential function to describe
diatomic systems, given by:

VRAFI I (R ) = De [e
−2a(R−Re )f (x ) − 2e−a(R−Re )] (529)

where

f (x ) = 1

2
{tanh [b(R − Re )] + e−b(R−Re ) + sech [b(R − Re )]}. (530)

The potential (529) can be rewrite as:

VRAFI I (R ) = De
[
1 − 2e−a(R−Re ) + 1

2
e−a2(R−Re )

(
eb(R−Re ) − e−b(R−Re )

eb(R−Re ) + e−b(R−Re )
+ e−b(R−Re ) +

2

eb(R−Re ) + e−b(R−Re )

)]
(531)

being b = βa , where a is theMorse parameter a =
√

ke
2De
, and β can be obtained since the potentialVRAFI I satisfies the

conditions (i)-(iv) above. In this case, bet a is given by:

XRe = −3∆1/2
[
1 +

1

4
β 3

]
(532)

whereXRe isXRe = −3
[
ωeαe
6B2e

+ 1

]
, withωe , αe and Be with their usual meanings.

To evaluate the accuracy of the potentialVRAFI I , Rafi et. al [193] using the Lippincott criterion [15], compared their
results with RKR experimental data, for 15 diatomic systems: H2, LiH, NaH, KH, CsH, K2, Na2, Rb2, CO, ICl, XeO, I2, Cs2
and RbH, in their ground electronic states and for (A3Π) state of ICl.

In addition, they compared their result with theMorse [7] potential, Fayyazudin-Rafi [188] potential andwith the
first proposal of the Rafi [191]. The average error of the potentialVRAFI I was only 1.86% of D , whereas, Morse was
5.01%ofD , Fayyazudin-Rafiwas 3.30%ofD andVRAFI was 4.06%ofD .

3.42 | TheNoorizadeh-Pourshams function
In 2004, Noorizadeh and Pourshams [124] (NP) presented a new empirical potential energy function with four varia-
tional parameters. The purposewas to propose amathematically simple and comprehensive potential, which can be
applied to different diatomic systems in fundamental and excited states.

The potential is given by:

VNP (R ) =
aR b +m

1 − enR
(533)

where a , b ,m and n are adjustable parameters.
This potential satisfies the basics conditions, i. e.,VNP → ∞ at R = 0, andVNP → 0 at R → ∞. In addition, this

potential must satisfy:

(i) dVNP
dR

����
R=Re

= 0;
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(ii) VNP (∞) −VNP (Re ) = De ;

(iii) d2VNP
dR2

����
R=Re

= ke = 4π
2c2µω2e .

To evaluate the accuracyof thepotential (533), NoorizadehandPourshams calculated the spectroscopic parameters
Re , De , Be , ke , ωe , ωexe and αe for eight diatomic states in different electronic states, and then, they compared their
results with experimental data. The diatomic systems chosen were: H2 (X 1Σ+g ), I2 (X 1Σ+g ), HF (X 1Σ+), N2 (X 1Σ+g ),
N2 (A3Σ+u ) N2 (a1Πg ), N2 (B3Πg ), O2 (X 3Σ−g ), O2 (B3Σ−u ), O2 (A3Σ+u ), OH (X 2Πi ), OH (A2Σ+), NO (X 2Π), NO (B2Π), CO
(X 1Σ+), CO (a3∆), CO (a′3Σ+) and CO (e3Σ−). The average error for the calculated quantities were: Re (0.43),De (1.87),
Be (0.82), ke (3.68),ωe (2.08),ωexe (9.42) and αe (10.78), showing good accuracy of the potential.

In addition, Noorizadeh and Pourshams [124] obtained the expressions for the vibrational rotational coupling pa-
rameter αe and anharmonicity parameterωexe , can be obtained fromDunham’s relations (15) and (16). They compared
their results with nine potential energy functions already presented above: Morse [7], Rosen-Morse [28], Rydberg [8],
Pöschl-Teller [29], Linnett [60], Frost-Musulin [73], Varshini [14] III, Lippincott [108] and Fayyazudin [188]. The NP
potential provided themost accurate result forωexe , and for αe only the Fayyazudin potential showed better accuracy
than the NP potential.

The general behavior of the DN potential was also satisfactory for other diatomic systems. In the comparative
study by Royappa et. al [41], previously described, they showed that the Noorizadeh-Pourshams potential in average,
provide best accuracy than the potentials: Kratzer [16], Morse [7], Rosen-Morse [28], Rydberg [8], Pöschl-Teller [29],
Linnett [60], Frost-Musulin [73], Varshini [14] III, Lippincott [42] Deng-Fan [40], Pseudogaussian [151], Levine [123],
Tietz [121] II and Fayyazudin [188].

3.43 | The Extended Lennard-Jones function
In 2000, considering the Lennard-Jones (2n,n) potential, Hajigeorgiou and Le Roy [194] proposed amodified version of
the function which is given by:

VLJ (R ) = De
[
1 −

(
Re
R

)n ]2
. (534)

Hajigeorgiou and Le Roy observed that although this functionwas considered to be a correct model to describe
diatomic systems, there was not the flexibility required to represent accurately extensive experimental information.
However, this function with the appropriate choice of the power n it has the correct theoretically predicted limiting
long-range functional behavior.

TheModified Lennard-Jones (MLJ) proposed has the generalized form:

VMLJ (R ) = De
[
1 −

(
Re
R

)n
φ(R )

]2
. (535)

whereφ(R ) is a empirical function given by:

φ(R ) = e−βMLJ (z )z (536)

being z = (R−Re )(R+Re ) one-half of theOgilvie-Tipping expansion parameter [140].
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This function has the form at R →∞ [194]:

VMLJ (R ) = De − 2Deeβ∞
(
Re
R

)n
= De −

Cn
R n
, (537)

where β∞ ≡ limR→∞ βMLJ (z ), and

Cn = 2De (Re )ne−β∞ (538)

or

β∞ = ln [2De (Re )n/Cn . (539)

The function βMJL (z ) is expressed as a power series in z , given by:

βMJL (z ) =
M∑
m=0

βmz
m (540)

so that

β∞ = lim
z→1
(z ) =

M∑
m=0

βm , (541)

with the last term expressed by:

βM = ln [2De (Re )n/Cn ] −
M−1∑
m=0

βm . (542)

Although this modified version of the Lennard-Jones potential is quite accurate, the functionφ(R ) is complicated to
obtain.

Then, in 2010, Hajigeorgiou [195] proposed an Extended Lennard-Jones (ELJ) given by:

VELJ (R ) = De

[
1 −

(
Re
R

)n(R )]2
, (543)

where the function n(R ) is the simplest function:

n(R ) = β0 + β1ζ + β2ζ2 + β3ζ3 (544)

being

ζ =
R − Re
z qR + Re

(545)

with z = (R − Re )/(R + Re ) and q a even integer.
Note that the function n(R ) is well-behaved in the limit R →∞, because in this case ζ → +1.
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The potential (543) satisfies:

(i) VELJ (R )
����
R=Re

= 0;

(ii) VELJ (∞) −VMRM (Re ) = De .

Hajigeorgiou [195] concluded that for R < Re the best results were obtained with q = 6, and for R > Re , with q = 4.
To determine the coefficients βi , i = 1, 2, 3 in Eq. (544), he related themwith the Dunham coefficients [23], obtaining:

β0 =

√
a0
De
, (546)

β1 =
a0a1
2β0De

+
β0
2
+
β 20
2
, (547)

β2 =
a0a2
2β0De

− f2
24β0

, (548)

where

f2 = 7β
4
0 − 36β1β

2
0 + 18β

3
0 + 12β

2
1 − 24β0β1 + 11β

2
0 , (549)

and

β3 =
a0a3
2β0De

+
f3
24β0

, (550)

where

f3 = −28β1β 30 + 14β
4
0 − 54β1β

2
0 + 36β2β

2
0 + 21β

3
0 + 12β

2
1 − 24β1β2 − 22β0β1 + 24β0β2 + 10β

2
0 + 36β0β

2
1 + 3β

5
0 . (551)

Hajigeorgiou [195] tested his potentialVELJ for sixteen diatomic systems in their ground electronic states: AgH,
Cl2, CO, Cs2, DF, HCl, HF, KLi, Li2, LiH, MgH, Na2, NaH, NaK, O2 and RbCs. To evaluate the accuracy of these results he
used the Lippincott criterion [15] given by Eq. (467), where the experimental data were obtained from the RKRmethod.
Besides, Hajigeorgiou compared the ELJ potential with the Hulburt-Hirschfelder [6] andMurrell-Sorbie [59] potentials
and the average deviation of theVELJ was about four times less than the of ER and five times less than that of HH.

The potentialVELJ was analyzed ignoring the cubic term in n(R ), but it presented an inferior result.

3.44 | TheModified Rosen-Morse function
In 2012, Zhang et. al [196], proposed a modification for the Rosen-Morse potential [28]. Inspired by the reduced
potential curves suggested by Frost and Musulin [113] (see sections 3.20 and 3.36) they considered the effect of
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inner-shell radii R i j of two atoms for diatomic molecules given by:

R i j = Re −
√
KDe
ke

(552)

where K is defined by Eq. (263).
By introducing the parameter R i j , theModified Rosen-Morse (MRM) potential is given by [28]:

VMRM (R ) = De
©­­«1 −

e
2(Re−Ri j )

d + 1

e
2(R−Ri j )

d + 1

ª®®¬
2

. (553)

This potential satisfies the three basics conditions:

(i) dVMRM
dR

����
R=Re

= 0;

(ii) VMRM (∞) −VMRM (Re ) = De ;

(iii) d2VMRM
dR2

����
R=Re

= ke = µω
2
e ,

where Re ,De have their usual meanings, and ke is approximatedwith a slight correction being omitted [23].
Using the (iii) condition, Zhang et. al [196] obtained the value of the d parameter:

d = 2

[√
ke
2De

+
1

Re − R i j
W

(
(Re − R i j )

√
ke
2De

e
−(Re−R i j )

√
ke
2De

)]−1
, (554)

whereW is the LambertW function, which satisfies z =W (z )eW (z ) (seemathematical details of this function on p.331
in Ref. [197]).

Zhang et. al also obtained expressions for the Morse [7] parameter a and for the original Rosen-Morse [28]
parameter d . Then, they compared theirModified Rosen-Morse potential with theMorse and Rosen-Morse potentials
for six diatomic systems: ICl (A’3Π2) , I2 (XO+

g ), Cs2 (X 1Σ+g ), MgH (X 2Σ+), 6Li2 (X 1Σ+g ) and 7Li2 (X 1Σ+g ).
To evaluate the accuracy of these functions, Zhang et. al used the experimental RKR [8, 9, 10] data, and obtained

the average deviation from Lippincott criterion [15] given by Eq. (467). TheModified Rosen-Morse provided to bemore
accurate for the six systems analyzed, with an average error between the evaluated systems of only 2.94%ofD , while
theMorse potential is given an average error of 8.68%ofD and the standard Rosen-Morse of 6.90%ofD .

In 2014, Tang et. al [198] presented a study about the vibrational energy levels calculated using the Modified
Rosen-Morse potential for 7Li2 (61Πu ) and SiC (X 3Π), and both were in good agreement with the experimental RKR
data. For these diatomic systems, Tang et. al also compared theModified Rosen-Morse potential with theMorse [7],
Frost-Musulin [113], Varshni [14] III and Lippicott [199] potentials. For 7Li2 (61Πu ), theModified Rosen-Morse potential
is themost accurate, and for SiC (X 3Π) this potential is superior to theMorse, Frost-Musulin, and Lippincott potentials.
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3.45 | The Uddin function
Still in 2012, Uddin et. al [200] (UDD) proposed a five-parameter potential energy to describe stable diatomic systems.
This potential is given by:

VUDD (ξ) =
K

ξ3
− e−t ξ (a + bξ + cξ2) (555)

where ξ(R ) = R
Re
, K , t , a , b and c are parameters which can be obtained by spectroscopic parametersDe , Re , ke ,ωexe , αe

and Be , all previously defined throughout the text.
The first term of the potential corresponds to repulsive energy and the second term is analogous to the Extended-

Rydberg potential proposed byMurrell and Sorbie [59], but with a coefficient of cubic term equal to zero.
To determine the five parameters, Uddin et. al claimed that the potential (555) must satisfy two extra conditions, in

addition to the usual ones. They are:

(i) VUDD (ξ)
����
ξ=1

= −De ;
(ii) VUDD (ξ) has aminimum at R = Re , i. e., dVUDDdξ

����
ξ=1

= 0;
(iii) d2VUDD

dξ2

����
ξ=1

= keR
2
e ;

(iV) d3VUDD
dξ3

����
ξ=1

= keR
3
eX , whereXRe = −3

(
ωeαe
6B2e

+ 1

)
is a anharmonic force constant;

(V) d4VUDD
dξ4

����
ξ=1

= keR
4
eY , whereY R 2e = 5

3X
2R 2e − 8

ωe xe
Be

is a anharmonic force constant.

Here,X andY are the relationships defined by Varshni [14] given in Eqs. (505) and (506).
These conditions applied to the potential (555) yields a six order polynomial [200]:

t 6 − 3t 5
(
4 + 2∆

3

)
+ 3t 4

(
−2∆XR2e

3 + 4∆ + 20

)
+ t 3

(
16∆XRe − 2∆Y R2e

3 − 120
)

+6∆2(−8XRe +Y R 2e − 40) + 24∆(−Y R 2e + 30) + 40∆(6XRe +Y R 2e ) = 0
(556)

where∆ is the Sutherland parameter. This polynomial has six roots. They analyzed the behaviour of the potentialVUDD
for 14 different states of the seven diatomic systems, and only one of the six roots was workable for all states.

Uddin et. al [200] suggested rewrite the potential (555) in the form:

VUDD (ξ) = De
[(
1 +

K /De
ξ3

)
−

(
1 + K /De
a + b + c

)
e−t (ξ−1)(a + bξ + cξ2)

]
, (557)

where the depth of the wellDe was included, so thatVUDD (R = Re ) = 0 andVUDD (∞) → De .
Uddin et. al analyzed the diatomic systems: H2 (X 1Σ+g ), N2 (X 1Σ+g ), N2 (a1Πg ), N2 (B3Πg ), O2 (X 3Σ−g ), OH (X 2Πi ),

OH (A2Σ+), HF (X 1Σ+), NO (X 2Π1/2), NO (B2Π), CO (X 1Σ+), CO (A1Π), CO (e3Σ−) and CO (a′3Σ+), and compared them
with experimental RKR [8, 9, 10] curves. With the exception of the OH A2Σ+ state of OH and A1Π state of CO, the
potential provide excellent agreement with the RKR curves.
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3.46 | TheNewDeformed Schiöberg-type function
In 2015,Mustafa [201] proposed a new deformed Schiöberg-type [173] (NDS) potential given by:

VNDS (R ) = A(B + tanhq (αR ))2, (558)

where A > 0, B , q and α are four adjustable parameters and the q deformation of the usual functions is defined by
relationships:

tanhq (x ) = sinhq (x )
coshq (x ) ; sinhq (x ) = ex−qe−x

2

coshq (x ) = ex+qe−x
2 .

(559)

The potential (558) must satisfy:

(i) dVNDS
dR

����
R=Re

= 0;

(ii) VNDS (∞) −VNDS (Re ) = De ;

(iii) d2VNDS
dR2

����
R=Re

= ke = 4π
2c2µω2e ,

where Re ,De and ke have their usual meanings. Mustafa added the additional condition,VNDS (Re ) = 0, which simply
shift the zero of potential, without physically affecting its properties.

Using these conditions, the parametersA, B and q can be obtained by:

A =
De

4q2
(e2αRe + q )2, (560)

B = −
(
e2αRe − q
e2αRe + q

)
, (561)

and

q = −
©­­«1 −

2α√
ke
2De

ª®®¬ e2αRe . (562)

Mustafa [201] also showed that his NewDeformed Schiöberg-type is equivalent to the Tietz-Hua [122] potential,
considering the correspondences:

(
1 − 2α√

ke
2De

)
= c and 2α = b in Eq. (332). Thus, the expressions to αe andωexe can be

obtained in the sameway.
He obtained a closed-form analytical solution for the ro-vibrational energy levels using the supersymmetric quan-

tization. The ro-vibrational energy values obtained for NO (X 1Πr ), O2 (X 3Σ−g ), O+2 (X 2Πg ) and the vibrational values
obtained for N2 (X 1Σ+g ) presented high accuracy.
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3.47 | The Improved Pöschl-Teller function
The Pöschl-Teller potential [29] has beenwidely explored by several researchers ([41, 124, 202], many times in different
versions. In this section, we present two of them.

In 1994, Şimęk and Yalçin [203] proposed a generalized Pöschl-Teller (GENPT) potential which was also an exact
solution for the Schrödinger equation. This new potential as well as the original Pöschl-Teller potential has four
parameters and is given by:

VGENPT (R ) =
Ae−2aR

(1 + b2e−2aR )2
+

Be−2aR

(1 − b2e−2aR )2
(563)

where a , b ,A and B are constants that can be obtained in terms of spectroscopic constants.
The function (563) must satisfy the following properties:

(i) dVGENPT
dR

����
R=Re

= 0;

(ii) VGENPT (∞) −VGENPT (Re ) = De ;

(iii) d2VGENPT
dR2

����
R=Re

= ke ,

where Re ,De and ke have their usual meanings.
Using these conditions, Şimęk and Yalçin [203] obtained the constants a , b ,A and B in potential (563), given by:

a = ±
√
∆

eRe
, b2 = yee

±
√
∆

B = De b
2

4
(1−ye )4
y2e
, A = B

(
1+ye
1−ye

)4 (564)

where ye is given by:

y 2e =
±
√
Γ/∆ − 1

1 ±
√
Γ/∆

, (565)

being∆ = keR 2e /2De the Sutherland parameter and Γ = 1
9

(
f3
f2

)2
R 2e , with f2 = d2VGENPT

dR2

����
R=Re

and f3 = d3VGENPT
dR3

����
R=Re

.
The vibrational rotational coupling parameter αe can be obtained fromDunham relation (15):

αe = −
[
Re f3
3f2

+ 1

]
6B2e
ωe

(566)

and the anharmonicityωexe , given by:

ωexe = 8∆
2.1078 × 10−16

R 2eµ
. (567)

This version of the Pöschl-Teller potential was not well accepted. The coefficients of the potential (563) are
extremely difficult to obtain, requiring the solution of complicated algebraic equations. Besides, in 1996, Znojil [204]
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demonstrated that the “exact” solution to the Schrödinger equation presented by Şimęk and Yalçin was not correct.
Then, in 2017, Jia, Zhang and Peng [17] presented a improved version of the Pöschl-Teller potential [29]. They

considered the potential (147):

VPT (R ) =
A

sinh2 α(R − Re ) −
B

cosh2 α(R − Re ) (568)

where, they assumedA = ~2α2
8π2µ

β (β − 1) and B = ~2α2
8π2µ

γ(γ + 1).
By using of the conditions (i), (ii) and (iii), applied to this potential, they obtained the following expressions toA and

B :

A = De sinh4 α(Re − R0), (569)

B = De cosh4 α(Re − R0). (570)

To obtainVPT (Re ) = 0, they added a uniform shift − 1√
AB
(a −
√
AB)(B −

√
AB) to the right hand of expression (568).

Thus, the improved Pöschl-Teller (IMPT) potential proposed by Jia et. al [17] is given by:

VIMPT (R ) = De + De

( sinh4 α(Re − R0)
sinh2 α(R − R0) −

cosh4 α(Re − R0)
cosh2 α(R − R0)

)
(571)

where now,

α = πcωe

√
µ

2De
. (572)

Using the Dunham relation (15), they obtained αe :

αe = −
[
1 +

8DeReα
3

ke

( sinh3 α(Re − R0)
coshα(Re − R0) −

cosh3 α(Re − R0)
sinhα(Re − R0)

)]
6B2e
ωe
. (573)

From Eqs. (572) and (573), the parameter R0 is given by [17]:

R0 =
1

4πcωe

√
2De
µ
ln


4π2c2µω3eαe +

3
2
3~2ω2e
µR4e

+
3~2πcω3e

R3e

√
1

2µDe

4π2c2µω3eαe +
3
2
3~2ω2e
µR4e

− 3~2πcω3e
R3e

√
1

2µDe

 (574)

Jia et. al [17] applied the improved Pöschl-Teller potential for H2, LiH, LiD, HF, and CO in their electronic ground
states. They compared their function with the Morse potential [7] and calculated the average absolute deviations
of these potentials from experimental RKR curves. For all systems analyzed, for the overall potential, the improved
Pöschl-Teller presentedmore accurate results thanMorse. In the branch of R < Re the improved Pöschl-Teller performs
better thanMorse and in the branch R > Re they practically coincide.
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3.48 | The Fu-Wang-Jia function
In 2019, the interest in obtaining a closed-form representation of the interaction of two atoms for diatomic systems in
chemistry and physics remained very high, despite the various models presented over the nearly one hundred years of
research in the area.

Among the potentials presented, the Tietz potential has been evidenced as a typical potential energymodel, widely
used in several recent researchers (see for example Refs. [205, 206]). Considering this, in 2020, Fu,Wang, and Jia [18]
has proposed an improved five-parameter exponential-type potential energy for diatomic systems, and they explored
the relationship between their potential and the Tietz potential.

We are referring to an improved model, because, in 2001, the same researchers Fu, Wang, and Jia [207] (FWJ)
presented aunifiedexponential-typemolecule potential that contains special cases ofmost previously given exponential-
typemolecule potentials and their deformations, such as the GeneralizedMorse potential [40] (proposed by Deng-Fan),
Tietz-Hua potential [122], improved Pöschl-Teller potential [17], and others.

The five-parameter exponential-type potential energy is given by [207]:

VFW J (R ) = P1 +
P2

e2αR + q
+

P3

(e2αR + q )2
(575)

where P1, P2, P3, q and α are adjustable parameters, with q , 0.
This potential satisfies the following relationships:

(i) dVFW J
dR

����
R=Re

= 0;

(ii) VFW J (∞) −VFW J (Re ) = De ;

(iii) d2VFW J

dR2

����
R=Re

= ke ,

where Re ,De and ke have their usual meanings.
By using these conditions, Fu et. al [18] obtained two expressions to parameters P2 and P3, given by:

P2 = −2De (e2αRe + q ) (576)

P3 = De (e2αRe + q )2 . (577)

Substituting these expressions to P2 and P3 in Eq. (575), the potential is rewrite as:

VFW J (R ) = P1 + De
(
1 − e

2αRe + q

e2αR + q

)2
− De (578)

or puttingVFW J (Re) = 0, and replacing α by α/2 for simplify, Fu et. al obtained:

VFW J (R ) = De
(
1 − e

αRe + q

eαR + q

)2
. (579)
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This potential corresponds exactly to the improved Tietz potential showed by same researchers in Ref. [125], and
choosing q = 0, the improved five-parameter exponential-type potential corresponds toMorse potential [7]. Still, if
q , 0, the parameter α is given by [18]:

α = πcµωe

√
2µ

De
+

1

Re
W

(
πcωeReq

√
2µ

De
e−πcωeRe

√
2µ/De

)
, (580)

whereW represents the LambertW function, which satisfies z =W (z )eW (z ) [197].
Fu et. al [18] analyzed the behavior of their potential for the ground electronic state of CO and compared their

results with RKR experimental curves, obtaining good agreement.

3.49 | The ImprovedMultiparameter Exponential-type function
In 2012, García-Martinez et. al [208] proposed the solution to a spectral problem involving the Schrödinger equation for
a particular class of multiparameter exponential-type potentials (MPETP), given by:

VMPET P (R ) =
qAe−R/K

1 − qe−R/K
+

qBe−R/K

(1 − qe−R/K )2
+

q2Ce−2R/K

(1 − qe−R/K )2
(581)

whereA, B ,C , q and k are adjustable parameters.
Then, in 2020, Xie and Jia [209], observed that to represent the internuclear interaction of a diatomic systems, this

potential must satisfy the conditions:

(i) dVMPET P
dR

����
R=Re

= 0;

(ii) VMPET P (∞) −VMPET P (Re ) = De ;

(iii) d2VMPET P
dR2

����
R=Re

= ke ,

where Re ,De and ke have their usual meanings.
Using these conditions, they obtained the relationships:

A + B = −2De
q
(eRe /k − q ), (582)

and

B + C =
De

q2
(eRe /k − q )2 . (583)

Thus, by substituting the Eqs. (582) and (583) into (581), Xie and Jia rewrite theMPETP potential as a improved
multiparameter exponential-type potential (IMPETP), given by:

VIMPET P (R ) = De
(
1 − e

Re /k − q
eR/k − q

)2
. (584)
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The IMPETP is equivalent to the Tietz [119] andWilliams-Poulos [183] potentials (see Refs. [185, 125]).
In addition, Xie and Jia [209] obtained the expressions to parameters k and q as function of the known spectroscopic

parameters:

k =
1

2πcωe

√
2µ
De
− 1
Re

(585)

and

q = −
(

1

πcωek

√
De
2µ
− 1

)
eRe /k (586)

To evaluate the efficiency of the improvedmultiparameter exponential-type potential, Xie and Jia simulated the
internuclear potential energy curve for A3Π1 state of CIF and compared their results with theMorse [7] potential. They
used the Lippincott criterion to calculate the deviation of the IMPETP fromRKR experimental curves. They obtained
that the average absolute deviation of the IMPETPwas 0.653% of D , whereas theMorse potential given 8.56% of D ,
showing that theMorse potential is not suitable for reproducing this molecular state of CIF. Furthermore, they obtained
the potential curve for X2Σ+ state of CP. Again, the IMPETPwasmore accurate thanMorse and showed an excellent
agreement with the experimental RKR curve.

3.50 | TheNewModifiedMorse function
This is the last potential that wewill discuss here. This is themost recent analytical representation of potential energy
interaction for diatomic systemswe found until the end of this work. The function is a NewModifiedMorse potential
and has been proposed in 2020 byDesai, Mesquita, and Fernandes [5] to try to reduce the discrepancy between the
experimental and calculated values. The new function contains onemore parameter than the originalMorse function,
and this will be responsible for improving accuracy in the regionwhere the potential extends to near the dissociation
limit.

The NewModifiedMorse potential (NMM) is given by:

VNMM (R ) = De {1 − exp [−α sinh (β (R − Re ))]}2 (587)

where α is dimensionless constant, β is a parameter with units of cm−1. These parameters are related to theMorse
parameter a , by:

αβ =

√
ke
2De

= a (588)

since d2VNMM
dR2

= ke . In addition, as well as theMorse potential,VNMM satisfies also the conditions:

(i) dVNMM
dR

����
R=Re

= 0;

(ii) VNMM (∞) −VNMM (Re ) = De , whereDe is the depth of the well.
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By using the Dunham relation (16), Desai et. al, obtained the anharmonicity constant given by:

ωexe =

(
α2β 2 − β

2

2

)
2.1078 × 10−16

µ
. (589)

In the sameway, we can obtain the parameter αe fromDunham relation (15):

αe =
[
α2β 2Re − 1

] 6Be
ωe
. (590)

To obtain the optimized value of α parameter in Eq. (587), Desai et. al developed a program to solve the Schrödinger
equation for all values of α within a select range, from the observed value ofωexe . Then, the rangewas extended till
they got theminimum value of the sum of the absolute difference between each calculated and observed vibrational
energy eigenvalue. These were obtained by solving the time-dependent Schrödinger equation for their dimensionless
reduced potential, which was calculated by applying theMatrix Numerovmethod (see all details in Ref. [5]).

Desai et. al analyzed the behavior of theNewModifiedMorse potential for theX 1Σ+g state of theH2 andN2 systems
and compared themwith RKR experimental curves. Morse [7] and Hulburt-Hirschfelder [6] potentials were also used in
the comparison.

They observed that in the region R > Re , for the H2, the average absolute deviation forVNMM was almost half that
produced byVHH andVM . For the N2, the differences were even greater, with the average absolute deviation of the
NewModifiedMorse potential corresponding to practically one-third of the deviation of the Hulburt-Hirschfelder and
almost one-tenth of the deviation of theMorse.

The anharmonicity constant obtained using theNewModifiedMorse potential also proved to be quite accurate,
with a deviation of about 1.2% from the observed value, while the original Morse function presents about 21%deviation.

Although this function has been verified only two diatomic systems, the results obtained byDesai et. al suggest a
relatively simple new potential such as the originalMorse function, but with far superior results.

4 | A COMPARATIVE ANALYSIS FOR N2 (X 1Σ+g ) , CO (X 1Σ+ ) AND HEH+ (X 1Σ+ )
DIATOMIC SYSTEMS

With the intent of guiding the reader in some way to the most accurate potentials, we present here a comparative
analysis for the N2, CO, andHeH+ diatomics systems in their ground electronic states.

We recognize that analyzing a few diatomic systems is not ideal, considering the particularities of each potential
presented in this review. However, along with the text we have already highlighted which systems each potential offers
the best accuracy. Thus, in this section, we want to give the reader a compact view of the behavior of potentials for
three different ranges of R : over the repulsive part of the potential, over the attractive part of the potential and over
the whole range.

The potential energy curves from functions that depend on adjustable parameters have been obtained by fit ab
initio points. To obtain accurate PECs, the electronic structure calculations for the homo-and heteronuclear systems
were carried out using as reference complete active space self-consistent (CASSCF) [210] wave function. Dynamical
correlation effects were included bymeans internally contractedmultireference configuration interaction (MRCI(Q))
[211]. The aug-cc-pV5Z basis set of Dunning was employed, and we have performed CASSCF followed byMRCI(Q)
approach. All calculations were performedwith theMolpro 2012 package of ab initio programs [212].
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On the other hand, the potential energy curves from functions that do not depend on adjustable coefficients have
been directly calculated using the experimental data fromRef. [95].

To have a precise measure of the accuracy of the various potentials, we have used the least-squares Z-test method
proposed byMurrell and Sorbie [59], given by:

Z =
1

n∆R

∑
i

(VRKR −Vi )2 (591)

where n is the total number of RKR points in the data set for each diatomic,∆R is the range in R covered by these points,
VRKR is the RKR value of the potential at some R in the data set andVi is the calculated value from a given potential
function at that R .

RKR data used in the comparison for the diatomic systemsN2 [213] andCO [214]were obtained from the literature.
For HeH+ we have used the experimental Born-Oppenheimmer energy values [215], because the conventional RKR
method for obtaining experimental energy curves is intractable.

4.1 | Results
The results of the Z-teste for three ranges of R can be observed in the tables 1, 2 and 3, for (N2), (CO) and (HeH+),
respectively. The smallest Z value implies themost accurate potential energy function.

For the diatomic systemN2, in the repulsive part, themost accurate potential energy functionwas the Extended
Rydberg (VER ). Then, the Levine (VLEV ) potential presented the second better result. Both were obtained using the
experimental data, without fit. Next, the Extended Lennard-Jones (VELJ ) and the Varandas and da Silva (VEHF ACE2U )
performed the best results, both fitted, in this case. On the other hand, in the attractive part, the best potential was the
Varshni (VARI I I ) potential, which does not depend on adjustable parameters. Next, we haveVELJ , the Simons-Parr-
Filan (VSP F ) and theModified Extended Rydberg (VMER ), which were all fitted.VELJ is superior to all other potentials
over the whole range of R . Next,VER ,VEHF ACE2U andVSP F proved to bemore accurate than the others.

Thus, according to our comparative study, for the ground electronic state of N2 the functions in order of decreasing
accuracy, over the whole range of R , are:VELJ ,VER ,VEHF ACE2U ,VSP F ,VLEV ,VVARI I I ,VOGI ,VSUR ,VHUF ,VMAT ,VMER ,
VT HA ,VAP ,VNP ,VHUG ,VRM ,VFM ,VPG ,VLI N ,VDZ ,VT H = VFW J = VNDS ,VIMPET P ,VEM ,VNMM ,VHH ,VF AYI I ,VDF ,
VMR , VNEW , VIMPT , VRYD , VMOR , VRAF II I , VMS , VMRM , VHY L , VPT , VLI P , VGENKRAT , VWY , VLJ , VSCH , VWP , VUDD ,
VDAV ,VRPCI I andVBM .

For the diatomic systemCO, as well as for N2, the best potential in the repulsive part was the Extended Rydberg by
Huxley andMurrell [130]. Next, the Hulburt-Hirschfelder (VHH ),VELJ and the Huggins (VHUG ) were themost accurate,
being all analytical functions which their parameters were obtained directly from experimental data, exceptVELJ . In
the attractive region, the results were similar to those in the repulsive region, beingVHH ,VELJ andVER those with
the lowest Z value, respectively. The Hulburt-Hirschfelder potential proved to be the best among the 50 analyzed
considering the whole potential.

For the ground electronic state of CO the functions in order of decreasing accuracy, over the whole range of R , are:
VHH ,VELJ ,VER ,VHUG ,VLI N ,VMOR ,VNEW ,VT H = VFW J = VNDS = VIMPET P ,VDZ ,VAP ,VRM ,VIMPT ,VFM ,VRAF II I ,
VNMM ,VRYD ,VLEV ,VSUR ,VSP F ,VOGI ,VT HA ,VMAT ,VSCH = VWP ,VHUF ,VEHF ACE2U ,VWY ,VMS ,VVARI I I ,VEM ,VMR ,
VNP ,VPG ,VMRM ,VF AYI I ,VDF ,VLI P ,VLJ ,VGENKRAT ,VHY L ,VMER ,VDAV ,VPT ,VRPCI I ,VUDD , andVBM .

Finally, for the diatomic systemHeH+ the results were slightly different from those obtained with N2 and CO. The
best function for the repulsive range was the Dmitrieva-Zenevich (VDZ ) potential without adjustable parameters. After,
the fitted Frost-Musulin (VFM ) and Improved Pöschl-Teller (VIMPT ) potential functions were themost accurate. In the
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attractive range, the functionwith the lowest Z valuewasVER , afterVHUG andVIMPT , being the first a potential without
fit and the second fitted. Last, for the whole potentialVIMPT yielded the least deviation. Next,VDZ ,VFM andVHH were
themost accurate, respectively.

For the ground electronic state of HeH+ the functions in order of decreasing accuracy, over the whole range of
R , are: VIMPT ,VDZ ,VFM ,VHH ,VLEV ,VRAF II I ,VVARI I I ,VAP ,VER ,VT HA ,VOGI ,VELJ ,VNEW ,VMAT ,VEM ,VSP F ,VSUR ,
VMOR ,VT H = VFW J = VNDS = VIMPET P ,VHUG ,VHUF ,VEHF ACE2U ,VNMM ,VRYD ,VPG ,VMR ,VRM ,VLI N ,VHY L ,VMRM ,
VMS ,VGENKRAT ,VLJ ,VUDD ,VHEL ,VSCH =VWP ,VLI P ,VDF ,VWY ,VNP ,VF AYI I ,VPT andVMER .

TheHeller function (VHEL ) was the only one thatwas not possible to obtain a potential energy curves forN2 andCO.
This is due to the fact that this potential describes well only van derWaals diatomics [21]. For HeH+, the Born-Mayer
(VBM ), the Davidson (VDAV ) and the Reduced (VRPCI I ) potentials did not provide correct PECs.

Note that, for the three diatomic systems considered here, the results for functionsVT H ,VFW J andVNDS are
identical, confirming the claims of Fu,Wang and Jia [18] andMustafa [201], respectively. For CO andHeH+,VIMPET P
also proved to be equivalent toVT H ,VFW J andVNDS , and for N2 their values for three regions analyzed yielded results
approximately equivalents, confirming the statement of Xie and Jia [209].

5 | FINAL REMARKS
We are concernedwith several aspects of the potentials here described: the number of parameters, its simplicity and
quality in the short and long-range regions, and the diversity of diatomic systems that each function can be applied.
Nowadays, computational resources aremuch powerful thanwhat we had in the recent past, making it possible, for
example, to obtain excellent ab initio points and, therefore, accurate PESs. In turn, for the here studied cases, functions
fitted to ab initio points did not necessarily provide better precision than those obtainedwithout the fitting. For the
latter type, the best results were for those with five parameters, highlights for the Hulburt-Hirschfelder, Huggins, and
Extended Rydberg potentials. The Dmitrieva-Zenevich function with three parameters shows good results only for
HeH+. Furthermore, for CO andN2, among the fitted functions, themore accurate has six parameters, and for HeH+,
the best choice has four adjustable parameters. Thus, a potential energy function with only three parameters, fitted or
not, is unlikely to provide the best results, as was thought possible in the past. The potential energy functions consisting
of power series expansions presented good accuracy for the diatomics treated here, highlighting mainly the EHFACE2U
and Aguado-Paniagua potentials. Mathematically (and physically) models containing a product of an exponential by a
polynomial, with its variations, remains the ideal potential energy function. A function that escapes this configuration
will hardly provide accurate results.

After analyzing these 50 potentials and the hundred years of history that were necessary to develop them, we
remain with the same opinion expressed by Varshni in 1957, andmany other researchers: it is not possible to find a
universal potential energy function. However, as we can see, the search for theHoly Grail of Spectroscopywill continue
perhaps for another hundred years.
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TABLE 1 Results of the Z-test for N2(X 1Σ+g ). Z values are given in 10−5Eh2 a0−1

RANGES ∆R/a0 GENKRAT LJ MOR RYD BM RM
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MER RAFIII NP ELJ MRM UDD NDS IMPT FWJ IMPETP NMM
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0.380 37.306 0.710 0.271 18.984 24.910 1.382 55.806 1.381 1.383 7.959
0.861 46.342 1.788 0.135 61.124 466.984 3.099 37.292 3.099 3.101 3.536
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TABLE 2 Results of the Z-test for CO(X 1Σ+). Z values are given in 10−5Eh2 a0−1

RANGES ∆R/a0 GENKRAT LJ MOR RYD BM RM
Repulsive branch 0.443 469.897 469.967 1.019 3.727 548 267.785 3.097
Attractive branch 1.054 284.017 283.840 1.776 6.424 7 241.027 2.468
Whole potential 1.497 169.565 169.513 0.776 2.814 83 697.611 1.328
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OGI MAT DZ SUR PG EHFACE2U SCH RPCII AP WP FAYII
23.088 24.742 1.543 27.268 41.437 30.706 11.130 1 044.960 5.872 11.130 363.925
2.554 2.459 2.644 0.246 21.308 1.880 9.261 2 293.515 0.875 9.261 3.326
4.316 4.528 1.159 4.122 13.637 5.215 4.909 962.326 1.177 4.909 55.035
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TABLE 3 Results of the Z-test for HeH+(X 1Σ+). Z values are given in 10−5Eh2 a0−1

RANGES ∆R/a0 GENKRAT LJ MOR RYD BM RM DAV
Repulsive branch 0.563 139.000 139.885 2.763 9.514 - 23.617 -
Attractive branch 0.737 2.616 1.356 0.012 0.082 - 1.311 -
Whole potential 1.3 30.928 31.012 0.601 2.082 - 5.482 -

PT MR NEW HUG HYL EM MS HH LIN HEL
12 357.302 24.283 0.708 3.762 39.357 1.640 61.430 0.191 29.062 50.578
963.975 0.155 0.879 0.002 0.858 0.415 42.719 0.011 0.114 100.349
2 947.164 5.299 0.402 0.815 8.760 0.472 25.395 0.044 6.321 39.372

WY LIP FM VARIII DF TH LEV SPF ER THA HUF
280.158 222.313 0.050 0.720 302.701 3.489 0.299 2.315 1.627 1.696 4.207
251.414 1.594 0.062 0.083 0.621 0.004 0.057 0.022 0.001 0.049 0.050
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