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1 | INTRODUCTION

The relationship upon the potential energy and the internuclear distance between two atoms is of the greatest im-
portance in physical-chemical processes. The potential energy surface associated with a specific electronic state is
the electronic energy for that state for all configurations of the nuclei. Thus to calculate the potential energy surface

from the Schrédinger equation one must solve the equation many times, for each of the nuclear configurations that are
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thought necessary for a correct representation of the surface. However, due to practical limitations in the solution of
this equation for molecules, physically supported approximations are required. In 1927 Born and Oppenheimer, also
with the contribution of Huang, presented a pathway to circumvent this problem [1].

The Born-Oppenheimer approximation (BOA) consists in the separation of the nuclear and electron motions:
once nuclei have a much larger mass than electrons (more than 1838 times), they can be considered as stationary
compared to the moving electrons. The mathematical formalism for such an approach can be followed elsewhere [1]
and are fundamental in understanding the key concept of potential energy surface (PES). Since BOA several research
works have been attempting to obtain analytical representations of energy as a function of the interatomic distances.
Such arepresentation is usually required to be mathematically simple while accurately reproducing theoretical and
experimental data.

Accurate potential energy curves for diatomic molecules are required to evaluate the Franck-Condon factors for
transitions between different various electronic states, applied in the calculation of radiative lifetimes, vibrational tem-
peratures, predissociations, the kinetics of energy transfer, and intensities of vibrational band spectra(see for example
Ref. [2]). Potential energy curves are also important for the interpretation of molecular spectra and chemiluminescent
atom recombination processes (see for example Ref. [3]).

The potential energy curve provides a broad insight into the structure of a molecular system. The minimum in
this curve defines the bond length of the diatomic molecule. The second derivative of such function provides the
force constants, which are fundamental for obtaining the vibrational and rotational energy levels of the molecule.
Higher-order derivatives are required for the calculation of the anharmonicity constants. Thus, finding a simple and
easy way to obtain the derivatives of the functional formis also desired.

One of the first observations of the vibrational structure in potential energy curves dates back to 1874, by Roscoe
and Schuster [4], for the diatomic systems Na, and K. However, such work was not clearly explained until the mid-
twenties of the XX century. To our knowledge, the most recent analytical way to describe PES of diatomic systems has
proposed in 2020 by Desai, Mesquita, and Fernandes [5]. The authors presented a New Modified Morse potential, with
four parameters for a high-precision representation of the diatomic potential. In that work, the authors claim such a
proposal to be more accurate than the Hulburt-Hirschfelder [6] and the standard Morse [7] potentials, both widely used
in atomic and molecular physics. The New Modified Morse potential shown also high accuracy compared to curves
RKR 8,9, 10].

Many efforts and advances have also been observed in the computational area to fit spectroscopic parameters
and obtain vibrational energy levels. In 2016, intending to obtain accurate potential energy functions for diatomic
systems, Le Roy presented the package dPotFit [11]. Such a tool performs the least-squares fitting of spectroscopic
data to determine analytic potential energy functions reproducing the observed levels and other known properties
of each electronic state. Four families of functions are there available for fitting: the Expanded Morse Oscillator
(EMO) function, the Morse/Long-Range (MLR) function, the Double-Exponential/Long-Range (DELR) function, and
the Generalized Potential Energy Function (GPEF) of Surkus, which incorporates a variety of polynomial functional
forms. When the experimental information for a particular electronic state is not sufficiently extensive or systematic to
define a full potential energy function (PEF) for it, dPotFit allows its energy levels to be represented by (often quite
large) sets of independent term values T, , or by a set of band constants {G,, By, Dy, H, } for each vibrational level v of
each isotopologue. These last capabilities can be particularly important in the early stage of a multi-state analysis, as it
allows one to perform a “direct potential fit” (DPF) analysis to determine an initial PEF for one state at a time.

Recent work (see for example Ref. 12) show the oldie idea of representing potential energy as a function of internu-
clear distance, is still extremely valuable. Interested especially in long-range intramolecular interactions, Stawalley

describes the behavior of certain potential regions for diatomic systems Ho, LiH, Li,, Nay, K5, KRb, Rb,, Cs,, HgH and
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Mg, [12]. He analyzed the following potential regions: Short Range Chemically Bound Levels, Long Range Weakly
Bound Levels, Long Range Purely Repulsive Continuum Levels, Rydberg Levels Based on Short Range Chemically Bound
lons, Rydberg Levels Based on Long-Range Weakly Bound lons, Long Range “Heavy” Rydberg Levels Based on Atomic
lon Pairs and Long Range Rydberg Levels Based on an Atom @ Rydberg Atom [12], showing the relevance of still studying
PES of diatomic systems.

Another recent work to represent potential energy surfaces for diatomic systems is also by Le Roy and dates from
2017 [13]. There, the author describes a computer package RKR1, which implements the first-order semi-classical
Rydberg-Klein-Rees procedure for determining the potential energy function for a diatomic molecule from a knowledge
of the dependence of the molecular vibrational energies G, and inertial rotation constants B, on the vibrational quantum
number v. RKR1 allows the vibrational energies and rotational constants to be defined in terms of (i) conventional
Dunham polynomial expansions, (ii) near-dissociation expansions (NDE’s), or (iii) the mixed Dunham/NDE “MXR”
functions [13]. For cases in which only vibrational data are available, RKR1 also allows an overall potential to be
constructed by combining directly calculated well widths with inner and the outer turning points generated from a
Morse function.

The RKR1 method can be currently seen as an important complement to the more modern and commonly used
techniques like DPF. The sophistication of the potential function forms used in such DPF analyses requires an auxiliary
tool. Their analytic complexity makes it difficult to generate the sets of realistic initial-trial-parameter values that are
required to initiate those non-linear least-squares fits. As a result, the most common approach is to start with a classical
analysis involving fits of assigned data to some variant of Dunham’s equation, i. e., a power series expansion for the
potential energy function to the coefficients of the conventional expansion for vibrational-rotational energies as a
double power series in (v + %) and [J(J + 1)], with G, and B, represented by one of the expansions Dunham, NDE or
MXR. This is then followed by an RKR calculation using a code such as the one described in Ref. 13. Fits the resulting
potential function points using a specialized code, then yields the set of trial parameter values required to initiate
the DPF analysis. Thus, an analysis of the performance of RKR calculations is also a crucial part of a modern DPF
analysis [13].

Many comparative studies and historical reviews on diatomic potentials have been presented over the years, such
as those presented by Varshni [14] and Steele and Lippincott [15]. However, we miss an updated review, covering
from the oldest analytical forms such as Kratzer [16], Morse [7], and Rydberg [8] to the most recent ones, such as
Jia-Zhang-Peng[17] and Fu-Wang-Jia[18].

Although our aim in this work is to provide the reader with a broad view of the most relevant analytical ways to
represent diatomic potentials, we will present some with applications for particular systems, as is the case with the
potentials of Born-Mayer [19], Huggins [20] and Heller [21], dedicated in the majority of cases to alkali halide crystals
(Born-Mayer and Huggins) and van der Waals diatomic molecules (Born-Mayer and Heller).

We will start preliminary considering two methods that supported the development of the diatomic potential
theory: the Dunham expansion and the Rydberg-Klein-Rees method, better known as RKR.

The Dunham method motivated the construction of important power functions, such as that of Thakkar[22], which
will be presented below, among others, which were based on an expansion in power series of R — R.. Besides, Dunham
showed that energy levels were given by a double series in terms of the vibrational and rotational quantum numbers v
and J, and their coefficients Y;;. He demonstrated explicitly how potential relates to the spectroscopic constants of
Bohr’s theory, which defines the v;;’s.

The method is known as RKR, in honor of Rydberg [8], Klein [9] and Rees [10], is a procedure to obtain potential
energy curves from experimental data for the vibrational term values E(v) and rotational constants B(v). The great

advantage of this method consists precisely in making use of experimental energy levels without reference to any
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empirical function to represent the PECs. It may seem a little contradictory that we approach this method in this work
since our objective is to deal with analytical functions to represent potentials. However, the RKR method that had its
construction begun in 1931 by Rydberg, improved by Klein in 1932 and completed (as we know today) by Rees in 1947,
is still the most widely used as a parameter of good precision for comparing curves of potential.

After these considerations about the RKR and Dunham methods, we will present a historical review of about fifty
potential energy functions for diatomic systems, which have been proposed from 1920 to 2020. We know that in these
100 years of research other functions have been proposed, however, we have chosen the fifty analytical potentials
that we consider most relevant. To choose which potentials should be included in this article, we consider the number
of different species to which they can be applied and the simplicity in the calculations, prioritizing those that can be
obtained directly from experimental data in the literature. Then, for most potentials, the reader does not necessarily
need to know how to make complex computational calculations to obtain potential energy curves.

At the end of this paper, we will compare all potentials for three diatomic systems, being one homonuclear, one
heteronuclear, and one cation in their ground electronic states, they are N,, CO and HeH™. From this comparison, we
hope to give the reader an insight into the performance of each potential by comparing them with experimental RKR
data.

2 | PRELIMINARY

2.1 | The Dunham Expansion

In 1932, thinking of providing a method for the direct quantitative study of molecular structure from the spectra of
bands of diatomic molecules, Dunham [23] vastly explored the theory of the rotanting vibrator. He calculated the energy
levels of this system in considerable detail by means of the method Wentzel-Brillouin-Kramers (WBK) [24, 25, 26]. For
such, firstly Dunham obtained the characteristics values of Schrodinger’s equation for this system, which is:

2 8721 R2
dl T HRe E(I,K)—V—# v =
de2 2 Re2(1-¢)?

o, (1)

where £ = (R — R¢)/Re, being R, the equilibrium nuclear separation; y is reduced nuclear mass; V the potential function

h2J(J+1)

with minimum at R.. Herex = T and the last term in (1) will be call by v, = being V, the potential

s

201_£)2°
centrifugal. The term E(I, «) is the vibrational and rotational energy expressed as a ?ljn(;tigc:n of the action I and the
square of the angular momentum «.

The Morse [7] potential at this time, 1932, was the most used to obtain energy levels since it was the only potential
that solved exactly the Schrodinger equation, which provided very good precision for such levels. However, to include
the rotational effect on its potential was not easy.

Dunham [23] (DUN) then proposes to expand the potential V in a power series around the point ¢ = 0, since the

rotational term V, has a simple expansion about this point, first neglecting the rotation, i. e. for J = 0:
Voun = heaot?(1 + 1§ + azt” + as& + - - -) (2)

where ag = w?2/4B,, being w, the classical frequency of small oscillations and B, = 7i/(872uR2c¢), with u the reduced
mass of the diatomic molecule, ¢ the speed of light and % the Planck constant.
Now, taking into account the rotation, and in order to express all the quantities involving energy in terms of

wave numbers, Dunham considered E(I,«) = hcF(v,J)and V = hcU, so that the effective potential function become
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U+U, = Uy,
Uy = a0(1 + aré + ag€? + a3 + ) + BeJ(J + 1)(1 =26 + 382 — 4¢3 + .. ). (3)
where
U=a0(1 + a1t + a8 + a3 + -+ +) (4)
and
Uy =BeJ(J+1)(1—26+3E2 483+ ...). (5)

Dunham then proceeds to solve equation (1) by the WBK method, and obtains an expression for the energy as a

doubly infinite power series in the quantum numbers vibrational v and rotational J:

!
FVJ:ZYU(V+%) FU+1Y. (6)
7

Dunham calculated the first fifteen ¥j; and showed that the coefficients of the various powers of (v + %) eJU+1)
in the energy level formula are a series in powers of the ratio B.2/we2. By relating the Y); to the coefficients of Bohr’s
theory he noticed that these are not exactly equal, differing by for B.2/w.? in the case of the coefficient ;g of (v + %)
that is not equal to w, the same happens with the others Y;;. Thus:

Yio ~ we Yoo ~ —weXe Y30 ~ WeYe
Yo1 ~ Be Y1 ~ —ae Y21 ~ Ve 7
Yoz ~ De Yi2 ~ Be Ya0 ~ weZe

Yo3 ~ Fe Yo4 ~ He

With the possible exception of hydrides, the Y;’s in (6) are equal to the related spectroscopic constants. Thus, since
the v;’s are determined from the experimental data, the potential function based on this data can be determined from
Eq. (3).

Thus, the experimentally determined molecular levels are given for:

E(v,)) _
he

2 3 4
1 1 1 1
we(v+§)—wexe(v+§) +weys(v+§) —weze(V+§) 4o+ BJU+1) =D+ 1)+ (8)
2
withBV:Be—ae(v+%)+ye(v+%) andDV:De+/3€(v+%).

Dunham related the coefficients ;; with the a;’s coefficients of potential U,. Some these spectroscopic parameters
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are:

_ 582 952123 6723  459a%a; 11552}

Y10 —we1+E(2534—T—T+ g - 7
2 2 108522 853522 170723

_ ([ Be _ 5a Bg _ 1465a1a5  885apa4 a3 a744 a 7335ayapa3

Y20 = (7) [3 (22 = + 72 24536 7 7 7 + g + g + )
23865a3a3 620132222 239985afa; 20905528
- - + -
16 32 28 312
B2 17a2  225a%a,  705a%

Yo = (ﬁ) 10a4 — 35a7a3 — > 2 4 41 - 321 (9)

2 229542
6(1 + a1) + (%) (175 +285a; — 2522 1 190a3 — 2% 1 175a5 + 1 —459aya; +
e

_ (B2 142521 a3

2 3 2 2 2 3 4. .5
795a1 a4 1005.22 T15apa3 115531 9639a1 ap 5145a1 as 4677a, a; 14259a1 ap (51 +a1)
TR ot T T ot 9t t g~ 31185y
682
Yo =|=f
21 (wg)

Since in this work we are interested in potential functions dependent on R and not v, let suppose that any function
can be expanded in the Taylor series, around the equilibrium position R, so that the potential for diatomic systems is

2, .3
5+ 108 — 3ap + 5a3 — 13aya; + 15 2152

written as:

av
V= V(Re)*’(T) > 31
R “\ 9% R

R

2 3 4
(R—Re)+21'(ddv) (R=Rg)2+ ("3") (R—Re)3+‘:|(dd4v) (R=Ro)*+- -~ (10)
R=Re ’ R=Re d R=Re ’ R=Re

where,

(7) (R-Ro)=0 (11)
R=Re

since R, is the minimum of the potential.

Now, doingp = R — R, and f,, = (ZZ‘{)R:RE,we have:

_ 1 2 1 3 1 4
V—V(0)+2fzp +6f3p +24ﬂp oo (12)

Then, we can explicit the coefficients a, in terms of derivatives of potential V, by relating (2) and (12):

fRZ Ref R2fy
ap = ai = ar =
0 2he L 127{202wgy 2 487r2c2wgy
(13)
bl R R R
37 20n2c20%y 4T 202202 73 T T008072c2w2p
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Substituting agp = w2/4B, and B = h/(87%uR2c) for f,, we have
2y
fo = (d = 4712/1(:20)‘3 = ke (14)
R=

where k. is the force constant.
Two other parameters that will be displayed for all potentials described in this work can be easily obtained by the

following relationships with those derived from the potential:

6B% (. . Refs
=- 1 15
T = e ( T (15)
representing the vibrational rotational coupling parameter, and
15(6\2 3 (f h 5(6\2 (f1\]| 2.1078 x 10716
weXe=|— =] - == === -|=]|———— (16)
8 \f 2\fp)| 8x2cu |3 \f f u

representing the anharmonicity parameter.

The theoretical work of Dunham depends on the validity of its expression for the potential (2), and it is necessary to
evaluate if a molecular model with this form of potential expression can represent a molecular behavior. Two questions
arise [27]:

1. Evenif V is expressible near ¢ = 0 by such an expression, it does not necessarily follow that the series will converge
over the whole range covered by the vibrational motion;
2. Since V = const., for R — oo, a model in which V is represented by a power series is not necessarily the most

suitable approximation to use.

To justify the method employed by Dunham, Sandeman [27] by expanding into power series of £ such as in (2), two
of the most well known and important potentials of the time, Morse [7] and Kratzer [16], he showed that both were
convergent to all values which ¢ assumes.

In order to establish criteria for which the expansion of Dunham converges, Sandeman [27] applying the Gauss's test,

he verified that the maximum value of &, which we will call £ during the motion should be given by the approximation:
—2 1
£ = (v+§) Ue (17)

where ue = %.

Since B, is inversely proportional to the reduced mass y, for most H, states v, is considered to be large when
compared to any other molecule.

This does not prejudice the validity of the Dunham expansion for this type of molecule, however, the convergence
of the series will be slower, which is not desirable to obtain good approximation results.

Thus, experimental functions can be developed based on any mathematical functions of &, which, when expanded as
power series in £, do not contain the first power. Since the series converged, this was the most flexible way to represent
a potential, taking into account the functions available at the time, which had a maximum of three constants, such as the

Rosen-Morse [28] and Pdschl-Teller [29] functions.
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The Dunham method is sufficient in the order to demonstrate the relation of the various spectroscopic constants
used in describing the observed energy levels of a nonrigid, rotating, anharmonic oscillator to the parameters of any
empirical function which may be expanded in a power seriesin (R — Re) [15].

The method of expansion of Dunham was highlighted by presenting good accuracy in the region of the minimum in
the potential energy curve. However, the method should be used with caution at higher vibrational levels as it diverges

as the energy approaches the dissociation limit [23].

2.2 | TheRydberg-Klein-Rees (RKR) method

The Rydberg method [8], which will be presented in more detail in section 3.4, is a graphic procedure, quite laborious
and, although efficient to represent certain diatomic systems at the time, does not present good accuracy for low
vibrational levels. Klein [9] proposes modifications in the Rydberg method, introducing a more practical and accurate
way of obtaining the PECs. He expressed the two internuclear distances maximum and minimum respectively for R;

and Ry, corresponding to given potential energy (effective) of a diatomic molecule vibrating with an energy U as

Rio(U) = (Flg + )2 + f, (18)

where f and g are the partials derivatives of an integral S,

28
f=o5 (19)
and
3s
P (20)

S is a function of the energy and the angular moment of the molecule, given by:

S(U.k) = 7117\/2_}1 /0 NS (21)

being E(I, k) the sum of the vibrational and rotational energy of the molecule, with

I= h(v+ %) (22)
and
h2
K= (%)J(J+ 1 (23)

which are the expressions quantum-mechanics equivalents of the classical quantities I and k.
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Here, v and J are the vibrational and the rotational quantum numbers respectively, y is the reduced mass of the
moleculeand I = I’ when U = E.

According to Klein [9], the knowledge of the quantities f and g for a value of « and different values of U gives
directly the solution to the problem initially placed, because of the definition of these quantities follows immediately

R1(U):\/?+f and RZ(U)=\/?_,: (24)

in which the potential curve is determined on both sides of the minimum. As you can see, the minimum of this curve is,
as it should, at the point I = 0, corresponding to a movement in which the two nuclei rotate in circular motions.

In fact, Klein [9] obtained the expressions for f and g from the period of vibration , and of (gv), as well as the
Rydberg method (see the section 3.4) . The integral S was introduced for mathematical convenience and has a relevant
graphical interpretation in the Klein method since it represents half the area between the total constant energy U and
the effective potential energy curve, as shown by Vanderslice, Mason, Maisch, and Lippincott [30].

Klein [9] then reduced the problem to the solution of two integral equations:

1 r dI
f(U) = 25
) 2721 Jo VU - E(I,k) (23)
and
1 " (OE/oK)dI
U) = 26
e o o JU-EGCo o
whereas
f= %(Rmax = Rmin) (27)
and
1 1 1
72 (Rmin - Rmax) 28

However, the solution of Klein [9] for S, as well as of  and g, could only be obtained numerically, having a high
computational cost for the time [31].

In 1947, Rees [10] suggested that the expression to be integrated (21) was known, since the energy E£(I, «) can
be expressed in terms of quantum numbers v and J, and the derived spectroscopic constants we, we xe,we ye,Be, ae and
D, are given by the accuracy of the experimental data. Then f and g could be calculated and R(U) can be obtained
in terms of such spectroscopic constants, as was desirable. In this way, he proposed to write £(I, ) as a quadraticin

I = (v + 1/2), using the expansion of Dunham for energy (8):

2 3
E(I,k)=EWv,J) = we (V+%)—wexe (w%) +We Ve (w%) +BeJ(J+1)+DeJ2(J+1)2—aeJ(J+1)(v+%)--- (29)
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which is the total energy of the nuclear motion, assuming the Born-Oppenheimer approximation [32], and can be
expressed by E(v, J) = E(v) + E(J), where

E(v) = +l— +12+ +l3--- (30)
V) = we [V 2 weXe [V 2 weYe |V 2
and
1
E(J) = Bed(J+ 1)+ DeJ?(J + 1)? —aed(J + 1) (v + E) e (31)
Substiting (29) in (21), considering only the three fist terms of £(I, k) already introducing the variable I and «, we
have:

1 I , , oorl s %
2yh/0 {h[U—BeJ(J+1)—D5J (J+1)]—[we—as./(./+1)]I+[ f ]I } dI, (32)

S(U, k) = Lese
T 1

which leads to the following expressions for f and g for the rotationaless state (J = 0):

1 1
f:(h)2|oge{(“’52_4“’exeu)2} (33)

812 cpwe Xe wg — (4weer)%

and

(S

2n2uc
()

2 4exsU)?
HwoxeP ["e(““’eXeU); +(2weXeBe—oraws)|oge{(weweX9) |
ene

1
we — (4wexeU)2

being c is the speed of light.
Expressions for the energy of dissociation D and for the distance of equilibrium R, were also determined by
Rees[10]:

=4wexe (35)
and
o\
= grrees) e

Rees further considered the case where E(I, k) is expressed as a cubic in I, however, we will not cover it here (for
more details see Ref.[10]).

Vanderslice, Mason, Lippincott and Maish [30] extended the study of Rees, taking into account that in most cases,
energy E(I, x) can not be represented throughout the experimental range by expression (29). Thus, they proposed to

represent it as a series of quadratics covering the interval in different regions. Thus, the integral S in Eq.(32) should be
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written as:

(wx);

1
S(U, k) = {h[U —BiJ(J+1) = DiJ2(J + 1)2] = [wj — o J(J + DI + 12} * a1 (37)

\/271'2 i= 1

where Iy = 0and I, = I’ and the sum extends over the vibrational energy levels.

From (37), for J = 0, the expressions for f and g will now be given by [30]:

(38)

and
272uc Z”: aj (\/Ui— VU/—1) (23i - O(i(wX)/qwi) InW; (39)
FERY +
h P Hwx); V(wx);
being
f w2 = 4wx)iU; | wj = 2y(wx)iVUi
W, = (40)
w2 = Hwx)iUis1 | w; — 24/(0x); VU,

Vanderslice et al. [30] perform tests and compare the Rydberg-Klein graphical procedure with the Rees analytic,
verifying that the Rees method is much faster and more accurate.

Thus the Rydberg-Klein-Rees (RKR) method becomes one of the most accurate and fast methods of obtaining PECs
employing experimental data, without an analytical function. It is a method particularly favored compared to the others
when a large number of levels are known considering the situation close to the limit of dissociation.

One of the disadvantages of the RKR method is that the PEC can be constructed only in the region for which
sufficient spectroscopic data are available. However, this was great difficulty in the past decades, when there were
computational and technological barriers, which is no longer the case today. Incidentally, in the 1960s, there was a fair
amount of experimental data available [15].

Later work such as Singh and Jain [33], and later by Richards and Barrow [34] proposed even simpler ways to obtain

f and g, making it even easier to obtain an accurate PEC.

3 | POTENTIAL ENERGY FUNCTIONS

3.1 | TheKratzer function

Our starting point is to consider the wave equation [32] for the nuclear motion of a diatomic molecule of nuclear masses
M, and M and charges Z; and Z; is:

2
V2 4 8’;7” [E (6221 22/R) + Vu(R)| ¥ = 0 (41)
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where p = My M, /(M7 + My) is the reduced mass, R is the internuclear distance and V,(R) the electronic energy.
The function of nuclear potential energy will be a combination of the term representing the nucleus-nucleus
repulsion energy with the electronic energy V,:
V(R) = €22, Z,/R = Vo(R). (42)
Writting the wave function in the usual approximate form, which differs from the exact molecular equation by small
terms treated as perturbations (see for example Ref. [35]):

Y =®(@.R)-0(6,9) - R(R)/R (43)

then R satisfies the radial part equation of Schrédinger, given by:

2R JU+DR 87y
—_— -+
dR? R2 2

[E-V(R)IR =0. (44)

Among many proposed diatomic potentials few are those that solve exactly the Schrodinger radial equation (44).
Proposed in 1920, the Kratzer [16] potential was one of the first to have this important characteristic, since the wave
function contains all the information necessary to describe a quantum system in its entirety. Work such as Bayrak,
Boztosun, and Ciftci [36] and Hooydonk [37] emphasize the importance and applicability of obtaining the eigenvalues
explicitly in theoretical chemistry problems, especially when they result from the use of the Kratzer potential in the
place of V(R) in the Eq. (44).

The Kratzer [16] (KRA) potential is given by:

Re 1 Rez)

Vikra(R) = —=2De (* -z

R 2 R? (43)

where D is the depth of the well and R; is the equilibrium internuclear separation.
The Kratzer potential is composed of a repulsive part and a long-range attraction. This potential presents three
characteristics that will be desirable to all the potentials. They are:

(i) V(R)hasaminimum at R = R, and in this case it occurs for V(R = Re) = —De;
(ii) V(R) — o, when R — 0, due to internuclear repulsion;
(iii) V(R) - 0when R — oo, occurring the dissociation of the molecule 1.
In 1922, an approximate form of Kratzer’s potential was already considered [38], with the addition of D, in (45), i.

— Re 1 Rez F
e, Vkra(R) = 2D (7§ — 5°5 | + De, resulting in:

(46)

R’—Re)2

Vmodf.kKRA(R) = De ( A

1infact, the requirementis thatwhen R — oo the potential curve is asymptotic for a finite value, which in general is very close to zero for systems in the ground
state that have a conventional potential curve, i. e., with only a global minimum, maxims.
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The spectroscopic constants for the modified Kratzer potential are quite problematic, as shown by Varshni [14].
When the conditions (i), (i) and (iii) are satisfied, what one has is the relation:

keRe

oo = (47)

2
being ke = (d ;gz’?f‘ ) . However, this can not be obtained for any of the 23 molecules tested by Varshni[14].
Re

Besides, C.Berkdemir, A. Berkdemir, and Han pointed in 2005, that Kratzer’s modified potential did not provide
an analytical solution for the Schrédinger equation if the centrifugal part was included in it. However, they provided a

method for eigenvalues to be obtained.(for more details see Ref.[39]).

The modified Kratzer potential (46) is still of the few to have only two adjustable parameters, D, and R,. For
that reason, when compared to potentials such as Morse [7], Rydberg [8], Deng-Fan [40] and others with 3 or more
adjustable parameters, Kratzer will generally have the worst fit of the curve as a whole. This can be observed, for
example, in the work of Royappa, Suri, and McDonought [41], where the Kratzer potential was compared to 20 other
potentials containing 3, 4, 5 and 8 adjustable parameters for 14 diatomic systems in the ground state. The Z-test
proposed by Murrell and Sorbie (can be seen in detail in section 3.26) was used, where the curves with the fitted
parameters are compared to the curve obtained by RKR method. The mean of the deviations for the Kratzer function
was only surpassed, surprisingly, by Lippincott [42] function (see section 3.19 of this work). With 4 parameters fitted,
the Lippincott potential does not have the expected behavior when R — 0, since V(R) converges to a finite value. The
values of D, are overestimated in relation to the RKR data in the attractive branch, and these high values lead the
potential, when R — 0, becomes smaller than the value of the potential with such R and D,, which does not happen

with the modified Kratzer potential.

Varshni [14] further proposed another way to modify the Kratzer potential so that the spectroscopic constants

could be calculated. He called the generalized Kratzer (GENKRA) function:

ny2
Veoenkra(R) = De [1 - (%) ] , (48)

where

n?=A (49)

being A the Sutherland parameter [43] given for A = k. R§/2De. The spectroscopic constants in this case are given by:

6B
ap = A2 =2 (50)
We
and
-16
woxo = [8A + 1201/2 4 421078 X 1077 (51)

Re2u
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3.2 | ThelLennard-Jones function

For a molecule consisting of two atoms, we have known that there is a repulsive force between the atoms at close
separation distances which keeps the atoms from overlapping and an attractive force at large separation distances
which provides the binding of the atoms into a molecule. At some intermediate distance, these forces are in balance.
A potential form commonly used to describe this situation, first suggested by Mie [44] in 1903, and later applied by
Lennard-Jones [45]in 1924.

The Lennard-Jones [46, 45] (LJ) spherical-symmetric potential, whose parameters are derived from the coefficients
of second virial or viscosity, was considered one of the most widely studied, especially between 1920 and 1990.

First, he considered the viscosity problem. The interest was to deduce the appropriate law of dependence of
the viscosity of a gas on temperature. To this end, Lennard-Jones considered the formula given by Chapman for the
coefficient of the viscosity of a gas whose molecules may be regarded as spherically symmetrical [46]:

p=2 40, (52)
T KQ

where T is temperature, k the usual gas content, € a small number which depends on the molecular model, and «g is

given by:
16 o 2
_ -y2 5@ 6dy, 53
Ko 15\&06 ¢ (ry)y dy (53)
with
$@(cy) = 10ty /0 [(1 - Pa(cos x)lpdp, (54)

being P, a zonal harmonic of the second order, p is the perpendicular distance between one molecule and the direction
of motion of a second relative to it before an encounter, and y is the angle turned through by the relative velocity during

the encounter.

Further, 7 is a function of the temperature and the mass of the colliding molecules given by [46]:]

2 _ 2kT - 1 (55)
my+my  j(my + mp)
and
V(mymy)'/?
=Cgp= ————, 56
Ty R mi + my ( )

where V is the relative velocity before collision, Cg is a variable used by Chapman. In a simple gas, m; = m, and then
Ty =V/2

Firstly, any model y has to be found in terms of p and V, and this required an investigation of the dynamics collision.
If the potential of the field between two molecules when separated by a distance R is ¢(R), then the motion of one

relative to the other during an encounter is the same as that of a particle of unit mass about a fixed center of force, of
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potential ! “"2 2$(R).

LJ assumed that the molecules repel according to a inverse nth power law, and that they attract according to the
inverse third power, i. e.:

so that

An Am
(n=1R"™1  (m-1)Rm1"

#(R) =

The new formula to observed variation of viscosity with temperature is given [46]:

2

AT 2(n-

H= a3’ (59)
T+ YR SRT "nT

The quantity A is independent of temperature and we have:

2
T

5 k 2k \ n-
po_ SNmmk (7) (60)
8I,(n) (4 - %) n
and the “attractive constants” S are given by:
r(o= 5- 2Rn 3 Z
+3
Sp = nJg(n) A3 ( ) (61)

2f(R)I(n) p2/n-1 r(4_ %)(2@ ()

and so are function only of the force constants A3 and A, and of the index of the repulsive power law n. For details about
the calculations of I and Jk see Ref. [46].

When the attractive force is weak compared with the repulsive field, the formula for the coefficient of viscosity
reduces to:

AT
p= AT (62)

n=3
Tn1+8

where A has the same value as before and S is given by:

wJi(n) A3

57 212(n)r(4 )(Zk)n A2t

(63)

Another case considered by Lennard-Jones [46] was the Sutherland model, consisting of a rigid sphere with an

attractive field surrounding it. The formula appropriate can be deduced from (62), making n — oo, such that:
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1
AT 2

T1iS/T (64)

u

which is a known Sutherland formula.

Based on the work of Enskog and James, it is possible to give a simple physical interpretation of S, since the value of
S for the Sutherland model to be proportional to A¢(c), where ¢ (o) is the work required to separate two molecules
from contact to infinity against the attractive field, and A is a pure number depending only on the nature of the field.
Thus, if $(R) is the potential of two molecules separated by a distance R, and o is the diameter of a molecule, then the

value of S is given by:

S=2,2) (65)
k
being A, depending only on the index m of the attractive field (R~™) and its value varies from 0.213 to 0.156 as m varies

from4to9.

The physical interpretation of S is given supposing that two molecules repelling each other according to a inverse
nth power law move towards each other in a direct encounter with a relative velocity of the molecules of a gas at first

absolute. At the closets distance of approach:

An

w

(n-1om1 Ek (e
and so
24, \*T
o= )

The distance o is defined as the diameter of such molecules. If molecules are considered rigid spheres, the force
constant A, is infinite, and n is infinite, but /11,/"_1 has definite limiting equal to the diameter.

Thus, expression obtained for S, writing & for the numerical values is given by [46]:

A3 1
=5———«+——, 68
/\3/"71 (2/()”’3/"’1 ( )
and substituting A, in terms of the o, we have:
4 2/n-1
— s A3 - AM’ (69)
32/n-1 2kc2 \n -1 k

where ¢(o) is the work required to separate two molecules attracting according to the law R3/R? from a distance o to

infinity.

S has the same form whatever the attractive field for Sutherland’s case, and the rule is valid not only to the inverse
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third power law. Then, if A,,R~™ is the attractive field, S will be given by:

S= Am A= A Am
- (m=1kom-1 = k(n-m/m-1) Alm=1/n=1)"
n

(70)

where A’ is a numerical factor. Thus, Lennard-Jones obtained that the coefficient of viscosity to general law of force
A" = AmR™™ is given by Eq.(62). He applied these results to argon and obtained good agreement with experiment, and
the repulsive field may have any index from 15 to 25, which led him to conclude that viscosity results alone are not
sufficient to determine uniquely molecular fields [46].

In a subsequent paper, Lennard-Jones [45] begins to consider potential whose parameters are derived from the
coefficients of second virial, more specifically B. This, however, can be applied only for two kinds of molecules: a van der
Waals molecule and a molecule repelling according to an inverse power law, without attraction.

First, he considered the equation of gas of moderately large dilution of the type:

pv = kNT (1 + g) (71)

where, as usual, p, v and T denote pressure, volume and temperature respectively, k the Boltzmann gas constant, and B
the second virial coefficient. The method was to determine the force constants, both attractive and repulsive, from a
comparison of the theoretical and experimental values for B. B is a function depending upon the temperature and the
forces exerted between the molecules of the gas. For molecules of spherical symmetry, which can be represented as a
potential function of the distance only ¢(R), the formula for B proves to be [45]:

B= 27(N/ R2(1 - e¥™(R)gR, (72)
0
where 2j = 1/kT, k being the usual gas constant (1.372 x 10~'¢ erg-K~") and T the temperature, N the total number of

molecules in the gas. An alternative form B is:

_ 2zN

=N (R R gR 7
*T J, (R)e dR, (73)

B

where f(R) is the force between two molecules when separated by a distance R, now is given by:

A A
FR) = 28— 22 (74)

and this is related to potential field ¢(R), by the equation:

¢(R) = —[)w f(R)dR. (75)

Lennard-Jones [45] obtained a general formula to B from which one can deduce the two special cases of molecules

mentioned above. This is given by:

( Ay m—1 )3/("*’")

e F(y) (76)
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where
: _ 1\ (m=1)/(n=1)
_ 2jAm (n : 1 (77)
m-1\2jA,
and
YT -1+n-4 m-1 [tm-1+m-4
F(y) = y3/=-m N X (1T - . 78
W=y TZ:;JT! e P o y (78)
For molecules which repel according to an inverse power of distance A,R~", we have:
2 2 -4
B=Zan (2222, (79)
3 n-1 n—1

where was assumed y = 0and A, = 0. For molecules which behave as rigid spheres of diameter o, surrounded by an
attractive field of force A,,R~™, we have:

2 3 o 3(2ju)”
=< _E LA 80
B 37rNo' {1 T!(Tm_1_3)} (80)

=1

observing that a rigid sphere molecules corresponds to a force A,R~" when n — oo, the diameter o being given by:
o= lim AT (81)
Lennard-Jones related the function B theoretical and experimentally, assuming that the values of B at various
temperatures applied to a unit volume of a gas is given by expression
By =f(T) (82)

while theoretically, we have as above:

being v the molecular concentration.

He obtained two equation to determine A, and A,,,, given by [45]:

A 2
3 1 =LX+Y—Iog£+ 3 log k (84)
n—1 n-1 n—m 3 n—1
and
3 Am 3(n-1) 2mv 3
| = X+Y—log— log k
m-1 8 (n—=m)(m-1) * 083 T8k (®5)
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where (X, Y) is a parallel transformation, which:

n—m

: log7 = X (86)

logy +

and

logBy —log F(y) =Y. (87)

Lennard-Jones applied this method to the argon gas [45]. In subsequent papers, he also applied it for helium
and neon gases [47], and for hydrogen, nitrogen, and neon gases (with some corrections) [48]. Next, Lennard-Jones
considered the problem of determining the forces between molecules of different kinds of a gaseous mixture from
second virial coefficients of a binary mixture [49]. In 1937, Lennard-Jones [50] considered that the force fields obtained
from this way are complicated functions of the distance and are not very convenient to apply in other investigations. He
observed that the interaction of neutral atoms at large distances can be represented by a potential function that varies
as the inverse sixth power of the distance. At smaller distances, he noted that the function is not so simple. Nevertheless,
it was convenient to adopt the asymptotic form of the function as valid over the whole range and to make any necessary
modifications in the repulsive field which must be used in conjunction with it. In this case, the interaction of neutral
atoms at small distances can be represented by a potential function that varies as the inverse ninth, tenth, eleventh, or

twelfth power of the distance. For this, he considered the equation of state for a gas of small concentration given by:

pv =KNT + 5 (88)
14
or
BI
pv =KNT + — (89)
v

where B and B’ are functions of temperature depending on the molecular forces and the other symbols were defined

above. B and B’ are given in terms of intermolecular fields by expressions:
B=BkNT = 27rN2kT/ R2[1 — exp(—¢(R)/kT)]dR (90)
0

where ¢(R) is the potential energy of two molecules at a distance R, givenin Eq. (75). These equations are like that of
van der Waals, only first approximations and valid only for dilute gases. When van der Waals equation is written in the

form of equation (88), it appears that

a

B =b-
kKNT

(91)

whereas the corresponding formula derived from (90) for molecules which behave as rigid spheres of diameter o,

surround by an attractive field, whose potential is A,,R™™, is:

2 < 3(po/kT)
BzgﬂNUS {1—20}‘ (92)

= tl(tm-3)
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where
$o = Amo'_m (93)

and is the potential energy of two molecules in contact.

Equation (92) can be written as a more general formula which corresponds to interatomic forces whose potential is

the sum of inverse power laws:
¢ =ART" = AR (94)

and this function can be written as [50]:

T(Re\" 1 (Re\" 11
ooy (%) (%) 1 (G -7) 79
where R, is the distance between two molecules in equilibrium under the field (94), and |¢| is the energy required to
separate them from this configuration (dissociation energy D).

The most appropriate values of n and m for the inert gases and some molecules have been given for m = 6,
corresponding to the theoretical value for van der Waals forces, and a value of n between 9 and 12.The values of A,
and A, were deduced from values of R, and ¢. For diatomic systems Hey, Ne,, Arp, Hy, N2, O, and CO the best value
obtained for n was 12[50].

Then, the general potential LJ(m,n), as it is better known, is a two parameter potential energy function given by:

a2 ) [

where R is the equilibrium distance and D is the dissociation energy. To have physical meaning, we must have n > m > 0,
but neither m or n need be an integer. However, the function LJ(6,12) is the most widely used for diatomic systems in
general.

Although it is still widely used in recent chemical research, mainly in computational simulations of liquids (see for
example Ref.[51, 52]), the LJ(6,12) potential fails to describe the viscosity of the inert gases in a satisfactory manner [53]
and measurements of the second virial coefficients of argon and krypton [54] at low temperatures indicated further the
inadequacies of this model. Potential functions with more than two adjustable parameters were proposed in an attempt

to overcome these defects (see Section 3.43).

3.3 | The Morse function

In 1929, Morse [7] (MOR) proposed a function that served later as a reference to many other proposals. The functional
form to describe diatomic potentials has well represented in at short interatomic distances, being quite adequate to
represent atoms forming a chemical bond, providing greater precision in the region of the minimum potential.

The first potential energy functions proposed for V(R) were very complicated functions [7]. Proposals for such
a function were almost always based on the Dunham [23] method presented in the section 2.1, in which very general

power series were obtained from the infinite polynomial:
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E(v,J =0)=-D + hw,

L +12+K +13—--- (97)
v (v 3 (v .

These provide the energy levels accessible, whose spectroscopic constants xe, we, K3 - - - were known, and E thus
obtained empirically.

However, the use of V as these very general expansions bring some drawbacks. The terms in (R — Re) with power 3
or greater in the expansion of V must be calculated by perturbation methods since these are not small as Dunham had
already pointed out [23]. Also, since V is obtained from known spectroscopic constants, it does not converge to large
values of R.

Morse, based on experimental data, found the spectroscopic constants K3 as well as the higher-order parameters in
the expansionin E(v, J = 0) were very small compared to those in the first and second terms of the E(v, J = 0). Thus, he
proposed to truncate such a series up to the second term. Considering also, the deficiencies of the thus far presented
functions, Morse then proposed four criteria to be satisfied to obtain a simple and well-behaved function to describe
these potentials [7]:

Converge asymptotically to a finite value when R — o;
Possess minimum point only at R = Ry;

INR =0,V(R) - o

Provide exactly the energy levels accessible as a finite polynomial E(v, J = 0), being given by

(H;)_XE(H;)Z |

where D is the dissociation energy 2, R, represents the equilibrium distance, w, = %\/; is the vibration frequency, with

A w bR

E(v,J =0) = —D + liwe (98)

2
u the reduced mass of diatomic molecule. Also, k. = (%) is the force constant and we xe = mg/aoe isthe
R=R
anharmonicity constant. The function proposed by Morse consideririg firstly only the vibrational levels, i. e., for J equal

to zero, has the form:
Vior(R) = Dee™2(R=Re) _op ga(R=Re) (99)

being D, the depth of the well. Note that the criteria 3 does not necessarily true for the Morse proposal Vi07(R),
because when R — 0, Vi or(R) assumes the finite value D (e22Re — 2¢2Re),

In the cases where the quantum rotational number J is different from zero, the term v, = J(J + 1)h2/8n2uR?
is added to the function (99). Morse showed his function reasonably satisfied all four criteria, still obtaining the first
notable case of a one dimensional Schrédinger equation providing a finite number of discrete energy levels given by

E(v, J), this being the empirical form of (98). The vibrational energy levels in the harmonic approximation are given by:

1
2P should not be confused with the depth of the well De, since De — D = 2 hwe.
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E\,=(V+%)hwe,v=0,1,2~-~. (100)

When dealing with realistic potentials, the distance between the energy levels decreases as the energy approaches
the limit of dissociation. This is due to the anharmonicity of real molecules, not well described by the harmonic
approach (100). Usually the vibrational and rotational energy levels of a diatomic molecule are expressed as a convergent

double expansion in the variables (v + 17) and J(J + 1)[55]3,

E(v,J)
hc

=F(v,J)= +l +12+ +13 +14+
=Fv))=we|v+ | -wexe |Vt weye [V+ 5 WeZe |V + 7

(101)
J2(J +1)?

+ JU+1)+

1 1
Be—ae(\’+§)+"' De+/je(v+§)+---
where v is the vibrational quantum number defined by (100) and J, the rotational quantum number (/ = 0,1,2...).

At this point the Morse contribution becomes even more evident, not only with the functional form, but also
providing a finite polynomial £(v, J) suitable for the calculation of both vibrational and rotational energy levels given by:

E(,J) = =D + hwe(v + 1/2)[1 = hwe (v + 1/2) /4De — h2J(J + 1)/167% DeptR?] 102)
+(7/ (J +1)/87%uR)[1 - h2J(J + 1)/ 167* 2 REw?].

Dunham [23] questioned the accuracy of this finite series, truncated in the second-order term, representing energy,
since for light molecules like hydrogen, terms of order greater than two are not negligible. On the other hand, as for
the other molecules the precision of the levels was considered good, this was not taken into account by Morse. Also,
Rees [10] showed that in the case where E(v, J) was expressed considering the cubics terms in (v + 1/2), the calculations
became much more difficult. Also, there was a dependence on the precision with which the second anharmonicity
constant we y Was obtained, being the values of w, y. are among the least reliable of the spectroscopic constants [30].

The Morse function was also known as a three-parameter potential function, De, a2 and Re. D, can be calculated by
integrating exactly the Schrédinger equation, using Morse function Vi, 0z (R), getting:

De = w? [4we xe. (103)
Once we and D, are known, the a parameter is obtained as:
2 = (8n%cuwexe /)2 = 0.2454(uwexe)'?, (104)

or equivalently,

- ke
a=4 ’ZDE (105)

using that ke = 47%uc?w? = 5.8883 x 10-2uw? dyne/cm . Sometimes, this value of k is approximates by k. = pw?2. This

3De appearing in expression (101) represents the centrifugal distortion constant, should not be confused with De, the well depth in the Morse potential (99).
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approximation is due to Dunham [23] with a slight correction being omitted, for simplicity.

The expression (103) usually gives values for the dissociation energy D, that are too large, so that it is better to use
the experimental value when available [56].

To construct the potential energy curves, Morse used a different calculation for the molecular constant R. The
relation used before his work was Re2we = Cp,, where Cp, has a different value for each molecule, and it was necessary
to know at least one value of R, before obtaining C. Morse [7] proposed an empirical law associating R. and we.
Following Birges tests [57], where the values of R, and w, for 21 molecules were known, and using the equation
logwe — plog Re = log k it was estimated that p = 2.95 and k = 2975. To test its function, Morse assumed, even with a
rather large error, p = 3,and then

Ro3we = 3000A% /cm. (106)

He noticed that the values thus obtained reproduced well the experimental data, with an approximate error of 4%.

Morse tested its function in neutral diatomic molecules and ions, in ground electronic and excited states. Curves
were calculated for the molecules BeO, BO, AlO, C,, CN, CO, CO*, F,, Ho, H;, I, No, N;, NO,, 02,05 and SiN.

Many comparative studies involving the Morse function were done later, such as those by Varshni [14] or Royappa et
al. [41]. Although the Morse function doesn’t give a correct description of the potential in the long-range, this potential
was still a reference for the most current ones.

Varshni[14] showed that the approximate expression for the vibrational rotational coupling constant a, obtained
by Pekeris [58], obtained solving the Schrédinger equation for the Morse potential by perturbation method is equivalent

to the his expression:

B, \'"? B 652
Ao = 6Bexe ( e ) - | =2 1)—=¢ (107)
WeXe WeXe We

where B, = h/(87%uR2c) is the rotational constant and A =

2
k;;: is the Sutherland parameter. The anharmonicity

constant we x, in (107) is given by:

Ooxe = g,22x 21078 10716 _gp2X21078x% 10-16_ (108)
H Rp

However, the expression (103) obtained by Morse presented better results than the expression (108) as verified by
Varshni. He analyzed 23 diatomic systems in their ground electronic states, and a, and we showed very poor results for
these systems with the Morse function. The Rydberg [8] and Lippincott [42] potentials presented a much lower average
percentage error than Morse.

On the other hand, in a more recent study, Royappa [41] et al. evaluated the behavior of the potential as a whole,
and compared it with the experimental RKR [8, 9, 10] curve using the Z-test method of Murrell and Sorbie [59] (see
details in Section: 3.26). He analyzed the average of the deviations of 21 potential energy functions for 14 diatomic
systems in their ground electronic states, and obtained that the Morse function present lower error than Kratzer [16],
Lippincott [42], Deng-Fan [40], Rydberg [8], Varshni Il [14], Rosen-Morse [28], Linnett [60] and Posch-Teller [29]

potentials.
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3.4 | TheRydbergfunction

The potential functions used before the Rydberg proposal described only the lowest vibrational levels and were not
useful in the extrapolation to dissociation limit [8]. It was then necessary to seek more general analytical ways to
describe potential energy functions for diatomic systems, to best fit also the dissociation region. Moreover, an accurate
representation of the series of nuclear vibrations was not known, and nuclear vibrations are experimentally measured
interms of AE, being AE = E(v + 1) — E(v), where E(v) is the nuclear vibrational energy corresponding to the quantum
number v. Then AE is assumed to be a linear function of the quantum number v, approximation valid only for the simple
diatomic system H,. For somewhat more complex systems like N, [61, 62], O, [63] and NO [64, 65], a function of the
type (AE)? was used, more properly describing the nuclear vibrations. However, such a function still depended only on
the quantum number v. Then, in 1931 Rydberg [8] developed a method for calculating potential curves which makes use
of the experimental energy levels yourself and not depend on some derived formula for these levels. This a graphical
method designed to produce a curve that will give the observed vibrational and rotational energies, when these are
computed by Bohr theory with half-integral quantum numbers. It is a method of approximation to obtain the curves, and
to this approximation, the energy levels depend only on the form of that part of the potential curve which lies between

the classical motion of the system for the energy in question.

Rydberg [8] (RYD) suggested an empirical relationship between (AE)? and B, :

(AE)2 = ke - B3, (109)
where
h 1
By=— =], 110
) 1o

is the rotational constants, & is the force constant and u is the reduced mass.

Rydberg showed that for the diatomic systems CdH and HgH, the relation (109) had a good fit at several vibrational
levels [8]. Although with slightly greater straight-line deviations at the lower vibrational levels, acceptable representa-
tions were also obtained for NO and O, systems. These larger deviations were attributed to errors in the determination
of rotational constants B,. Yet, the above-mentioned systems were considered as well represented in this frame.
However, for the LiH and NaH, an unexpected behavior occurred, plotting Eq. (109) produces a curve towards the origin
at the low levels, suggesting that for such systems, the relation (109) could be even applied for the highest vibrational
levels [66].

Rydberg used a graphical method involving the action integral, together with another integral related to the

spectroscopic constant B,. The action integral for a rotating vibrator is [30]:

Ry Ry
I= j{ prdR = 2/ prdR = 2/ J2u[U = Vegr(R)IdR, (111)
R Ry

1

where py is the radial momentum of the particle, Ry and R; are the classical turning points and R is the internuclear

separation, u is the reduced mass and U is the constant total energy given by:
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pr®

The term V¢£(R) is the effective potential curve, given by sum of the potential V(R) and the centrifugal potential:

Vosf(R) = V(R) + %, (113)
where
2
_Pe
=5 (114)

Here py is the angular momentum which is a constant the motion. The quantization of the radial momentum, and
therefore of the vibrational motion leads to:

= Rz,/ —hfvs] 115
1_2/1?1 2u[U — Vge(R)]dR = (v+a). (115)

Here it is clear that the Rydberg method is based on the WBK approximation [24, 25, 26], since in this approximation
the eigenvalues of the one-dimensional motion of a particle in a potential are given by phase integral condition (115).
This is also known as condition of Oldenberg [67], in which the potential curve must be changed until the relation (115)
is satisfied [8].

To obtain a relation for the rotational energy, we start from the relation of £, to a vibrating rotator [30], which
will lead us to a more explicit relation for B, (110). We have:

1 K 1 KH 1
Eome| ] o f g kH dR 116
rot =K (Rz )V T R2 7 RZpr (116)

where 1, is the period of vibration. Again, the quantization of the angular momentum phase integral leads to

h2
K= (%)J(J+ 1) (117)

where J is the rotational quantum number, and the relation (117) is again a WKB approximation [30]. Here « is the same

of the Schrédinger equation (1) presented in the section 2.1, used to obtain the energy levels of a rotating vibrator.

Finally, replacing pr and «, for equations (112) and (114) respectively, we have the following relation to B, :

1 1 j{ dR =B, (118)
R2

hz\/ﬂ 8”2TV [U - Veff(R)
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which can now be obtained more easily than by expression (118), and these is know as condition of Hulthén [68]. This
was of great importance in the work of Rydberg [8], since it was noticed when varying the values of the internuclear
distance R, an infinity of solutions satisfied the action integral. Thus, to determine the potential curve clearly, a second
condition other than Oldenberg [67] was required.

However, as the integrand of Eq. (118) becomes infinity at the classical turning points, graphical integration is not
very accurate.

Then, in 1932, Klein [9] presented a method to solve the integral of condition (115) of Oldenberg [67]. Also, modified
the Rydberg’s procedure to calculate the classical turning points, led to the way to obtain PEC’s of the RKR method,
discussed earlier in section 2.2 this paper.

The relation for (AE)? (109), depends entirely on the behaviour of the potential curve, i. e., the forces acting on the
atomic nuclei. To construct the potential step by step, the energy E(v) of the vth vibrational level and spacing of the
rotational levels of that vibrational level provinding the above two conditions (115), (118) on the construction of the
potential curve for energies between E(v)and E(v + 1).

Seeking a potential simultaneously fulfilling both conditions, Rydberg [8] proposed the following potential function:
VryD(R) = =De(a(R — Re) + 1)e~*R~Re) (119)

1 2
where a = (ko /De)2, being k. the force constant give for k. = (%) . Vi(R) becomes large, but not infinite when
Re
R = 0, similarly than Morse potential [7]. However, Rydberg showed that its potential provided best fitting compared to

Morse function for the three diatomic systems mentioned before H,, CdH and O,.
From the third and fourth order derivatives of Vzyp(R.) it is possible to obtain the values for the spectroscopic
parameters a, and we xe as shown by Varshni [14]:

ag = 22,4 |68 (120)
3 We
and
22 2.1078 x 10716
Wexe = —A} (21078X10° 7 (121)
3 Re‘p

where B, is the rotational constant and A = % the Sutherland parameter.

Years after Rydberg’s work, his function was considered as good as the Morse function to represent various
diatomic potentials, surpassing it in divergent cases. The mean error in calculating the parameter a, for 23 diatomic
systems was 28% with the Rydberg potential, whereas, for Morse, the error was about 33%. In the case of wexe,
the corresponding error was of 23% with Rydberg versus 31% with Morse, showing then a good improvement [14].
Additionally, the Rydberg function Vzy p(R), as was shown by Murrell and Sorbie [59], was more easily extended to fit
high order derivatives, adjusting the order of the polynomial in Equation (119).

3.5 | TheBorn-Mayer function

In 1932, Born and Mayer [19] (BM) proposed a potential for diatomic systems with an extremely simple functional form,
yet limited to repulsive states, i. e., it is a potential to describe only the short-range region. They suggested the following

functional form:
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Vem(R) = Aexp(-=bR) (122)

where A and b are constants. Note that the potential of Born-Mayer Vgy(R) — A,when R — 0,and Vgy(R) — 0if
R — oo, presenting correct asymptotic behavior even for the long-range region of the potential.

In 1970, Gaydaenko and Nikulin [69] presented a method, based on statistical theory, to calculate the coefficients A
and b for several pairs of neutral atoms in the ground state, with charges nucleus from Z = 2to Z = 16. The method
of least-squares fit of Born-Mayer potential (122) at intervals of internuclear separation in which the Vg (R) curve is
approximately linear is used. The maximum error of fit in a given range was approximately 10%, and the mean error was
approximately 4.8% for identical atom pairs.

To obtain the potential value for heteronuclear diatomic systems, Gaydaenko and Nikulin propose to use the rule of
empirical combining proposed by Abrahamson [70] in which:

1
Viz = (Vi1 V)2 = (A1 Ap)'/2 eXD[—E(/h + b2)R] (123)

where (A1, Ap)'/2 is the geometric mean of A1;A; and %(b1 + by)R is simply the arithmetic mean of b1;b,. As pointed out
by Gaydaenko and Nikulin [69], this model of calculation of the Abrahamson [70] potential is quite accurate, with an
error close to 1% only. The methods of Abrahamson and Gaydaenko-Nikulin are differentiated only by the fact that the
first uses the Thomas-Fermi-Dirac approximation (TFD), while the second uses Hartree-Fock (HF) calculations to obtain
the interaction energies.

The method presented by Abrahamson allows the calculation of the potential of interaction based on the potential

of Born-Mayer to more than 5000 different diatomic systems, using the table presented by him in Ref. [70].

As pointed out by Murrell et al. [55], the Born-Mayer potential is a special case of the extended Rydeberg function
that will be presented in section 3.26. Although we now have a few alternatives, the Born-Mayer role is extremely
important in accurately describing short-range interactions. As pointed out in the recent work (2016) of Van Vleet,
Misquitta, Stone and Schmidt [71], it is more than eighty years since the creation of the Born-Mayer function and very
little progress has been made in obtaining potentials with similar performance, especially in problems where molecular
electron density overlap cannot be neglected (for more details see Ref.[71]).

The potential of Born-Mayer still appears in problems involving triatomic systems, especially in those where there
is molecular ion interaction, and when the effect of the long-range attractive potential can be completely neglected (See
for example Ref. [72]).

3.6 | TheRosen-Morse function

Still in the year 1932, Rosen and Morse [28] (RM) proposed a functional functional form to describe the potential of a
single atom, which might even seem a little strange. However, their intention was to create a potential that could be

used to treat vibrational molecular energy from larger (polyatomic) systems:

_ Ry _ 2(R
VRM(R)_Btanh(d) Csech (d) (124)
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where

B = -2Ctanh (%) (125)

and

c-__ b (126)

| —tanh(%)]2

This potential function accomplish the conditions:

(i) Vrm(R) = Bif R — o

(ii) d‘;’f?"” = sech? (%) [B +2Ctanh (%)] and then the depth of the well is given by D, = (B + 2C)?/4C;
R=Re
s d2Vewy — 1 -
(i) dRZ | p  8d2C3(4C2-A2)2 T ke-
=NRe

Note that Vryy — —C if R — 0, and then this potential does not attain the condition Vgp — o if R — 0.

Varshni[14] suggested the introduction of a new parameter p, in order to obtain a better fit of the curve. Once the
adjustable parameter p is obtained, it is possible to determine d. He defined:

. (127)

where the new parameter p is related with the Sutherland parameter A = k,R2/2D,:

A = p?(1 + tanh p)2. (128)

From this parameter, Varshni obtained also the expressions to a, and wexe Spectroscopic parameters [14]:

682
ae = (2ptanhp —1)—2 (129)
We
and
-16
wexe = 8A(1 — 2P + e"”ﬂw. (130)
Reu

Like the Morse [7] function, this potential was developed to satisfy exactly the Schrédinger equation, thus providing
exact levels of energy for polyatomic systems. Rosen and Morse [28] obtained the energy levels given by:

2

2
+Bz/ I

hz 1/2
s

172
E, = 4C + -
YT o4 [( 87{2,ud2) \Bund

2v+1)

(131)

2v +1
nd( )

(4C +
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wherevcanbe0 <v <

, being v the quantum number.

1/2
cerid 1 2 gga2ua?\'2 4
h2 4 2h2 2

8/r2;1d2
"2

In the case where C > 1, the values of the energy become [28]:

1 n? 3B2 1\2
EV:V(Re)+hwe(V+§)_W(1+@)(V+E) + - (132)

where w, is the classical frequency of oscillation about the minimum point R, being by:

s = (4C? - B?) _ (133)
Axd(2uC3)'/2
As an example, Rosen and Morse [28] used the ammonia molecule NH; and the vibration of the nitrogen in this
molecule was chosen to be calculated by the potential (124).
The potential energy curve of nitrogen has two minimums and therefore two equilibrium positions, which may be
symmetrical (see discussion in Ref. [28]) and in this case the minimal points can be called R, = +R,. Since it is a peculiar
case, the potential must be given by the joining of two potential fields to represent the symmetry of the problem:

2
V(R) = { Btanh(R/d - k) - Csech®(R/d k), R 2 0 150

—Btanh(R/d + k) — Csech®(R/d + k), R <0

corresponding to half the distance between the minima R, = kd — tanh™" (B/2C).

One of the major difficulties of the Rosen-Morse method is to obtain the values for the parameters B, C, d, and
k. These must be fitted satisfying the following conditions on potential: (i) V is reasonable in shape; (ii) |B| < 2C; (iii)
the second level must be below the center hill and (iv) the hill should not be higher than the value of V at . Thus it
is possible to delimit intervals where these values are contained, being 2200 < C < 3000cm™',0 < B < 1000 cm™',
0.16 < d < 0.185Aand 2.20 < k < 2.24. For the value of the dissociation D, it was assumed that it would be where
V(o) coincided with V(+R,), but not so precisely, could assume values within the range 2200 and 4000 cm™~" in the case
of ammonia. The value of R, and in turn must be a fixed value at 0.38 A for ammonia, however assuming any value
between 0.365 and 0.390 A, the error is only 1% within spectroscopic accuracy [28].

In a comparative study of empirical potentials presented in 1962 by Steele, Lippincott, and Vanderslice [15],
the Rosen-Morse potential presented good results for the spectroscopic constants and for the potential as a whole.
For example, spectroscopic constant calculated by Steele et al. w.x. presented a average error lower than that of
Morse [7], Poschl-Teller [29], Frost-Musulin [73] and Varshni [14], some of these potential being more recent than
Rosen-Morse [28].

In this same work, Steele, Lippincott, and Vanderslice proposed a criterion to evaluate the accuracy of potential
energy curve from the RKR experimental curve, using as a parameter the dissociation energy D. The relationship
[IVrkr = V'|/Dlas g (or/and [|Vrkr — V |/ D]r>r,) is known as Lippincott criterion. This criterion was applied to evaluate
the Rosen-Morse, and the average deviation of this potential from the curve obtained via RKR [10, 9, 8] for R > R,
was lower than that obtained with the potential of Morse [7], Poschl-Teller [29] and Linnett [60]. In addition, it is also
worth noting that the potential Rosen-Morse curve coincided exactly with the RKR experimental curve value in certain

internuclear distances for the H, and N, molecules in the ground state X'=?*, and for NO in the excited state B2M[15].
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3.7 | TheDavidson function

In 1932, Davidson [74] (DAV) begins his research for a potential that provide the correct vibrational levels of energy
when using the Schrédinger equation (1). It was based upon an expansion in the neighborhood of R = R, such as that

proposed by Dunham, given by:

V(&) = kE2(1 + ak + bE2 + cE3 + dE* + - - +) (135)

where ¢ = £ —Tand k = 27%weuR.c.

In general, the potential can be determined with considerable precision if known:

(i) B.,and therefore R, by the relation B, = 8”2#%;
(ii) The approximate value of the dissociation eneréy D, to which V goes asymptotically;

(iiii) The constants in E,, where w, together with B, determines the radius of curvature of V in Re.

For Davidson [74], these data leave the constants a, b, - - - in the ¢ series undetermined, though they determine k in

(135). Thus, he proposes a functional form for the potential given by:

k(R R\
Vpav(R) = n (E - ?) (136)
and this relates to the series (135) as follows [74]
k(R R\ _ Sp2 643 T4
4(RE—R)—/<§ (1—§+4§—4§ +4§" (137)

so that in the series we will have only the first non-zero term, that is, Vp 4y (R) is compared to a harmonic oscillator. As
the energy levels of a harmonic oscillator are given by the Eq.(100), we can already conclude that in Davidson'’s potential,
the constant of anharmonicity we x is zero.

Thus the exclusively vibrational part of the energy levels of E, ; in the Davidson potential contains only the first term,
i. e. has only (v+ %) hwe. However, in the rotational part of E, ,, the same does not happen. The complete expression for
the energy levels will be given by [74]

2 3 4
1 1 4B 1
EV’J:(V+§)hwe+hBe(J+§) - w:2 (J+§) T (138)

The Davidson potential also has the following characteristics:

(i) Vpay — oo,whenR — 0;
(ii) Vpay — o0, when R — oo, which is not desirable, since the curve does not have an asymptotic behavior, but was
already expected due to its harmonicity;

(iii) Vpay(R)hasaminimuminR = R..
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In 1957, Varshni [14] further pointed out that the relationship

keRo2 = 8k = constant (139)

where k. is the force constant, leads to

ae =0 (140)

which is not valid for any molecule [14].

The Davidson function was also used to improve the precision of potential curves obtained experimentally, through
the inverse perturbation analysis (see for example Ref. [75]).

3.8 | The Poschl-Teller function

Poschl and Teller [29] (PT), following the steps of Klein [9] in the search for potentials, proposed two functions and
investigated the extent to which there could be a relation between the frequencies of vibration of a diatomic molecule
and the function Ar(V), where Ar(V) is the distance between two points of the potential curve that have the same

energy, i. e., the same potential value V.

The first potential proposed by Péschl-Teller [29] was

2.2
o[ pB-1) y+1) },(oga(R-Ro)s%), (141)

Vi(R) =
k) 872p | sin? a(R — Rg)  cos? a(R — Ry)

where p is the reduced mass, Ry is an adjustable real parameter, a is a reciprocal length, 8 and y are two numbers greater
than one, not necessarily integers.

The ansatz for the eigenfunctions that satisfy the Schrédinger equation proposed by Péschl-Teller is given by [29]:
y =sinf a(R - Ry) - cos’ a(R - Rp) - z, (142)
where z is given by the series
z= Z ary* (143)
k
being y another independent variable in (142) given by
y =sina(R - Ro). (144)

Substituting this ansatz into the Schrédinger equation gives:
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872 u

Aok + B+ 2k +B+1)=BB-D]+a+k|-(y+B+Kk2+ TﬁE =0, (145)
a? h
which gives the following expression for the energy levels
232
E = X s pron. (146)
8n2u

The first Péschl-Teller potential V; (R) assumes infinite when R — Rg = 0 and when R— Ry = n/2a, and has a minimum
in a more flat region of the curve in the smaller value of y + 8. The energy levels depend on the sumy + 8, and if this value
increases, for small quantic numbers v, the energy levels become practically equidistant. The differences between the
levels are more evident the higher the energy (or the greater v), and the vibration frequencies will increase as the energy
increases [29]. This potential is most useful in the discussion of high excitation vibrations of polyatomic molecules.

The most well-known and used potential form of Poschl-Teller is the second, given by [29]

h2a? BB-1) yir+1)
872 | sinh? a(R — Ry) cosh?a(R - Ro) 1’

Vpr(R) = (o < a(R-Ro) < %) (147)
whereagain g > 1andy > 1.

With the same treatment given to the first potential, the ansatz now so that the eigenfunctions remain finite, in the
region where a(R — Rg) < 0O, it will be given by:

w = sinh? a(R - Ry) - cosh™ a(R - Ry) - z (148)
and z is now developed according to the powers of sinh a(R — Rgp). The condition to truncate this series becomes
Ep = —a?(=y + B + 2v)%. (149)

Only when —y + B + 2v < 0, the values of the energy for (147) are discrete.

Again,when R — Re, Vpr — o0. The curve has a minimumwheny - g > 1.

Now the distance between levels depends on y — 8, and if this value increases, for small quantic numbers v, the
energy levels become practically equidistant, just as occurred for the potential V;.

Poschl and Teller also pointed out that in quantum mechanics for potentials with the same energy levels one can
have Ar(V) different.

The rotational levels for potential Ve (R) are given by:

BV:Bo(1—V ZB() f23), (150)

(f3)2

d2vpr

- .
IR |R=re R=Re

In this comparative study between the Morse [7], Rosen-Morse [28] and Péschl-Teller [29] potentials, Davies [76]

d*Ver

where f; = <R3

and f3 =
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calculates the spectroscopic constants of hydrogen halide molecules. For this, he used as base for the data treatment,
the expansion of the potentials in power series, centered in the equilibrium distance R, that is, doing:

d*Vpr
dR* |r=g,

1 d?Vpr

il 1 & Vor
2! dR?

TGRS |, (R=Re)*+--- (151)

V(R) =

(R=Re)?+ (R-Re)®+
Re Re

=0.
R=Re
When comparing the values of the derivative of the potentials, which provide relations between spectroscopic

remembering that dZZT

constants, obtained with the three potentials, taking the parameters calculated by Kirkwood [77], the P6schl-Teller
potential is the one that, in general, presents greater accuracy, being slightly better than Morse function. Both, as we
have seen, depend on the same number of arbitrary constants, however, those derived from the Péschl-Teller potential

are more extensive, but do not difficult. The Rosen-Morse potential was the worst performance among the three [76].

Varshni[14] analyzed the simplest version of Vp7(R),
Ver(R) = M cosech?(aR/2) — N sech?(aR/2) (152)

where a = \/ko/4De, N = Do/[(1 — y?)2], M = Ny* and y = tanh (aR./2).
Following the calculations of Davies [76], Varshni also obtained the spectroscopic constants derived from the

potential, given by:

2
o = [a} cothat — 1188 (153)
w,

e

and

2.1078 x 10716

2

(154)
R2u

WeXe = 8A -

where A = k. R§/2De is the Sutherland parameter.

3.9 | TheManning-Rosen function

In 1933, Manning and Rosen [78] (MR) proposed a new functional form to describe diatomic potentials given by:

1 [B(B-1)e2RlP AeRIP
kp? | (1-eRlp2  1-eRlp

Vmr(R) = (155)

where k = 8un?/h?, Aand g are two dimensionless parameters [79], but parameter p has dimension of length. This

potential remains invariant by mapping 8 < B — 1, can be rewritten in simplified form as:

Be RIP + ce 2RIp
Vmr(R) = —(1 ~ eR/p)Z (156)
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where B = Aand C = —-A — B(B - 1). However, this form of the Manning-Rosen potential is less well known.

The allowed values of the energy are given by [78]:

1 [ A-B wv+2B))
T kp? [2(p+ V) 2B+v) | (157)
The potential (155) must satisfy the following conditions:
(i) d‘%’* - =0,i. e, Vpr hasaminimumin R, = pIn [1 + %],fcrﬂ > 1;
=RKe
(i) Vpmr(0) — Vir(Re) = De, where D, is the depth of the well;
2
(iii) ¢ V";’R = ke, Where k. is the force constant .
aRZ | e,
Using conditions (i) and (ii), we have a relationship for De:
A2 2
e = L L (158)
32un?p?B(B — 1)
or equivalently, a relationship for the parameter A:
1 2.2
A= 6‘%#(6'?9/” —1)D,. (159)
From these relationships, Wang et al. [80] suggested rewrite the Manning-Rosen potential as:
efele -1’ 160
VMR—De(1_m), (160)

where the term D, was added to the function (155) so that Vy r(Re) = 0, without affecting the physical properties of
the potential function.

The expressions for the vibrational rotational coupling parameter a, and anharmonicity parameter we x., can be
obtained from Dunham'’s relations (15) and (16):

R3 2Re/p(gRelp 1 632
e = { 35 € (e +1) 1} OPe (161)
p>A (eRe/P - 1)3 We
and
_ [ 15RE [ e*Relp(e?Relp +1)2]  RZ [ e2Relp(76?RelP + 226RelP +7)]| 2.1078 x 10716 (162)
WeXe =1\ 53p2 (eRelp —1)3 PN (eRelp — 1) u ’

where B, is the rotational constant and A is the Sutherland parameter.
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According to condition (iii), we have the parameter p given by:

2D, e?Relp
il (163)
or, using that k. = 472uc?w?2, we have
e2Relp _ 212 uclw? (164)
pz(eRe/P — 1)2 De '

The dissociation energy D for the Manning-Rosen [78] potential differs from the value presented by Morse in the
Eq. (103), increased by §

2

=—° 45 (165)
dwexe

)

which causes even greater problems than those obtained with the Morse potential in this region, and is still less
asymptotic. Thus, the potential of Manning-Rosen is not considered adequate [14].

3.10 | The Newing function

In 1935, based on Morse [7] potential, Newing [81] (NEW) begins his research by a functional form for the potential of
diatomic systems. He assumed a potential with three adjustable parameters, V(R, De, Re, a) as well as Morse function,
and with the same basic characteristics: V must be infinite at R = 0, V tend to a finite value when R tend to infinity and

have a minimum value at R = R,. For0 < R < o, the potential of Newing is given by:

_ g-a(R-Re) 12
1-¢ ] (166)

_ 2
VNEW(R) = —De + Def [7/3 T

where g = e?Re, D, is the depth of the well and the a parameter is different from what appears in the Morse function
(99), and should be chosen to best agreement with experiment.

The vibrational levels are given by:

E, = (167)

2
(-4 +(2A—l)(zﬁ*‘+1)(”1)_13A2</3+1>2(V+1)2+...
REAB=D+11" Qa1+ 12 20 3 [Jag-1+ 3

where K = 872u/h?a%> and A = KD(B - 1).

Newing estimated that the constant a is of the order of 108. Comparing with the expansion (97), he also observed
that just like the Manning-Rosen [78] potential, the value of the dissociation energy D differs by a small value in relation
to the value of the dissociation obtained by Morse (103), and you can set this value to D + §. Newing showed that §/D
is of the order of 10~'6, emphasizing that the difference in relation to the energy of Morse dissociation is very small.

The great interest shown in the work of Newing was to obtain a relation between the nuclear distance of equilibrium
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R and the frequency of vibration of the molecule we. In his work, he demonstrated such a connection between these
parameters, obtaining [81]:

- 18, (K)2(3_
2=9.507x 10 we(D) (2 Y),
1 (168)
B 2 B _ é 2 _ 4wexeD
p= @y -1y Y‘( 4) X = we?
for1 < X <3.
For X < 1, Newing obtained [81]:
5= [2X =1+ (1 +4X - 4X2)]
a 41 - X)X ’ (169)
3.8 x 10"/(Dy) - wexe[1 - B+ /(B2 - 1)]
a= .
We

Since the relationships between R, and w, are obtained by Newing involve D, further research was necessary to
obtain a more definite relation, as was pointed out by Varshini [82].

3.11 | The Huggins function

Huggins [20] (HUG) in 1935, was dedicated to modifying the potential proposed by Morse [7] and, like Newing [81],
to obtain interesting relations between the spectroscopic constants. However, he was concerned with obtaining a
potential and its constants only for diatomic systems composed of elements of the first row of the periodic table and
having 12 or more electrons, with the exception of Li.

First, he considered the Morse function (99) written in the form:

Viug(R) = Ce 2(RRe) _ 7gma'(R=Re) (170)
with a = 22’ and C” = 2C. Here C - C’ is the dissociation energy.

To modify the Morse function, based on the Born-Mayer [19] repulsive potential, Huggins proposed that the
repulsive part of the original potential be replaced by a term that would be the same for all electronic states of a
particular diatomic system. Thus, he suggested the following change®*:

C = ce*‘?(Re*Rn) (171)
and replacing in Eq.(170)

ce*Z(R*Re) — ce—a(R—Rm) (172)

4ce#(Re=R12) jsused as a repulsive term to calculate lattice energies and interatomic distances for the alkali halide crystals, with the same value a for all
these crystals (See for example Ref.[83]).
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where c is taken as 10~'2 erg, R,R. and R, measured in Angstroms units and a and a’ in reciprocal Angstrom (108
cm™'"). Once the value of a is determined, it is possible to obtain the values of the constants a’, C’, C and R;, from the
spectroscopic constants we, we Xe and Re.

For the types of diatomic systems considered by Huggins, the value a = 6 is the most usual, which leads him to
conclude that this value of a leads to the same value of R;, (approximately) not only for different states of the same
molecule but also for different molecules [20].

Huggins observed that using a = 6 to calculate the largest spectroscopic constants (i. e. except we ye and we ze) and
the dissociation energy C — C’ when R — oo, did not lead to correct values. This is probably explained by the fact that
the Morse curve does not have an adequate behavior for large values of R [7].

In the case of the dissociation energy he used the value a = 4 and the relation:

D =08(C' - C). (173)

When compared to the experimental values, the energy of dissociation calculated by Huggins from this equation
presented a result more accurate to that calculated by the original Morse equation for most of the diatomic systems in
several electronic states. The results were lower than Morse only for O; inthe states b 4):; and X 2|‘|g, CNin the state
B23*,BeOinthestates B'Mand A's*, COinthestates £ 'M,B'S and X '3, NOin the states D, C 25+ and A 25+
and for BeF in the ground state X2+,

The value of C — C’in(173), as well as ', is obtained from the spectroscopic constants we, we xe and the a:

0.0585uw?
(c-c)= Hoe (174)
(3322/16 + 12wexe/BeRe)Z a — Ta2 /4
with

& = (3332/16 + 12wexe/BeR2)? —Ta/4, (175)

being B, the rotational constant.

To obtain the values of R, Huggins used [20]:

(Ri2 — Re) = (2.303/a) log 10'2C. (176)

For the diatomic systems tested, a = 6 provided practically constant R;, values, as desired, varying between 1.44A
e1.45A.

The rotational constant a, was calculated from the relation:

ae = (282 Jwe)[(a + a')R. — 3], (177)

and the best value for a in this case is a = 6, with average deviation from the observed value of a, of only 0.003 cm~".

When compared to the Morse function the a, values calculated by Huggins did not present more accurate results,
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showing only better for the state X 23, * of N3, for the states 81,2 "M, and X "X, of Ny, for the state "1 of F, for
the state A 21 of BO, for the states A "M and a 31 of CO and for the state B2 of NO.

Finally, Huggins showed that the spectroscopic constant we x. is given by [20]:

wexe = (1/14)(1.392% + 4.89aa" + 1.3982"2). (178)

Avyear later, in 1936, Huggins [84] following the steps of Badger [85, 86] published a second paper on molecular
constants, however the focus this time was the relationship between the equilibrium distance R, and the constant force
ke. He further expanded the number of diatomic systems studied, now considering the first two lines of the periodic
table.

Badger [86] showed that R, is given approximately by the expression

1 1
Re = d,‘j + Ci; /kej, (179)
where C;; and dj; are constant depending only on the rows in the periodic table in which the two elements comprising
the molecule are located.
Huggins then showed the relationship between his method and that of Badger to obtain R, via ke, and compared
the methods. Firstly, he considered the constant force (in megadynes per centimeter) [84]:
ke =5.85x 1078 pwe? (180)

and combining with Egs. (174), (175) and (176), he obtained:

2.303 100k,
Re:Rn——log( 3 e,) (181)
a a? - aa
which is equivalent to
Re = |Rip + 2303 Iog( lOOks ) - K;j] + [K,-j _ 2308 log ke] (182)
a ac —aa’ a

where Kj; is any distance.
Through suitable choices for K;;, Huggins notes that Eq.(182) is approximately equivalent to Eq.(179). Thus, he

obtained a relation between the constants d;; and C;; of the Badger equation given by

1
2 _ C::3
2.303 (a aa ) Gy (183)

dij =Riz+—— o .
P W [ e

In comparison with the experimental value of Re(exp) , the values obtained by Huggins are more accurate than those

of Badger. In 35 different states of the 24 types of molecules tested, the R, — Re, deviations were smaller using the

exp)
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Badger formulation, whereas, for 61 different states of 35 types of molecules, the Huggins formulation showed the
smallest deviations (For more details see Ref [84]).

3.12 | TheHylleraas function

In 1935, Hylleraas [87] (HYL) proposes what he called the general expression for the potential of a diatomic system,
and ensures that the most important spectroscopic constants are theoretically derived from it. To build your potential,
Hylleraas initially, like most of the work shown so far in this article, imposes basic conditions so that its function is

minimally reasonable to describe diatomic potentials. Are they:

K2

e = 87{2;12’

e 1202 (184)

V(Re) = =D, V'(Re) = 0, V(Re) = p(2mwe)? = =5

He introduces a new p variable, making

V(R) hwe R-Rse R 2VB.D

Flp) = —2, p = or— =1+ (185)
=5 P=20ED R R hwe
where, is immediate that

F(0)=-1, F’/(0)=0, F”(0) = 2. (186)

Like the others, it also treats the rotational energy of the problem separately, falling into a usual one-dimensional

oscillation equation:

hwe\? d>  E ~
{(ZD) dp2+D—F}w—O. (187)

Hylleraas, firstly showed that the potentials Rosen-Morse [28], Manning-Rosen [78] and Poschl-Teller [29], and
their respective equivalents to calculate the vibrational energy, can be obtained in a much simpler and faster way. By
transforming Eq.(187) in equations of the hypergeometric type, which can be solved in an elementary way associated
with the three potentials, now written as:

1+k 1+k 2
l.LF=- NI + (e(1+k)p " k) (Rosen-Morse) (188)
T k 1=k ) (Manning-Rosen) (189)
T e —k T e —k &



40 ARAUJO & BALLESTER

ILE = _2(1 +k2)er - 2k? ((1 + k?)eP - 2k?

2
@ @ik @ @+ ) (Poschl-Teller). (190)

In solving the three hypergeometric differential equations associated with each of the three potentials, in which
the same ansatz for the wave function can be used for the three cases, Hylleraas obtained the following formulas for the

vibrational energy, respectively:

J1 o R (hee)? 1 [E 1 1 (BN hwe( 1
Kk 2 \2 T+ Kk T+k\ K2 D)= "2

e | 2 191
E_ |, K (hwe)’ _hwe (1 %(k—kz)(%)”(‘”” (192)
"N o \V'"7l20) \""2 e ? e (1
1+T(2D) k35 (V+7)
2 Lk + k) (12e) oy + 1
E k2 [ hwe hwe 1 2(k+ )(T)) v(v+1)
/= =A1+— || — 5= [v+ =]+
D 4 2 D 2 k2 [ hw, 2 hw, 1
1+7(2’T5) +kz’T>e(V+i) (192)
»-1 1+k—2 five Z—LWI—E+L LI O Y
k 4\ 2D T-kY D 1-k\&k2 D| 2D 2
4 2 L4 2
Y L (A I ) C (Ul S L S 7
D 16k2 16 \ 2D 16k2 16 | 2D 2D 2 (193)

_JOr0f 1 (hwe\? -kt 1 (hwe\® [E_hwe (1
1662 16\ 2D 1662 16\ 2D b o \""2

Observing that the above all energy formulas result in r;“ﬂ’f (v + %), and therefore approximate according to the
phase transition method (see details in section 2.2), Hylleraas obtained the following relation:

1 | E hwe 1

Analyzing the potential of Morse with three parameters, and considered one of the most accurate at the time, and
that of Rosen-Morse that with four parameters showed a slight improvement, Hyleraas [87] proposes a potential that
contains six adjustable parameters. If on the one hand this potential really should guarantee more accurate results
and applicable to a greater number of different diatomic systems, on the other hand, a potential involving such a large

number of parameters generally requires quite sophisticated calculations.

The potential proposed by Hylleraas is given by [88]:
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) ) _(1+a)(1+c)(x +b)
VhyL(R) = F +-D - D&, _§_m7

1 1 1 1
(1+k)p - _
T 1+ k 1+a+1+c 1+b° (195)

X =e€

_ hwe (R—=Re)
2VB.D Re

where D, B, and hw, are spectroscopic constants and R, is the equilibrium distance.

For b = a, c = —k we have the potentials of Manning-Rosen, for 6 = a, ¢ = 0 the potential of Morse and for 6 = a

¢ = k the potential of Rosen-Morse. Similarly, if we have b = ¢, a = —k, 0, K we have the potentials of Manning-Rosen,

Morse and Rosen-Morse respectively. Finally, if we have a = —k, ¢ = k, b = —2k2/(1 + k?), we get the potential of
P&schl-Teller.

For the potential Vv (R), the energy equation will be calculated, using the same idea of (194), by:

g e (1
27”}{\/ 1+— +§2dp \/ (1+—)+52 ’;dg_z‘;) (v+2) (196)

where 4 dg is expanded in power series of ¢

g
d—§=1+a1§+3252+33§3+a4§4+

(197)
Pl Gl R L R B0

The energy formula can finally be expressed as [87]:

1o &= %(v+%)+%(1 azz)(h“’e)z(‘”%)2

2

+[3(a2 — aa) + 5(1 - 22)?] (@%)3 (V+l)3+"' (198)

g
2

1 hw,
_ hwe 1 7(1-a (T)
-t (v ) - oL

The coefficients a1, a,, a3, a4 may be derived from the expression:

2
_ log - 11+ ke — 21 ko(1+K)E
P=TE 18T { 2 T4 (ky +ko+2K7 ko) + V1 +(ky + kg +2k; kg)E2|—4k1 ko(1+Kk1)(1+k9)E2

(199)
b= (15 - 15) 0+ 0. k= (1 - )+ .
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or still,

a1 =1—k—2kiko
ay =1 -k + k2 +3kiko[k + k1 + ko + 2k1 k2],
a3 =1—k+k%—k3—dkiky [k(k + ki + k + 2+ 2k1k) + (k + k1 + k + 2+ 2k1 k)2 + kiko(1 + k1)(1 + k) + 3K k1 k|
ar=1—k+k2—k3+k* +5k1ko{k(k + ki + k +2+2kikp) - [(k + k1 + k + 2+ 2k1ko)? + k2 + (1 + k) k1 k2]
+k1ko(1+ k1)(1 + ko)[k +3(ky + kK + 2+ 2k1k2)]}.
(200)

As observed by Varshni[14], the potential of Hylleraas does not provide any relation between the spectroscopic
constants, unlike the potential of Morse, Rosen-Morse, Manning Rosen and Pdschl-Teller.

Soon after proposing its potential function, Hylleraas [89] uses it to calculate the curves for the diatomic systems N,
and CdH, both in the ground state. In the case of N, the accuracy that Hylleraas obtained for the series of the vibrational
energy E,, with only two terms, is remarkable.

When comparing the Morse (N,) and Rydberg (CdH) curves, he sees a good agreement with Rydberg. However,
when compared to Morse, the potential curve of Hylleraas presents good agreement for the vibrational levels of 0 to 10,
presenting a very poor result in the long-range region (and in the levels v > 21), where the Hylleraas curve tends to be
less infinity [89].

3.13 | TheExtended Morse function

In 1938, Coolidge, James, and Vernon [31] (CJV) based on the Dunham [23] theory, have established that any potential

curve of a diatomic system, which has an asymptotic value D, can be written as
V() =DF(), &=(R-Re)/Re. (201)
Furthermore, for CJV all potential energy functions must have at least three parameters, that is, in addition to D

and R., a third parameter g would always be present to ensure a good fit of the curve. The energy formulas will be
related to the Dunham coefficients (203) and will be expressed in terms of the constant C, given by:

2
c? = HRomel (202)
HRe
where R, is the Rydberg constant® and m, is the mass of the electron. The Y/; will be related follow:
Y1,O ~ We _YZIO ~ WeXe (203)

Yor~Be Yj~ae
To obtain terms of highest order, i. e., up to Y;(, Yo, Y|, Y3;, Y53, Yaps Yi5 @and Yg,, CIV [31] opted to determine by
numerical integration the values R, and B, for large v, and so adjusting the values the higher Y’s as to reproduce these
values.

4
5The Rydberg constant is given by Res = 3 m§;3 =1.0973731x 107 m~" for heavier elements and Ry = 1.09677576 x 10’ m~" for the hydrogen molecule.
60 c
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The potential proposed by CJV is an extension of the Morse function, being known as Extended Morse (EM)
potential. Using the formulation (201), this potential is given by:

8

F&) =) calt - 25" (204)
n=2
orintermsof R,
8 _opRRe
Vem(R) =Y call - Re " (205)
n=2

where ¢, are adjustable parameters. These can be obtained from the relationships with the coefficients of Dunham:

ag = 4p%Dc,

agar = 4B2D(-2c; + 2¢3)

agag = 4B*D(7/3cy — 6¢3 + 4cs)

agas = 4B°D(-2cy + 10c3 — 16¢4 + 8¢s) (206)
agas = 4B°D(62/45¢c) — 12¢c3 — 342/3¢4 — 40cs + 16¢¢)

agas = 487 D(—4/5¢c; — 1121/45¢3 — 531/3¢4 + 1062/3¢s — 96cg + 32¢7)

agag = 4B8D(127/315¢c; — 91/5¢3 + 645/5¢4 — 200cs — 304cs — 224c7 + 64cy).

The parameter 8 may be chosen so as to satisfy the auxiliary condition, },, ¢, = 1, if it is desired to reproduce the
observed dissociation energy D, or as an adjustable parameter to satisfy other condition.

CJV exhibited potentials and energy formulas for the potential of Morse, Péschi-Teller, and Hylleraas, in addition to
the one proposed by them and presented a comparative study for the H2 system in the excited state 1s02so 3Zg.

The curve obtained with the potential Extended Morse function reproduces the values of the coefficients Yig - - - Y40,
Yo1 - - - Ya1 given by Sandeman [90], who a priori used the H, system in the state 1so2so 3Zg in his work. The curve
presents correct behavior, both short and long range with deviations within the spectroscopic limit for R between
1.5 a1 and 2.5 ayy, and only one deviation of 2cm™" for R = 2.7 ay and of 8 cm™ for R = 2.9 ay.

In relation to the energy formulas, both vibrational and rotational, the function of CJV was much higher than that
of Morse, Poschl-Teller, and Hylleraas. The errors in the reproduction of energy levels by the potential curve using
Dunham’s terms supplemented by results of numerical integrations are practically zero in the first levels (0 < v < 3)[31].

Among the comparative potentials, the one closest to the extended Morse is the Hylleraas, however, this occurs

only when it is constructed by the method proposed by CJV.

3.14 | The Mecke-Sutherland function

Firstly,in 1927, Mecke [91] based on the work of Born and Handb, used a well known analytical expression in those time

to develop his diatomic potential:

g _ & ] . (207)

RP  R9

r2

3 . .
Here ay is the ray of the first circle of Bohr,and ayy = ————*——
H v H = 4xme22052910-8
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Here, the first term represents the potential of attractive forces in the molecular association, since they are supposed to
be purely radial forces, they may, in any case, be inversely proportional to an initially arbitrary power p of the central
distance R. The second term represents the repulsive part of the potential. The inequality p < ¢ must be maintained.
For dimensional reasons, the total expression was multiplied by the square of the elemental charge e. The constants in
(207) are related with spectroscopic parameters (R, a, b and D).

For Mecke, the equilibrium position, that is, the distance R, from the nuclei, caused by the compensation of the
repulsive and attractive forces that prevail in it, and thus corresponds to a minimum of the potential energy, was given
by

RIP =92 (208)
P-ci

To obtain the elastic potential (207), he developed the expression for vibrations with a small amplitude x (R = Re +x)

in power of x, obtaining:

2 _ 2. _
V:_(e ci(q p))+e01 Pa=pP) 2 (209)
RE -q 2RP¥2
or more generally,
2 3 4
B D, [ x D3 [ x Dy [ x
V=-b+ 3 (Re) 3! (Re) Ta (Re) (210)

where D; is a product of dissociation energy D by a simple (p, g) function. In particular, D, = p - g - D, and as is well

known, the x2 coefficient immediately gives us the value of the molecule’s natural vibration

2 _
oy = | P2 _ [e2apa=p) (211)
J REJ

which the two constants in (207) can be determined by v (=a from oscillation equation an — bn?) and J.
Analyzing the expression (207) Mecke [91] observed that the values p = 1 and g from 3 to 4 were adequate for most
hydrides, and p = 1 or g = 4 were adequate for oxides and nitrides spectra. In particular, for most hydride the potential

curve in the immediate neighborhood of the equilibrium position is best characterized by particularly simple approach:

2 q
yo_,° (&) . (212)
R " gr. \ R

Years later, Sutherland [43] suggested an analogous functional form to express the mutual potential energy, known
as Mecke-Sutherland (MS) potential, given by:

Virs = o — (213)
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where, since (dylgs )R_R = 0, the relationship
ma = nBRI" (214)

can be obtained.

Sutherland derived the relations between force constant k., equilibrium distance R, and the dissociation energy
D. He expanded V), s about R, in powers of (R — R.), such the coefficient of (R — Re)?, i. e., the force constant k. was

obtained by:

nB (n+1 m+1
b 22 (- m) 219
and using the relationship (214)
ke = m“é';:zm) - "P g’n;m) (216)
e e
The dissociation energy was obtained by Sutherland [43] from (214)
a m
D=zr (1 _;) (217)
or from (216)
2
p=kRe _op (218)
mn

where A is the Sutherland parameter.

This result once reminiscent of the rule of Mecke, presented during a congress in Leipzig (Leipziger Vortrage 1931).
In this congress, Mecke was criticized by prominent physicists that only normal vibrations involving all atoms of the
molecule are possible, but not vibrations of isolated groups of the molecule. However, Mecke's opponents were wrong.
They did not consider the large difference in the stretching frequencies of CH, OH or NH groups due to the low weight
of the H atom (as compared to frequencies where no H atoms are involved), nor the influence of the great differences
between single, double, and triple bonds and their respective frequencies, effects which allow a mathematical separation
solution in the respective eigenvalue equations. Thus the Mecke’s concepts are adequate and clear even today [92].

More some spectroscopic parameters can be obtained using the relation (218) [14]:

28?2
ae = (m+n)—= (219)
w

e

and

2 2 2.1 10716
WeXe = 5m2+%mn+§n2+4(m+n)+4 % (220)
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3.15 | The Hulburt-Hirschfelder function

The Morse function was considered limited because is not flexible due to the reduced number of parameters, which
initially seemed to be an advantage, because it made the functional form simpler. To tackle this limitation, in 1940,
Hulburt and Hirschfelder [6] (HH) suggested the addition of two parameters, i. e., functions involving five spectroscopic
constants. These two parameters to be added in a so-called correction term were easily determined, and the five-
parameter functions proved satisfactory for a large majority of diatomic molecules. However, the problem to obtain
the potential V(R) already reported in the Morse function for large internuclear distances was not solved with this
correction. Since the high levels of vibrational energy are unknown for many molecules, it is virtually impossible to find

a unique potential that could be universally used for diatomic systems.

For Hulburt and Hirschfelder [6], any functional form intended to describe a potential energy function must have
as basic characteristics a value close to infinity when nuclei approach each other, passing then by a minimum in the
equilibrium distance and a value close to the dissociation energy when the nuclei become distant. They analyzed the
best-known functions with three, four, five, and six spectroscopic constants, and concluded that a function with five

parameters would be ideal, being able to be used by the largest possible number of diatomic systems.

From the fact that the spectroscopic constants we, we xe, Be and a, are known for most diatomic molecules, where
Be = h/(Sfrz,uRgc), the function proposed by them had three parameters used to recover the usual Morse function plus
two parameters, b and ¢, which corrected the curve of Morse, and at the same time were obtained by means of the
known constants. The function of Hulburt and Hirschfelder has the form:

Vi (R) = Do[(1 = e7)2 + (1 + bx)cx3e™2X] (221)

where x =

— e [ R;Re ] and the constants b and c are given by the relation
2ABeDe)2 b °

¢=1+a1(De/20)?, (222)

71 _ Deay
12 ag

b=2+ (223)
c
being ag, a1 and a, the Dunham coefficients given by expansion [23]
a0 = w2 /4B, (224)
a1 = =1 — dewe /686> (225)
a = §21 2_ g DeXe (226)

4 3 Be

What made HH believe the potential they presented with five parameters was ideal, were tests performed with
selected diatomic molecules in certain states which were not analytically well described until then, but when using

Vi H(R) as potential function presented good results. They are: Hy in 1 s<725a3)2g+ state, CdH and N, both in the ground
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electronic state. For Hy in 1 50250322 state the HH potential was the one that best fitted the curve, not better only
than the potential by Hylleras [87] with six parameters or than the Poschl-Teller [29] that have the same vibrational
levels of the Morse function, but on account of a fourth parameter, provides better fitting for the rotational levels.

For the CdH, the maximum deviation in relation to the Rydberg [8] curve, which is a reference in the fitting of this
molecule, was very small (of the order of 0.35 kcal mol~1).

For N, molecule, when compared with the Hylleras [87] fitting for the first 22 vibrational levels, the HH potential
again showed good agreement. Also comparing with the Extended Morse curve of Coolidge, James, and Vernon [31], it
presents exactly the same results, however, these are more easily obtained by the HH potential as parameters can more
easily be determined in terms of Eq. (221).

For the H, molecule, the required corrections to the Morse curve are rather small. With the constants 6 and ¢
introduced, the Morse curve was corrected for small and large nuclear separations, and with the potential HH, the curve
is much smoother, providing an improvement in the description of the asymptotic limit.

The potential of HH was conceived with the purpose of giving the best fit for the spectroscopic constants. However,
it is difficult to find a suitable polynomial to express both the lowest and the highest vibrational energy levels. Then, the
polynomial function should also be multiplied by an exponential term, such as:

2
E, = A[1 —exp(=1/2(v + 1/2))] |1 + 0,1 (v + %) - 0.005 (v + %) . (227)

Thus, there would have two different series for each case, the difference is because exponentials with large negative

values converge asymptotically to zero. For small values of (v + 1/2), the energy levels are calculated by the series [6]:

2
1 1

E, /kcal mol ™' =O,5(v+ 5)—0.075 (v+§) TR (228)

and for large values, the series in kcal mol~!

1 1)2
E,/kcalmol™" =1+0,1 (v + 5) —0.005 (v + 5) oen (229)
The method to obtain the corresponding energy levels would replace (221) in the Schrédinger equation and
perform numerical integrations.

In 1961, Hulburt and Hirschfelder [93] perceived an error in the first sign of the expression referring to parameter

b, the correct signal is negative and not positive, i. e.:

%
12 ag
b=2-——-—

(230)
This led researchers as Tawde [94] and Herzberg [95] to question the fit of their potential function, being considered
poorly fitted because of this error.
In a paper published in 1954, Tawde and Gopalakrishnan [94] even stated that the fitting of the HH function was

good only for distances larger than the equilibrium distance, i. e., for R > R, in the case of the C, molecule. However,
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after re-counting with the correct sign of parameter b, Tawde and Katti, who first notice it and communicated the
authors about the error in b, came to the conclusion that the function by Hulburt and Hirschfelder was indeed a good
representation [96]. They also verified for other diatomic molecules the function HH is far superior to several others
even more known than the Morse function considering the prediction of molecular constants.

3.16 | ThelLinnettfunction

After analyzing the Morse[7] and Mecke-Sutherland[91, 43] potentials, the former being an double-exponential function
oftype V = a-e~™R — b . e "R and the latter a double-reciprocal function of type V = o R—bn, Linnett[60] proposed a
two terms function containing elements from both. Its intention was to improve the fitting of the potential energy curve
for several diatomic systems and to obtain satisfactory connections between the parameters k. and R, which did not
occur in the Mecke-Sutherland[91, 43] potential.

It was then that in 1940, Linnett [60] (LIN) introduced a potential function more generic than the thus far proposals,

involving four adjustable parameters, given by:

a
Viin(R) = Rfm—b-e_nR. (231)

He called this potential of reciprocal-exponential function, consisting of two terms, both going to zero when R
becomes infinite. The first term represents the repulsion between atoms, going to +co when R = 0, and the second term
represents the attraction of two atoms, going to —eo when R = 0. Thus, the behavior of the total function will depend on
the values assigned to the parameters that compose it.

Linnett devoted himself to testing its potential for diatomic systems composed of atoms belonging to the second

2
period of the periodic table. First, considering the relationships (%)R =0e (d!#) = ke, the following
e R

relationships were obtained for the dissociation energy D and for the constant force k.[60]:

_a m—nRe
D= R (7/‘1& ) (232)
and
ke = W ~m(m+1-nRe) (233)

combining (232) and (233), and by eliminating nR, is obtained

(234)

One of his major concerns was to explain the relationship between k. and R, since the functions of the double-
reciprocal type did not have the ability to do so. For this, it was necessary to assume the parameters m and a constants
for all states of the same molecule, with n and b6 calculated and fitted for each state conveniently from two other

parameters. Linnett [60] used m = 3 for all studied molecules in his tests, since k. Rg according to Fox and Martin [97]
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was approximately constant, and when analyzing the behavior of this same expression when m = 4 came to the
conclusion that if a is constant, the expression ke RS does not significantly change, that is, it can be considered constant
as well.

The probable reason for Linnett to have used the values m =3 and m = 4 in his tests is that when calculating
parameters such as vibration frequency and harmonicity, the potential is usually expanded in a series of powers around
the equilibrium interatomic distance and this series is truncated in 3" or 4" power, the other terms being generally
negligible. Thus, it was reasonable to consider only such m values.

To the parameter a was given a different value for each molecule, taking into account the atoms involved, the charge
of the molecule, among other aspects.

Linnett [60] calculated R, from the observed values of k. and D for certain states of the following diatomic systems:
Liz, C2, N2, Oz, BeF, BO, CN, CO,NO, N7, OF and CO*.

By using k¢R2 = a and kRS = a, being a constant chosen for each molecule, Linnett [60] came to the conclusion
that in general, the expression with the 6th power of the interatomic distance provided better results than the 5th. For
the states of the molecules in general, the mean error in the calculation of R, using ke R.® = a was 0.9% while using
keRe® = awas 1.5%.

For the calculation of we x¢ from k. and D, Linnett expanded the potential function (231) on power series in (R — Re)
in the neighborhood of R, neglecting the highest terms in the series to be able to use the Kratzer [16] method, obtaining
avalue for we x¢ in function of m, n and R, given by:

WeX f { H <m+1><m+2)—<nRe>2]2 - [<m+1)<m+2><m+3>—<nRe>3] } (235)

e= 647[20/1Re2 3 (m+1)—nRe (m+1)-nRe

where p is the molecule reduced mass.

Except for Li, and O,, we xe Values were better reproduced by the Linnett potential than by any other known before,
with an average error on all states of 16%, greatly improving corresponding error obtained with the Morse potential, of
about 46%[60].

When the values of we xe Were calculated using the same parameter a, but now starting from k. and R, the average
error increases very little, being at the 18%, already the calculated average error for the dissociation energy D stands at
28%, not so good, but slightly better than the calculated via Morse potential[60].

Also, the spectroscopic parameter a, can be obtained from equation:

_ 6BZ [(m+1)(m—1) = (nRe)* +3nR,

we 3(m+1-nRe) (236)

Ae

but this was not evaluated by Linnett in his paper published in 1940. Subsequent work, such as Varshni [14] and of
Steele et al. [15] approached this calculations for Linnett potential. Varshni [14] analyzed the behavior of a, for 23
diatomic systems and concluded that this was unsatisfactory for most of them, adequate only for CO, N5, NO and O,.
However, Steele et al. [15] obtained very different results, for the diatomic systems in their ground and some excited
electronic states: Hy, I, Ny, O,, CO, NO, OH and HF. The average error for a, using the Linnett potential was less than
for the Morse [7], Rydberg [8], Rosen-Morse [28],, P6schl-Teller [29], Frost-Musulin [73], Lippincott [42] and Varshni
(1) [14] potentials.

Still, in the same work, Steele et al. [15] showed that for the 8 diatomic systems above cited, the average error
for wex, relative to Linnett potential was practically half of the error presented relative to Morse [7], Rydberg [8],
Rosen-Morse [28], Péschl-Teller [29], Frost-Musulin [73] and Varshni (I11) [14] potentials.
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Then, the Linnett potential provided a good representation of the potential energy curve, superior to many others
functions that were known at that time, obtaining the best results for the diatomic systems O, and CO[60], especially
when using the observed values of k. e D.

In more recent research, such as Royappa et al. [41], has shown that if the parameters of the Linnett potential are
well fitted, using, for example, the Mathcad (Mathsoft Inc.), this function has fewer deviations from the RKR [8, 9, 10]
curve than the Kratzer [16], Lippincott [42], Deng-Fan [40] and Rosen-Morse [28] potentials.

3.17 | TheHeller function

In 1941, Heller [21] (HEL) proposed a functional form for specific diatomic systems known as van der Waals molecules.
They present a very flat potential minimum at relatively large interatomic distances. He was interested in the diatomic
system, in the gaseous phase and in the lowest energy state: HgHe, HgNe, HgAr, HgKr, HgXe, Hg, and in the polyatomic
systems (O,), and (NO), which can be treated as consisting of two bodies inasmuch as the two atoms in each normal
0,[NO] diatomic molecule are fairly tightly bound and their internuclear separation 1.21[1.15]A[95] is much smaller
than intermolecular distance, Ry say, of (O3),[(NO),].

The potential energy function is constituted by an attractive part, AE®, being considered the dispersion forces
only, and a repulsive part A(p)e’R//’ in the form of Born-Mayer’s potential, given by:

- c1 ¢ c3 | ca
mﬂmﬁA@eW—&é+ﬁ+Eﬁ+ﬁi. (237)
where AE® = -2 — 2 — 2 — 2 and A(p)e™®/7 is the same kind of function used in Born-Mayer’s potential [19] to

treat the alkali-halide crystals (see section 3.5).
The coefficient of the first term, c; is calculated by London general expression (see Ref.[98]) and the remaining
coefficients are found by means of perturbation calculation using the Margenau harmonic oscillator model (see Ref.[99]).

Heller observed the well depth D, of the potential (237) at R,,, (minimum) is given by:

c 6p c 8p c3 10p c4 12p
Vi Ry)=-|—|1T-—|+=[1-—|+=1-— |+ = [1- = || = De. 238
HEL(Rm) [R?n ( Rm) + RE ( Rm) + R10 ( R R1Z R A (238)

However, this would be the minimum if and only if:

2 c2 Cc3 04) Rm/
Alp) = — |3¢c1 +4— +5— +6— | - pe"m/P, (239)
0=y v ez esgr o) e
being p bounded by
4 5
c1+§;—§+§;—3+2’:—g R
< . - = -z (240)
cr+12% 556 26 7

TR T2 Rt T T e

For the eight diatomic systems considered by Heller, p was considered equal to 0.28A, ensuring that the energy of
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dissociation was in good agreement with experimental data.

The interatomic distance R, considered by Heller was not identical to the equilibrium distance R.. Using a graphic
procedure that identifies the midpoint of the classical range of oscillation of the lowest vibrational level with the
equilibrium distance R, (for more details see Ref.[100]).

The coefficient of term R~'2 is many times neglected, and when this is considered zero, the error for the well depth’s
isonly 2.1 percent or less, assuming p = 0.28A, for the analyzed systems. However, although the contribution of the
term R~'2is small, it is important when R = R, [21].

The type of function (237) was firstly proposed in 1938, by Buckingham [101] for to treat diatomic system composed
by rare gases, such as helium, neon and argon. He obtained the potential energy interaction Vgyc(R) for rare gas atoms

from the observed virial coefficients, using the classical equation of state:

_ Cs C
Vauc(R) = AeR — (R—g + R—g) (241)
being A and b constant, Cg and Cg parameters evaluated by Lennard-Jones and Ingham [102]. However, function (241)
has a deficiency. Although the exponential term increases rapidly as R decreases, it remains finite when R = 0, so
that the long-range term is dominant at R — 0 when then Vgyc(R) — —o. These problems were fixed damping the

dispersion term by Tang-Toennies potential [103].

3.18 | The Wu-Yang function

In 1944, although intending to cover the most diverse types of diatomic systems, and not just rare gases or crystals
forces, Wu and Yang [104] (WY) proposed a potential function similar to Heller [21], which is also based on the potential
of Born-Mayer [19] and Buckingham [101]. They have applied their relation to diatomic systems composed by elements
of HH, KH, LH, KK, KL, and LL periods.

The potential used by Wu-Yang is given by:

Viry(R) = ae~RlP — 2 (242)

Rm

being a, b, p and m constants within a molecular period (see table 1 on p.296 in Ref.[104]).

When a new analytical form was proposed, the first concern was to obtain relations to calculate the spectroscopic
constants related to the proposed potential. In particular, Wu and Yang [104] sought a correct relationship between Re
and the constant force k.. To this end, they analyzed the proposals that had been successful such as that of Clark [105],
Badger [85](see section 3.11), Allen-Longair [106] and Sutherland [43](see section 3.14).

2
Through the potential (242), with ( a\g,,lgy )R =0and ( 6@‘;"5" ) = ke, Wu and Yang obtained the follows relations:
e Re

3 gRelp — Om (243)
p Rm+1

and
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1 [a a(m+1)

k. = 2 _
¢ eRelp p2 PRe

- Rgl“ [_b’”(g’: D, %’" (244)

They plotted k.eRe/P against 1/R, for various diatomics systems of the HH, KH, LH, KK, KL, and LL molecular
periods, in their ground and excited states. For diatomic molecules of HH, KH, LH periods, they obtained a good result
for m = 4, and for systems in other periods, the best value obtained was m = 6. As these constant values of m ensured a
straight line for each period, they concluded that the values of 6 and p also remained constant in each period.

The average errors in k. calculated from R, for the periods HH, KH, LH, KK, KL and LL obtained for Wu and
Yang [104] were 7.1%, 5.3%, 4.5%, 12.0%, 13.1% and 19.0% respectively.

With asymptotic characteristics similar Buckingham'’s function [101], the Wu-Yang potential presented the same
deficiency when R = 0, where V = —co. However, this was not the only problem with the potential proposed by them. As
observed by Varshni [107], in 1959, the Wu-Yang assumption that the values of m, p, and b were constant for different
states of diatomic molecules from the same molecular period is not true even when R = Re.

Using the Wu-Yang rule for obtain k., Varshni [107] calculated others spectroscopic constants, ae and we x, for

diatomic systems from KK period. To this end, Varshni first obtained:

2
a'e:—(XRe+1)6Be (245)
3 We
and
5., 2.108 x 10716
WeXe ==X -Y|—""— (246)
3 HA
where
T2RZ — (m+ 1)(m +2) T2R3 — (m+ 1)(m +2)(m +3)
X =-— and Y = T3 . (247)
pRZ—(m+1Re LIRS —(m+1R2

Varshni [107] showed that, mainly, the values of the anharmonicity we xe were very different from the experimental
values. In addition, the average error in calculating the constant force for diatomics of that period was 12.1%, which is
not at all attractive. Varshni considers that even for the other diatomic systems, large deviations in the values of a, and

we Xe Should occur.

3.19 | TheLippincott function

In 1953, Lippincott [42] (LIP) proposed a functional form for diatomic potentials still in the Hulburt-Hirschfelder and

Morse-type, involving an exponential of the interatomic distances, given by:
Vi1p(R) = Do(1 - e "RII2R)(1 4 aF (R)), (248)

where D, is the depth of the well and R has the usual meaning, a and n are constants. AR = R — R, and F(R) is a function

internuclear distance so that F(R) = co, when R = 0 and F(R) = 0, when R = co. In many cases, F(R) has no great
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relevance, and can only be considered V; ;p(R) as the first term of the product.

2

Considering a2 = 0 and using the relation for the constant force k. = (dd‘;L{P) in its function V, ;p(R), the

R

dissociation energy D is obtained from: ‘
D(ergs/molecule) = keRe/n (249)

where nis empirically given by:
1 1

n=6.32x108(1/10)2(I/Ip)2 cm™ (250)

1 1
with (I/Io)j and (I/Io)g corresponding to the ionization potentials of the atoms A and B respectively relative to those
of the corresponding atoms in the same row and first column of the periodic table.

Lippincott [42] pointed out that most researchers were always in search of a good analytical way to represent
potential curves of diatomic systems, however, these were little used to predict the energy of bond dissociation D
and anharmonicity constants. He calculated D using the relation (249) for 22 diatomic molecules and obtained good
results compared to spectroscopically obtained values. The resulting mean deviation of 4.5%, was considered large

when compared to the experimental error for Re, ke and (I /1) (around 0.1%).

For the calculation of the anharmonic constants, such as we xe, a second-order perturbation theory was used. The
potential (248) was expanded in power series, taking a = 0, so that the cubic and quartic terms of this expansion
represent the perturbation potential in the Schrédinger equation. The quadratic (harmonic) term of this potential
stands for the unperturbed potential. In this way, he obtained :

weXe = 3N(n/Re + 1/Re2)/64m%cp. (251)

He calculated the value of w.xe by means of (251) for 22 different diatomic molecules, and compared with the
values obtained spectroscopically, reaching an average deviation of 5.7%. This was considered as a good result compared
to the same process using the Morse function[7] (46%), or even compared with the Linnett [60] reciprocal-exponential
function (16%).

Now, D can be obtained as a function of known parameters, through (249) and (251):
D(ergs/molecule) = ke/[(647tzcywexe/3h) —1/R:?] (252)

and the results obtained from this method showed an average error of 4.8% in relation to the D values obtained

spectroscopically for 17 diatomic molecules.

In 1955, Lippincott and Schroeder [108] presented a more detailed study on the function (248). First, they consid-
ered the simple function already analyzed by Lippincott with a = 0,i. e.:

Vis(R) = Do(1 — e MBR?/2R) (253)
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where, if R — 0,then V; s(R) = D, not satisfying V; s — o0. However, for them this was not a serious problem. The
biggest problem with this function is that it provides a. = 0 for all molecules, which is not correct. Then, they concluded
that this function would not be the most suitable to represent a generic potential.

Another important contribution by Lippincott and Schroeder was on the calculation of parameter n. This parameter

may be calculated by means of the following empirical relation:

n= no(I/Io)é (1/10):3 cem™ (254)

with (I/Io)jz and (I/Io)é corresponding to the ionization potentials of the atoms A and B, as well as in the Eq. (250). For
H atoms I /I, they assigned the value 0.88 and for most molecules where the binding is primarily covalent and including
all molecules of the fourth, fifth, sixth, and seventh columns of the periodic table, ng has the value 6.32 x 10%. For the
diatomic alkali metal and alkali hydrides, ng had the value of 4.21 x 108 [108].

Now, since n was calculated separately it may be used to predict wex, from R values in the Eq. (251), without
needing k. or D. The average error for we xe calculated from n for diatomic systems As,, Br,, C,, CH, CIBr, Cl,, CIF, CLI,
CO, F2, HBr, HCI, Ho, HI, IBr, I, N2, NO, OH, Oy, P2, Sz, SO and Se; is only 5.5% [108].

Lippincott and Schroeder [108] pointed out that the simple potential (253), which provided a. = 0, could be used as
a first approximation to an overall potential. In addition, they observed that since bonds in polyatomic systems usually
have values of a, are much smaller than the corresponding a. values for diatomic molecules, it may be that Eq. (253)
represents an improved approximation to potential curves for the bond in polyatomic systems. In fact, they used this
function for this, see for example the Ref. [109] and [110].

Next, Lippincott and Schroeder [108] considered the complete potential (248), i. e., with a # 0. The term (1 + aF(R))
was chosen such that V, s — oo when R = 0 and a way that the resulting function will allow a prediction of vibrational-
rotational coupling constants. At large distances it should give a Van der Waals energy of interaction. To accomplish this,
they used three terms of power series in the quantity [1 — exp(-62nARZR" /2R;2)]%:

14 aF(R) =1+ (=1)ax (Re/R)’[1 — exp(~b2nAR?R"! /2R12)]2

(255)
—(Re/R)"?[1 — exp(—b2nAR?r1 [2R12)]
or for the general function

Vs(R) = De[1 - exp(-nAR?/2R)]
{1 +(=1)a x (Re/R)S[1 — exp(~b2nAR?R"! /2R12)]3 (256)

—(Re/R)'?[1 — exp(—b2nAR?r1 J2R12)]Y.

For large values of R this function takes the form

V = De[1 — exp(-nAR?/2R){1 + a[—(Re/R)® + (Re/R)"?]}, (257)

where F(R) takes form of a Lennard-Jones(6,12) Van der Waals potential (see section 3.2). This fact ensures that the

curve from Eq. (256) is in good agreement with the observed curve.
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From Eq. (256), the spectroscopic parameters D, ae and we xe NOW are give by:

D = w?2/2nR.B, (258)
ae =0 (259)
weXe = 1.5B4[0.25 + nRe/4 + ab(nRe/2)? + (58267 — ab?)nRe2]. (260)

Note that Eq. (258) is equivalent to relation (249), since Be = h/87%uR%c and k. = 4x?uw?c?. Studies such as
Somayajulu [111] have suggested that in the relation (249), n could be a constant not depending on the ionization
potential of each molecule. However, Lippincott, Schroeder and Steele [112] have shown that such a relationship was
not valid for diatomic molecules in electronic excited states.

Although the function (256) is a function of 5 parameters, more complicated to calculate than (253), the parameters
ab and b can be considered as constants for most molecules, simplifying the computation of a, and we xe, for example.
Thus, the potential (256) was considered a good general approximation to the “true” potential function.

3.20 | TheFrost-Musulin function

In 1954, Frost and Musulin [113] (FM) initially proposed, a general potential energy function for diatomic molecules.
This kind of potential considers the possible relation between a “reduced” potential energy and a “reduced” internuclear
distance, analogous to a reduced equation of state. For this, they considered V the potential energy of a diatomic
molecule in the ground state or in any attractive excited state taking the zero of the energy at infinite separation of the
nuclei. At the potential energy minimum V = —D,, being D, the depth of the well. Then, the reduced potential is defined
by:

4 .
Vi = "2 with p(R) = (R~ Ry)/(Re - Ry) (261)
e
where R and R, are the usual distances and R;; is a constant for a given molecules and is a measure of inner shell radii of
atoms j and j. Note that the minimumis vV’ = -1 and p = 1, since R = R,.
Frost and Musulin [113] assumed V' as a universal function of p for any diatomic system. At the minimum this

function, we have:

YAV
(d Y ) K (262)
dp p=1

being K a dimensionless parameter. Since the force constant is given by k. = (a2 V/dRZ)R:Re, it follows that:

ke(Ro — Rij)?/De = K (263)



56 ARAUJO & BALLESTER

or that
Rij = Re = (KDe/ke)'"2. (264)

For to analyze the behavior of reduce potential, Frost and Musulin [113] chose 23 diatomic systems: H,, H;, CH,
OH, HCI, HCI*, KH, ZnH, HBr, CdH, HI, HgH, Liz, O, 03, CIF, Nay, Py, Cly, K3, Bra, ICl and . Firstly, they calculated the
value of K for the diatomic systems H; and HJ, assuming that R;; = 0, obtaining K = 4.14 and K = 3.96, respectively. For
the other diatomic systems, they assumed the mean value K = 4.00.

To check the validity of this properties, Frost and Musulin [113] examined the coefficients of the higher terms such
as L /6 and M /24 in the expansion:

Vi(p) = =1+ (K/2)(p = 1)+ (L/6)(p—1)° + (M/24)(p - 1)* + - - - (265)
where
a3V’ d*v’
L= ( dp3 )p=1 and M= ( dp4 )p=1 ’ (266)

For L and M they obtained the follow relations:

Re —R;j)® (8
L:( e ij) (d V) (267)
De dR3 | r_r
and
R.—R:)* 4
M=( e — Rij) (d V) (268)
De dR* | p-r

The average values for 23 molecules were L = —15.06 and M = 43.48. The mean deviations of L and M from their
averages were 13.2 and 42%, respectively. These results, although not very satisfactory, led Frost and Musulin to believe
that their universal potential was approximately correct. However, in 1961, Varshni and Shukla [114] showed that this
“universal” potential energy function does not exist. They still claim that it is possible to obtain universal relations for
spectroscopic parameters a, and we xe in terms of the Sutherland parameter A = k. Rg /2D, [14].

While Frost and Musulin[113] used the third and fourth derivatives to obtain a, and we xe, Varshni and Shukla[114]
using a different method, obtained these parameters in terms of L, M and K:

L Re j 682
O _ (269)
¢ l 3K (Re — Rij) We
and
5L M| R |*2.1078x 10716 270)
weXe=13\k) TK||R-Ry 4Re
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where p is the reduced mass. The calculated values by Frost and Musulin [113] for a, and we x. presented the average
percent errors corresponding to 24.9 and 17.7, respectively, whereas with Varshni [14] method we have 22.1 and 11.1
for 23 diatomic systems, being 18 common with the analyzed by Frost and Musulin. Varshni and Shukla still guarantee
that the relatively low error for we xe is nothing more than a happy cancellation of the errors [114].

In the same year, Frost and Musulin [73] suggested a semi-empirical potential energy function aiming to overcome
difficulties found in previous potentials, such as Morse [7], Hulburt-Hirschfelder [6], Lippincott [42]. For this, they
imposed more conditions to be fulfilled by an adequate function. They are:

(i) The potential energy for nuclear motion V is the algebraic sum of two parts given by:

&2
V=" v (271)

where the first term is the nuclear repulsive potential corresponding to Coulomb force Z; Z,e2/R, with e the
electronic charge, Z; and Z; the atomic numbers, and R the interatomic distance; and the second termis the purely
electronic energy defined as V,, which is also a function of R.

(i) V becomes infinite as R approaches zero, being due to the nuclear repulsion term e2/R, assuming therefore that V,
does not become infinite in equal and opposite sense.

(iii) V. isfinitein R = 0and assumes V = V2, being V2 the known “united” atom energy.

(iv) V. o« —e2/R for R large. This is based upon the choice of V = 0 as R — oo and is required condition to cancel the
nuclear repulsion potential since the total V goes to zero faster than inversely as the first power of R.

(v) V must be capable of going through a minimum as R varies.
The potential energy function with two adjustable parameters that accomplish these criteria presented by FM [73]:
—aR 1
VFM(R) =€ (E - b) (272)

being a and b these parameters.

In principle, the parameters a and b were fixed by demanding the function provides any two of the known experi-
mental quantities such as R, equilibrium internuclear distance; D, dissociation energy from the minimum of the curve
(depth well); ke, force constant for infinitesimal amplitudes, which is related to the spectroscopic constant a; and we xe,
anharmonicity constant. Again, they applied this function to the diatomic systems H, and HJ in their ground states, so
that the corresponding electronic energy is given by:

Ve=— (1 - e-aR) — beR. (273)

1
R
with the limiting value as R — 0:

Vo= —(a+b). (274)

For these systems, they calculated the usual parameters above described: R, De, ke, e, we xe and also the critical
distance R, which is the value of R, less than R, at which V = 0, or the same as at infinite separation. For this

parameter R, in particular for the diatomic HZ, they obtained (1.136ag) [73] in good agreement with the experimental
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values(1.12ap) [115].

Varshni [14] showed that the spectroscopic parameters a, and w, x. are best represented in terms of a parameter

s, related to Sutherland parameter A, defined by:

A=s%/2+s or s=—1+(1+2A), (275)
so that,
252 +3s| 6B2
_ 276
¢ l 3(s+2) | we (276)
and
11s* + 6653 + 15652 + 1445 + 36| 2.1078 x 10716
WeXe = (277)
3(s + 2)2 ng

Analyzing the behavior of these expressions in terms of s, Varshni [14] concluded that the FM function is very close

to the Morse potential [7], being FM slightly more complex.

In 1957, Chen, Geller and Frost [116] (CGF) provided a generalization of the function (272) for to be applied in a

more kinds of diatomic systems, being V now given by:

—eaR(E _
VCGF =e (R b) (278)
where the new parameter cis:
c= Z1 Zz (279)

with Z; and Z; some kind of effective nuclear charges of the two atoms.

With this new potential, the three parameters a, b and ¢ can be now obtained by direct algebraic evaluate from

spectroscopic constants De, R, and ke, using the relations:

a=p/Re (280)

b=Ds(1+p)expp (281)

c=De¢Repexpp (282)
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where

2\ 1/2
p=(1+ D:) -1. (283)

Although the potential V£ is more flexible than the original potential Ve (R), it does not present better results.
Steele et al. [15] in a comparative study for systems Ho, |5, N,, O5, CO, NO, OH and HF in their ground and excited states,
showed that the CGF potential does not give any appreciable improvement over the Morse [7] curve. They observed
also that the average errors for the quantities ae and we x, for the diatomic systems above cited were bigger using this
more general of Frost-Musulin potential than with the Rose-Morse [28], Rydberg [8], Linnett [60] and Lippincott [42]
potentials.

However, recent work such as Royappa, Suri and McDonough [41] has shown that if the parameters of the Vogr
potential are well fitted, using for example the Mathcad (Mathsoft Inc.), on the whole this function present good results.
They observed that the new Frost-Musulin potential (278) showed average error less from RKR [8, 9, 10] curves than
the Kratzer [16], Lippincott [42], Rydberg [8], Morse [7], Rose-Morse [28], Linnett [60] and Poschl-Teller [29] curves for
C,,CF,CH, CN, CO, Ha, HF, Li», LiH, N», N;, NO, O,, and OH in their ground electronic states.

3.21 | The Varshnifunction

Although already quite convinced that a universal analytical function to represent “all” diatomic potentials did not exist,
as proposed by Frost and Musulin [113], Varshni [14], in 1957, presented a comparative study of the more relevant
functions known at that time. He analyzed the behavior of potentials energy functions from Morse [7] to Frost and
Musulin [73] for 23 molecules in their ground and excited electronic states. In addition, he calculated the rotational a,
and vibrational we xe constants for these systems. From this analysis, Varshni concluded that, in fact, it is not possible
to have exact “universal” potential energy function for all diatomic systems, but it is possible to have a function for
molecules with similar linkages. As a result, Varshni (VAR) proposed seven different potentials.

For to construct his potentials Vi, 4 (R), Varshni[14] established the criteria that a good potential must satisfy, such
as the potentials presented before. He divided them into criteria that are necessary and desirable:

1. Necessary:
a. Vyar(R)should come asymptotically to a finite value as R — oo;
b. Vyar(R)should have aminimumat R = Ry;
c. Wy ar(R) should become infinite at R = 0, but this need not be very strict, because if Vi, 4gr(R) becomes very
largein R = Qitis enough.
2. Desirable:
The potential function should be capable of giving rise to a least one maximum under certain conditions;
Ve isfiniteat R = 0;
Ve = V9 at R = 0, where V2 is the known “united” atom energy;
V. o« —e?/R for R large;
e =0atR=0;
Van der Waals terms should introduce terms of the form 1/R".

o o0 T W

The desirable criteria (b), (c), (d) and (e), were based on the Frost-Musulin [73] potential (see previous section 3.20), and

the criteria (a) to (f) need not be exactly true.
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The First potential proposed by Varshni [14] was a function similar to Morse [7]:

W ar; (R) = De{1 - exp [-b(R? - RD)]}, (284)
where b is given by:
ke |2 /
b= e =AY2)2R2. 285
@%%) /2R2 (285)

being A = k.R2/2D, the Sutherland parameter.

The potential (284) satisfies the criteria 1.(a) and 1.(b), and as well as the Morse potential, Vi 4z, (R) becomes large

at R = 0. Varshni obtained also expressions to calculate the spectroscopic parameters, a, and we xe, from his potential:

682
ae = (A2 —2)—¢ (286)
We
and
2.1078 x 10716
wexe = [BA 12012 & 12]% (287)
Rem

For the 23 diatomic systems analyzed, this potential gives much lower values for a, than the Morse [7] function.
On the other hand, Vi 4z, (R) gives lower values for we xe, but these presented average error (18.2%) lesser than that
Morse [7](31.2%) and Rydberg [8](23.1%) potentials.

The Second potential proposed by Varshni [14] was:

2
R
Vas (R = 0 {1 % cxpl-atr - R, (288)
where
12 _
a1 (289)
R

The potential (288) accomplish the three criteria 1.(a), 1.(b) and 1.(c). The parameters a, and we x¢ are given by:

1 682
_ 1/2 _ e
de = [A * o 1] o (290)
and
8 12] 2.1078 x 10716
WeXe = |8A+12— — + — | ————F——. (291
oxe =y J = )
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In this case, the values a, and we xe Were higher than those obtained from Morse [7] potential, being considered
unsuitable by Varshni.

Due to the fact that the First potential provides low values and the Second provides very high values, Varshni bet
on a Third option that mixed the two functions.

Then, the Third potential energy function proposed by Varshni was a mixture of the first (284) and the second
potentials (288), given by:

2
Vy ARy (R) = De {1 - % exp [-B(R? - R2)] (292)

where

-

= [a'2 - 1]. (293)

B

This potential obeys the three necessary criteria, and in fact it was a good bet. The expressions for a, and we x are

given by:
a= a2+ 2 5 68¢ (294)
° Al/2 We
and
111 73] 2.1078 x 1076
_ 1/2 o r o aetvieAaty
weXe = |8A +12A'“ + 66 A2 + N R4 . (295)

For ae, the average error from Vi 4z, (R) (22.9%) potential is significantly lower than that obtained from Morse [7]
(33.1%) and Rydberg [8] (28.0%) potentials. In relation to wexe, the Third potential Vi 4g,,, (R) presented a similar
behavior to that of Frost-Musulin [73].

The Fourth function proposed by Varshni was:

Vi arpy (R) = B(A + exp (b/R))? (296)

with the conditions
A=exp(b/Re), (297)
g=__ Do (298)

[exp (b/Re) = 112

b=RelnA (299)
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and, here,
InA 2
A= [m] . (300)
For this function, ae and we x, are given by:
682
ae=(nA+1)—2 (301)
We
and
-16
wexe = [8(INAY + 241N A + 64]%. (302)
eH

The Fourth potential fulfill the three necessary criteria. However, this function was discarded because this gives
much higher values for a, and wex, than the Morse [7] function.
The Fifth potential proposed by Varshni is a generalization of Kratzer [16] function and a special case of the

Mecke-Sutherland [91, 43] potential, being given by:

R ny2
Voas, (®) =D |1 - (%] ] (303)
Here, we have:
n?=A (304)
and the spectroscopic parameters are given by:
682
a, = A2 "¢ (305)
We
and
-16
woxo = [8A + 1201/2 4 4721078 X107 (306)
Rp

As well as the Fourth potential, the Vy 4z, (R) function gives higher values than the Morse for the parameters a,
and we Xe, being therefore considered inadequate.

The Sixth potential proposed was similar to second Wy ag ;

2
Vas,r (R = Do 1= % cxp-a(r = R 11+ k7R (307)

where f(R) is a function such that:
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o, at R=0
f(R) =
0, at R=w

This function attain the tree necessary criteria. Note that if £(R) = 0, we have the function very similar to Second

function:
R 2
Vasy1(R) = Do 1 - %2 expl-atr - R, (308)
which provides Wy g, ; = De at R = 0. For this function, we have:

aRe = A2 (309)

and the spectroscopic vibrational rotational a, and anharmonicity we x. parameters given by:

1 682
_ 12 _ Y e
de = [A N 1] o (310)
and
8 12] 2.1078 x 10716
WeXe = [8BA-124+ —+ — | ——. 311
oxe [ = AJ - (311)

The behavior of a, is not suitable for the Sixth potential. However, we x, is very close to the Rydberg function.

The Seventh and last potential proposed by Varshni is similar to Lippincott [42] potential:

Wary(R) = —AR" exp (—aR)[1 + Kf(R)] (312)

and, as before, f(R) = wat R =0,andat R = oo, f(R) = 0.

This function satisfies the tree necessary criteria, and as before, if #(R) = 0, we have:

VVAR\/II(R) =—AR" exp (—aR) (313)
where,
n
a= Re (314)
A= De (315)
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n=2A. (316)
The constants a, and wexe are given by:

1682
Qe =—=—2 (317)

3 we

and
-16
WeXe = [6A+ 3] 2107810 7 (318)
3 R3p

This potential gives a negative value to ae, which is absurd. On the other hand, the values of we x obtained from the
Seventh potential were slightly lower than that the Lippincott [42] function, with the average error (13.6%) very near to
that of Lippincott (12.9%).

Varshni concluded that for the overall representation of the potential energy curves, the Third and Sixth functions

were the most useful [14].

In 1962, Steele et al. [15] in a comparative study of potential functions, analyzed 8 of the 23 diatomic systems in their
ground and excited electronic states previously treated by Varshni[14]. The average error for the quantity a, calculated
from Third Potential (292) was less (15.57%) than from Morse [7] (19.67%), Rydberg [8] (17.45%), Rosen-Morse [28]
(22.33%), Poschl-Teller [29] (18.47%) and Frost-Musulin [73] (23.55%). On the other hand, the average error for we xe

was the largest among the analyzed potentials.

Steele et al. [15] also compared the average error from RKR [8, 9, 10] curves for all R and for R > R,. For all
R, the Third potential by Varshni presented lower deviation (2.28%) than Morse [7] (3.68%), Rydberg [8] (2.94%),
Rosen-Morse [28] (3.71%), Poschl-Teller [29] (3.48%), Frost-Musulin [73] (3.41%) and Linnett [60] (4.18%). Still, for
R > R, the Third potential by Varshni presented lower deviation (1.68%) than Morse [7] (3.20%), Rydberg [8] (2.27%),
Rosen-Morse [28] (2.80%), Poschl-Teller [29] (3.28%), Frost-Musulin [73] (3.30%) and Linnett [60] (5.07%), showing that
Warr (R).

In amore recent, and similar to Steele et al. comparative study [41], the Third potential by Varshni again showed to
be more accurate than the potentials before cited, and also more accurate that the Kratzer [16], Lippincott [42] and
Deng-Fan [40] potentials.

3.22 | The Deng-Fan function

It is possible to note that for the various potentials analyzed until now, the Morse [7] function is still a benchmark,
although, as we have seen, it is not the ideal potential because it does not present correct asymptotic behavior when
R — 0.

In an attempt to correct this failure, in 1957, Deng and Fan [40] (DF) propose a simple modification in Morse

potential:

aRe _ 2
i ! ] (319)

Vbr(R) = De [1 T
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where a is the Morse parameter (104). This potential is called a generalized Morse potential.

The function Vpe(R) has three parameters as the Morse potential. However, this function has correct physical
boundary conditions at R = 0 and . Note that, when R — 0 we have Vpr — o, which was not the case with Morse
potential. Furthermore, when used as a potential function for the vibration of diatomic molecules, the Schrédinger
equation is exactly soluble as well as Morse (see in detail in Ref.[117]).

Using the relations, established by Dunham [23], we can obtain the spectroscopic parameters vibrational rotational

ae and anharmonicity we xe, in terms of the derivatives of the potential function Vp£(R):

6B% (, . Refs
=- 1 320
a, = -2 ( Bk (320)
and
B. | R2fy ( WeQe )2
WeXe = — |— +15(1+ (321)
T8 | ke 282
where B, and k. have theirs usual meanings
Be = __h ke = 4npctw? (322)
8n2cuR2’ ¢
and f3 and 74 are given by:
d3v 12 3D 3aRe 6 3D 2aRe
£ = L IDF o _LETes © | DT e (323)
dR3 R=Re (eaRe _ 1)3 (eaRe _ 1)2
and
. d*Vpr _ 72a*Doe*Re 124*D,e**Re 14a*D,e?Re (324)
4 drR* R=Rq (eaRe _ 1)4 (eaRe _ 1)3 (eaRe _ 1)2 :

As the potential of Deng Fan brings supposedly greater accuracy than the Morse [7] function, many researchers
have conducted comparative studies involving both potentials.

For example, in 2003, Rong et al. [118] presented a comparative study between Morse and Deng-Fan potentials
involving only X-H bonds in small molecules. They observed that for a number of molecules the Morse model leads to
better agreement with the experiment while for other the reverse is true, which is somewhat inconclusive. However,
they easily obtained a set of Morse potential parameters while for the DF potential different sets of parameters lead
to similar frequencies and intensities. In the molecular systems considered the Deng-Fan potential does not predict
observed energy levels and intensities significantly better than Morse’s potential despite its correct asymptotic behavior.

In 2006, Royappa et al. [41] presented a comparative study involving many more potentials than Morse and Deng-
Fan (21 in total). They analyzed the average error of these potentials in relation to the RKR [8, 9, 10] curve using Murrell
and Sorbie’s Z-test (see Section: 3.26) for 14 diatomic systems in their ground electronic state. The Deng-Fan [40]
potential present the has a deviation 3 times greater than the Morse potential, and with one of the worst results, it is
only more accurate than the potentials of Kratzer [16] and Lippicott [42].

Still, in a more recent comparative study, Wang et al. [80] calculated the anharmonicity w, and vibrational rotational

coupling parameter a, for 16 molecules in their ground electronic states. Although the proposal of Deng-Fand [40] was
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an improvement of Morse function, Wanget al. showed that by choosing the experimental values of dissociation energy
D, equilibrium bond length R, and vibrational frequency w, as input, the Deng-Fan potential is not better than the
Morse potential in simulating the atomic interaction for diatomic molecules. Furthermore, Wang et al. concluded also
that the Manning-Rosen [78], Deng-Fan [40] are the same potential energy function, actually (see details in Ref. [80]).

3.23 | TheTietz-Hua function

Whenever a new potential energy function was proposed, it was also analyzed whether this potential exactly solved
the Schrodinger equation, or if this new potential was just another approximate solution. In view of the fact that
few potentials had this property until that time, in 1963, Tietz [119] (TIE) sought to obtain potentials that were an
exact solution to the Schrodinger equation (at least for the quantum number L = 0) and that at the same time were
mathematically simple functions, such as the Morse [7] potential.

The first proposal by Tietz [119] was a potential energy function with five parameters, given by:

(a + b)e 2R _ pe=2BR
(1 + ce PR)2

Vr1e;(R) = De + De (325)

where D, is the depth of the well. This potential, fulfill three standard conditions:

o dVTIE
(i) —z~

=0;
R=Re

(ii) Vrre;(00) = Vi (Re) = De;

dZVTIEI
(iii) 2

= Ke.
R=Re

where k. and R, have their usual meanings. These conditions are also necessary to determine a, b, c and B, which are
constants. In addition, these constants depend that the Tietz potential curve give correct values for the vibrational-

rotational coupling constant ae, given by:

=- +1
e 3 dR3 ke

We We

2 2
). (

1 (d3 VTIEI(Re)) Re

where we is the vibrational frequency and B, is the rotational constant.

keR2
De

Tietz [119] showed that the four constants 3, ¢, b and a can be express using the Sutherland parameter A =
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2
JeWe .
1+ ( 652 )] :

and the quantity I =

BRe =2A"2 -T2,

c=— [M] (F1/2 Z A1/2),

Al/2
\172 (327)
b=2exp(BR,)|2- (§) .
1/2
a=2bl-2+ (%) ] exp (BRe).
From T and A, Tietz also showed that the anharmonicity we x is given by:
8[A3/2 (T2 _ AV/2)312%x 1078 x 10716 8[A3/2 — (F/2 = A1/2)3] 2% 1078 x 1076
WeXe = = . (328)

QA2 _T172) UR? BRe uR?

Tietz [120] calculated the anharmonicity using Eq. (328) and compared his values with the values obtained from Eq.
(108), for the Morse potential, and also compared with the experimental values for 23 diatomic systems in their ground
electronic states: Hy, ZnH, CdH, HgH, CH, OH, HF, HCI, HBr, HI, Li,, Nag, K2, N2, P2, O4, SO, Cly, Bry, I, ICI, CO and NO.
For 16 these, the results obtained by Tietz presented less deviation from experimental values. The Morse function
showed better only for the systems HCI, HBr, HI, N,, O,, SO, I, and NO.

In an attempt to obtain a more general potential, Tietz [121] suggest a function with more parameters, and therefore

more flexible, given by:

(329)

H%B
R—Re)2 (T+HR)

Vrie; (R) = De( R (F+ HR)

where D, and R, have their usual meanings, and A, B, F and H are constants. This potential is demanded to satisfy the
conditions (i), (ii) and (iii).

One of the advantages this potential (329) over the first proposed by Tietz (325) is that the potential V71, (R) can
solve the Schrédinger equation exactly for arbitrary L and for both discrete and continuous energy parameters E.

As before, the requirement that the second Tietz's potential (329) give the correct experimental values of F, and
Ge is warranted by:

1(d®*Vrrg (R R, AeWe
Y P L b e IAANTIE | [y = 330
3( dR3 ke ° 682 (330
and
2

5(1 d®v R 1 d*v; R R2
501 V7 (R [ 1 d"Vrrg(Re) RZ -G, WeXepRs (331)
3\ ke dR3 ke dR4 2% 1078 x 10-16
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The accuracy of potential (329) can be determined by calculating Fe and G, from Eq. (330) and (331) and comparing
them with the experimental values. The values of F, calculated by Tietz from potential (329) have shown to be in
good agreement with experimental values for most of the evaluated systems [121]. However, in this potential, the
parameters A, B, and H don't have a simple physical interpretation. Furthermore, curves generated by this function
showed unphysical features at very large or very small values of R. Then, the first Tietz's potential (325) is better known
and used than the second Tietz’s potential.

In 1990, Hua [122] conducted a comparative study with the potentials of Morse [7], Varshni [14] and Levine [123].
These three potentials had a common characteristic: all showed large deviations from the RKR curve [8, 9, 10] when the
domain of the potential extended to the limit of dissociation. Moreover, for the potentials of Varshni and Levine the
Schrédinger equation can be solved exactly, but with very difficult calculations [122]. With this in mind, Hua proposes a
potential of four parameters, in order to meet both characteristics:

2

1 — e~b(R-Re)
VrH(R) = De [m s el <1 (332)
with
b=a(l-c) (333)

being a the same of the Morse equation.

The parameter c is fitted to provide smaller absolute mean deviations. Hua calculated ¢ for the systems: Liy, Nas,
Kz, Rby, Csy, Cly, ICl, Hz all in the state X' 3}, HF and CO in the state X3, XeO in the state d' 3}, ICl in the states
A3, and A3y, 1, in the state xo; and Cl, in the state B3N(O}"). Comparing the value of the absolute mean deviation
provided by the potential Hua with those provided by the Morse, Varshni and Levine potentials, only Cl, and ICl, both in
the state X! Z;, with values of 1.89% and 1.97% respectively, generated slightly larger variances with Hua than with
Varshni (1.08% and 1.30% for Cl, and ICl respectively) and Levine (1.11% and 1.44% for Cl, and ICl respectively), which
are much smaller than those provided by the Morse potential (6.06% and 5.68% for Cl, and ICl respectively) [122].

Still, the average general of the mean absolute deviation for the molecular states above was 1.63% using the V74 (R),
while it was 7.72% using Morse, 4.74% using Varshni and 4.67% using Levine [122].

For large-amplitude vibrations and for the extended potential domain, the Hua function (332) yielded a much lower
absolute mean deviation compared to Morse, Varshni, and Levine, as shown for ICl in the state A’3I'I2, Cs, inthe state
X1 3} and CO in the state x13+[122].

In addition to showing a better fit potential for the cited systems, the function of Hua V74 (R) has the advantage
that when inserted into the Schrédinger equation, it can be solved exactly when the angular momentum J is zero and can
be treated precisely for J # 0, allowing to calculate the corresponding ro-vibrational energy levels for a given system.

The four parameters potential of Hua gained prominence because it presented a good fit for the systems veri-
fied [122] in the overall potential, both in the spectroscopic region and in the dissociation limit. Such results were
obtained even for large domains, dispensing a piecewise fitting of the potential without requiring spline functions
associated or other functions, as is the case of the Morse potential (see for example [55]).

Royappa [41] et al. compared the two Tietz's potentials (325) and (329), and also the Tietz-Hua potential with
others 18 functions for 14 diatomic systems in their ground electronic states, 9 of which are in common with those
analyzed by Tietz [121]. Using the Z-test method of Murrell and Sorbie [59], Royappa verified that the average error of

the second Tietz potential (329) was more than twice the average error of first potential (325).
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Royappa et al. further observed that the first Tietz potential was one of the most accurate. The Tietz potential
(325) gives an average error less than of the Kratzer [16], Morse [7], Rydberg [8], Rosen-Morse [28], Péschl-Teller [29],
Linnett [60], Lippincott [42], Frost-Musilin [73], Deng-Fan [40], Varshni 111 [14], Levine [123] and Noorizadeh [124]. In
addition, Royappa showed that the first Tietz potential (325) proved to be even more accurate than Tietz-Hua's own
potential [122].

Currently, the Hua potential is known as the Tietz-Hua potential, and so we have used the TH index in the V
function. Actually, the function proposed by Hua (332) corresponds exactly to the first Tietz's potential, according to
Jiaet. al[125]. They observed that the Tietz potential in Eq. (325) defined with five parameters, actually only has four
independent parameters, and this potential can be rewritten as an improved representation so that the similarity to
Hua’s potential is evident (see more details in Ref. [125]).

3.24 | Thelevine function

Considering the relative accuracy obtained with the Varshni Il [14] potential, in 1966, Levine [123] (LEV) proposed a

similar function, but more general. This function can be considered a modified version of Vi ar,;; (292), being given by:

2
Viev(®) = 0, {1 - 5 exp -a(k? - R2)1 (334)

where p is a function of known spectroscopic parameters k., R, and D,. Levine defined p so that it vary for different

molecules, being obtained by:

1(AVZ-4)A2-2)

p:2+4 a7 , (335)
where A = k,R2/2D, is the Sutherland parameter.
The parameter a in Eq. (334) depends of p, and can be obtained by:
12 _
a8 20D (336)
PRe

The potential V. gy (R), such as that of Varshni lll reach the necessary conditions (see Section 3.21). Furthermore,

we have:

d?Viey
dR?

(Re) = ke (337)

where k. is the constant force.

In this case, the vibrational-rotational coupling constant ae and the anharmonicity we x are given by:

(338)

2
a2y P 8B _3,
Ao [A + INIE p] o 4A

N —



70 ARAUJO & BALLESTER

and

20p% - 12 12p?
WeXe = 8A—12(p—1)A1/2+8p2+4_(u)_'_ip.

N A (339)

Note that these expressions are identical to (294) and (295) respectively, replace 2 by p.

To check the accuracy of potential (334), Levine [123] calculated the average percent error using the relation
[VLEVy — VrkR|/De, Where the Vg represents the experimental data curve from RKR [8, 9, 10]. He analyzed the
diatomic systems: Hy, I, Np, O,, CO, NO, OH and HF in 19 states, and compared his results with the Lippincott [42] and
Varshni[14] potentials. The Levine potential can be considered a potential with three parameters because p is obtained
from ke, Re and De. This is the reason for choosing the potentials of Varshni Il and Lippincott to make the comparison,
both have three adjustable parameters too. In addition, these are considered the most accurate (with three parameters)
in the comparative study by Steele et al. [15].

The Levine potential presented an average error in |V gy — Vrkr|/De for the 19 states of 1.99%, while Varshni
11l given 2.31% and Lippincott given 2.21%. Moreover, the values obtained by Levine for a, were also more accurate
compared to the others, with an average error of 11.1%, against 15.6% of Varshni and 13.8% of Lippincott. For we xe, the
Levine potential showed a slightly smaller error (14.5%) than Varshni (14.6%), while the Lippincott gave only 12.2%.

In 1974, in a comparative study, Blinkova [126] calculated the vibrational levels for N,, N;, 0O,, O; and COin 31
electronic states using the Levine [123], Morse [7], Lippincott [42] and Varshni I11 [14] potentials, and compared them
with experimental levels. The Levine and Varshni potentials presented intermediate results, being the Lippincott and
Morse the best functions. However, it is verified only for some states of some diatomic systems. For example, the
relative errors in the vibrational levels for A3x, state of N, are: Lippincott 0.31%, Varshni 0.57%, Levine 0.77% and
Morse 2.09%. In this case, the Morse potential is the least accurate among the others. On the other hand, for a' wg state
of N2, we have the relative errors: Morse 0.39%, Levine 0.60%, Varshni 0.77% and Lippincott 1.0%, showing now, that
Lippincott is the least accurate among the others. Then, Blinkova concluded that not is possible to describe equally well
all the electronic states of various molecules using a single potential function of three parameters.

More recently, in 2006, in the comparative study by Royappa et al. [41], the Levine potential proved to be one of
the most accurate for the 14 diatomic systems analyzed. This potential given less average error than the Kratzer [16],
Morse [7], Rydberg [8], Rosen-Morse [28], Péschl-Teller [29], Linnett [60], Frost-Musulin [73], Deng-Fan [40] and Varshni
111[14].

3.25 | TheSimons, Parr and Finlan function

The Dunham expansion (101) to obtain potential energy for diatomic systems was one of the most frequently used in
the 1970s and even in later years [23]. Essentially, the Dunham expansion is based on the calculation of the potential
Voun(R):

Voun(R) = 0l(R ~ Ro)/Re]? {1 + ) anl(R - Re>/REJ"} (340)

n=1

as a Taylor series expansion in powers of the variable (R — R.)/Re, where the coefficients of this series are usually
calculated via the Rayleigh-Schrodinger [127] perturbation theory. However, the Dunham expansion presented some
convergence problems, especially in the long range region, making difficult to calculate the dissociation energy and also

converging very slowly when R — R, [128].
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Looking for corrections to these problems, in 1973, Simons, Parr and Finlan [128] (SPF) decided to make a seemingly
minor modification in the expansion of Dunham, replacing (R — Re)/Re and (R — Re)/R, by placing the potential as a
series of powers in the variable (R — R¢)/R:

Vspr(R) = bol(R ~ Re)/RT? {1 + D bal(R - Re)/R]”} : (341)

n=1

The expansion in the new variable given by (341) was properly justified and validated by SPF based on the perturba-
tion theory. They also showed the upper limit for the radius of convergence of the new potential was infinite, while that
of Dunham cannot converge to R > 2R.[128].

For the calculation of the coefficients in equation (341), SPF used and adapted the procedure proposed by Dun-
ham [23]. In the region where both potentials Vpyn(R) and Vspr(R) converge, the coefficients of the new potential b,
and the potential of Dunham a, are related as follows:

ao=b0, ai =b1—2, 22=b2—3b1+3,

as = b3 - 4b2 + 6b1 - 4; (342)

n-1

an=bn+ Z(—1)’b,,-,-(n T 1) + (=D + 1),
i=1

SPF compared their potential with Dunham expansion by analyzing the diatomic systems CO and HF, both in the
ground electronic state, taking as reference the curve obtained by the known Rydberg-Klein-Rees [8, 9, 10] (RKR)
method, considered to date as the most accurate curves for diatomic systems. In order to compare the convergence
rates, they established a potential expansion of order N, set the Nt/ order term of the potential as:

N
VNb(R) = aol(R ~ Re)/Re]? {1 + al(R - Re)/Re]”} (343)

n=1

N
VN spr(R) = bol(R — Re)/RI? {1 + > bal(R - Re>/R]"} : (344)
n=1

When testing VN gpr for zero-order potential (N = 0) of the CO system, the SPF potential showed correct
asymmetry, going to a finite value, when R becomes large, quite different from Dunham potential approaching a
harmonic oscillator, going to infinity to large R. When N = 1, the Dunham expansion was very different from the RKR
potential for R > 1.2R., where the function presents a maximum in 1.2R, and goes to negative infinity for large R. The
SPF potential was well behaved for R up to 1.5R,, assuming a finite value for a large R. Also for the CO diatomic system,
when N = 4, VN gpr fitted almost perfectly to the curve provided by RKR, especially in the region where R assumes
larger values, while V" 5 showed to be quite different, still close to that of a harmonic oscillator [128].

For the HF diatomic system, SPF used an expansion up to the fifth-order to compare the potentials VN gpf and
VN 5, using as reference the potential obtained by RKR method. Once again the SPF potential presented a good fit to

the RKR curve [129], whereas the Dunham potential showed a maximum when R — oo, similarly than for CO, indicating
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such series truncation provided a reliable result. However, for short-range, R < %Re, VN spr has an oscillatory behavior,
converging slowly. This latter problem was not considered as relevant since the curve in the other regions converges
quickly and smoothly as is desired [128].

Another advantage over the Dunham expansion is that due to the good behaviour of the potential expansion of the

equation (341) for large R, the following boundary conditions are valid:
Jim {[R*(d/dr)PVspr(R)} =0, p=1,--+,5 (345)

from which the following relations are obtained

2+Z(n+2)1bn =0,
n=1

2+Z(n+ 1)2bn| =0,

n=1

[Z(n)% =0, (346)
n=1

[i(n - ])4bn =0,
n=1

[i(n - 2)Sbn =0,
n=1

where (X)y is the Pochhammer function, with (X)g =1, (X)y = X(X +1)-- - (X + N = 1).

These relationships are valid for the infinite expansion (341), however SPF [128] suggest that they can also be
used for truncated expression (344), using by instead of b, such coefficients being calculated only from by .1 to by.s,
neglecting others. To test their potential in this case, SPF performed the calculation of the dissociation energy D for CO
and HF again.

When assuming the convergence at R = o, the equation (341) provides:

D = by (1 + Z b,,) } (347)

n+1

For the potential of the CO system, SPF used the first two conditions of (346) to calculate two additional coefficients,
bs and bg, and used these two extra coefficients to obtain the dissociation energy for CO. The value of D differed by
only 7% of its value obtained experimentally. In addition, the sixth order potential fitted well again compared to the
curve provided by RKR. For the HF system the result was not so good. When calculated for large values of R, the
coefficients bg and b7, and these coefficients used to obtain the dissociation energy D, differed by 44% with respect to
the corresponding value. In this case, the maximum values that occur in higher-order expansions can be used in the

dissociation energy calculation, differing between 10 and 15% of the experimental values [128].

3.26 | TheExtended Rydberg function

In 1974, the Morse [7] potential was still considered one of the most popular to describe the PES of diatomic systems, and

that of Hulburt and Hirschfelder [6] was also well known for its improved Morse potential as it corrected the long region
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of the function, making it more asymptotic. Furthermore, the Rydberg [8] potential, largely used by spectroscopists,
with its simple functional form, differing little from the potential of Morse, was also a reference at the time to describe
such systems.

Taking these three potentials into consideration, seeking for a functional shape best representing various diatomic
systems, Murrell and Sorbie [59] proposed a modification of the Rydberg function. They then compared this new
potential with results obtained using Morse and Hulburt and Hirschfelder functions, taking as reference the fitting
obtained by the RKR method [8, 9, 10]. This was done for eight benchmark diatomic systems: HF, H,, I, O,, N, OH, CO
and NO.

The original potential function of Rydberg [8]:
VRyD(R) = =De[1 + a(R — Re)lexp[-a(R - Re)] (348)
where D, is the depth of the well
a = (ke/De)'/? (349)
being the derivatives of order n are given by the relation
ke = ko(=1)"(n = 1)a"~2 (350)

where k. is the constant force.

MS began to investigate the properties of the modified potentials of Rydberg,

V= (—De%) 7R, (351)

For the calculation of a, and b, in (351), MS assumed ay = by = 1, and for the others they used the following
spectroscopic expansion:

1
V =-De+ 2 ,,Z_zfn(R)n =-De nz_ogan;

fo = 2k /1, (352)
&n = —f,,/ZDs andgo =1, g1 = 0
or more conveniently
n S
a0 = Ens y by (s —t) (353)
s=0 t=0

Since f; = 0, and the spectroscopic parameters f,, f; and £, are known, MS [59] imposed three conditions warranty-
ing the solutions of Eq. (353) are physically acceptable. There are:

(i) y shall be positive;



74 | ARAUJO & BALLESTER

(ii) There shall be no zeros of the b-polynomial in the region physically significant R (i. e. all positive and small negative
R);
(iii) There shall be no maxima in the attractive branch of the potential.

Murrell and Sorbie analyzed all cases of potential (351) which had the following non-zero coefficients: (a1, as, a3);
(a1, ap, b1); (a1, as, a4); (a1, a3, by); (a1, by, by); and (b1, by, b3). The only one of these that led to satisfactory potential to
describe the long-range region was the first. The function (351) then takes the form:

Vmsorb(R) = De(1+ a1(R) + a2(R)* + a3(R)*)e "R (354)
where the constants aq, a; and a3 and y are obtained through the relations:

ay=y
2
ay=g2+y°/2
(355)
a3=gs+yg +v3/6

0=gs+ygs+viga/2+y*/24.

In 1983, Huxley and Murrell [130] improved the Murrel-Sorbie potential, using (R — Re) instead R in Eq. (354),
obtaining:

Ver(R) = Do(1 + a1(R = Re) + a2(R — Re)? + a3(R — Re)?)e V(R=Re), (356)

This function became known as Extended Rydberg (ER) potential. The coefficients of this function can be obtained in
the same way as for the Murrel-Sorbie potential.

The last equation in (355) has at least one positive root, as condition 1 demands. Its solution is obtained numerically.
However, Huxley and Murrell [130] derived more explicit relations for the expansion coefficients a, from f,,, which are
the nth derivative of the potential (354) at the equilibrium distance R., known as the Dunham’s expressions for the nth
force constant (Section 2.1). For this, first they solved the quartic polynomial for a;:

Dea? —6fa? —4fya1 —f, =0 (357)

and, as before, if the roots are all real, since f; is always positive, there must be one or three positive roots. For a physical

acceptable (354), a; must be positive. Now, if a; is known, a; and a3 can be obtained from expressions:

e
2= (31 De) (358)
and
a3 = ajap — 1a13 fs (359)

3°17 6D,
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Using the Dunham’s expressions for the nth force constants, where 7, = (ﬂ;‘,{ )R_R , we have the a, in terms of

spectroscopic parameters:

fo = 4nuc?w?

_ 3f AeWe
fi= & (1+ 653) (360)

2
_f Aewe _ 8wexe
f4_Rg [15(1+653) “Be ]

To quantify the accuracy of their potential relative to that of Hulburt and Hirschfelder [6], using the potential of
RKR, Murrell, and Sorbie [59] calculated the deviation of Vi s.,5(R) and Vi (R) relative to Vg kg, using the following

function:

1
Z = m Z(VRKR - V)fz (361)

i

where n; is the number of RKR points and AR is the range covered by these points.

The Z function was calculated for three potential regions, namely: the attractive region, the repulsive region, and
the potential as a whole. This was done for selected eight diatomic systems HF, H,, I, O,, N,, OH, CO and NO, using
the potential functions Vi sor6 and Vi (R) in place of V in (361).

For the repulsive part of the potential, Murrell and Sorbie [59] function Vj; 5,5 (R), provided a more precise fitting
of Hulburt and Hirschfelder [6] V4 (R) in five of the eight diatomic systems, offering a worse fitting only for the HF,
I, and N; systems. In the attractive branch of the potential, Ve g (R) showed better results for practically all systems

except I, and NO.

In the overall potential, the Extended Rydberg function performed better on all systems except for |,, thus showing
that the Viys0,5(R) potential offers, in general, a better fit to the systems tested [59]. However, this analytical empirical
potential does not produce accurate vibrational eigenvalues and eigenfunctions for highly vibrational excited states in

the asymptotic region of a stable diatomic system.

3.27 | The Thakkar function

Usually, curves of potential energy for diatomic systems were obtained by one of four forms: by a table of points; by
an empirical function; by a series of powers truncated or through the Padé approximants [22]. Expansions in power
series are very interesting because they provide an analytical form for the potential curve, facilitating the interpretation.
In 1975, Thakkar [22] (THA) proposes a new and generalized power series expansion, with a nonlinear parameter p,
containing both Dunham [23] and SPF [128] expansions as special cases corresponding to the particular choices of p in

)

1+ Z en(p)A”

n=1

Vrua(R) = eo(p)A? (362)
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where

AR, p) = s(p)[1 = (Re = R)?] (363)

being p a nonzero number, R, the equilibrium internuclear separation and s(p) an abbreviated notation for the sgn
function defined for:

+1,p>0
s(p) = sgn(p) = . (364)
-1, p<0
For p = —1, the equation (362) becomes:
_ 2 - n
V(R) = 2[R = Re/Re] {1 + > an[R = Re/Re] } (365)
n=1

where a, = e,(-1), and the equation (365) is exactly the Dunham expansion (340).

For p = +1, the equation (362) becomes:

V(R) = bo[R — Re/R]? {1 + i bnlR - RE/R]"} (366)

n=1

where b, = e,(1), and the equation (366) is exactly the SPF expansion (341).
Still, for p > 0and e, (p) = O(p > 1) the equation (362) becomes:

V(R) = eo(p) + eo(p)[(Re/R)* = 2(Re/R)P] (367)

which is simply the Lennard-Jones (2p, p) potential [45] (see section 3.2).

The radius of convergence of the equation (362) is determined by the singularity of V74 4(R) closestto R = Re inthe
complex R plane. For p < 0, the singularity occurs at (RIP! — RL”‘)/RL”' = —1, which implies that for p < 0 the potential
(362) cannot converge for R > 2'/IPIR, [22]. In the case of Dunham potential (p = —1), as appointed in SPF [128], the
expansion can not converge to R > R,. For p > 0, the pole at R = O occurs at (RP — RcP)/RP = —oo, and therefore the
radius of convergence of (362) is bounded by infinity.

Thakkar [22] conjectured that the equation (362) converges to R in the interval (0, 2'/IPIR,) for p < 0 and converges
to R in the interval (0, o) for p > 0, converging faster only in the interval (R, /2'/IPl, ) for p > 0. For the calculation
of the coefficients e, (p) in the expansion (362), Thakkar adapted the Dunham [23] procedure, and obtained a relation
between e, (p) and a,, [22].

Regarding the choice of p, p > 0 values lead to a better result since the potential converges rapidly in the long-range

region, which is of great interest when one wants to study molecular dynamics. Thakkar [22], proposes
p=-a;—1 (368)
and estimates some values for p through the extensive Calder and Reudenberg analysis of the Dunham coefficients for

160 diatomic molecules [22].
Thakkar analyzed the behaviour of the potential V4 4(R), with p given by the relation (368) for the CO and HF
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systems, both in the ground state. He compared the results obtained with the Dunham and SPF potentials, using the
truncated expansion:

N

1+ Z en(p)A”

n=1

VruaV(R) = eq(p)A? . (369)

For CO, Dunham potential proved to be well below that of SPF and V4™ (R), showing that they agree with the
RKR curve [129] for N = 3 or 4. In the calculation of the dissociation energy, the difference between SPF and Thakkar
potential is very significant, since while SPF provides a 229% error, the calculation of D via Thakkar has an error of only
—-3.9% calculated via [22]:

N

1+ enlp)

n=1

DN = ey(p) ,p>0 (370)

being p calculated by (368).

For the HF system, the result is similar to CO, with Dunham potential once again diverging from the RKR and SPF
curve, about 1193% deviation from the RKR curve for N = 4. In the calculation of the dissociation energy, the truncated
function of Thakkar, for N = 5, presents the best fit with a maximum error of only 7.2%, while the SPF expansion with
the same number of terms presented an error of 204% [22].

Thakkar still calculated the values of the dissociation energy for 20 alkali halides: LiF, LiCl, LiBr, Lil, NaF, NaCl, NaBr,
Nal, KF, KCI, KBr, KI, RbF, RbCl, RbBr, Rbl, CsF, CsCl, CsBr and Csl. For these systems, in comparison with experimental
values, only NaBr had smaller deviation using SPF than Thakkar, being that in average the deviation of SPF was in 122%,

whereas by the Thakkar model the average deviation was only 28% [22].

3.28 | The Huffaker function

As we can see, until the 1970s, most research involving potential energy functions was based on either the Dunham
potential [23] or the Morse potential [7]. However, however, although Morse presented a good approximation for real
diatomic systems and the Dunham (theoretically) could be applied to any system, both have some disadvantages. The
Dunham series has a poor convergence whereas the Morse function fails to describe finer spectroscopic details and the
introduction of rotational effects is complicated [131].

Thinking about that, in 1976, Huffaker [132] presented a formula for the rotational-vibrational energy levels of a
diatomic system using a perturbed Morse potential along with additional perturbations describing rotational energy.

The potential function of the perturbed Morse oscillator (PMO) used by Huffaker (HUF) is given by:

Viur(R) = Del(1 — e BRI 1 %" (1 — e72(R=Rely) (371)
n=4

where R, and D, have their usual means. This series converges for all R, except for a singularity at R = 0, and it is related

with the dissociation energy D by:

D + hCFV:O’j:O = De(T + b4 + b5 + - ) (372)
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where Fy ;= 3, Vi (v + ) H(J + 1Y asinEq.(6) (see Section 2.1).

Note that the potential (371) does not have the cubic term. This is possible only if the unperturbed Morse potential is
specified by the location of its minimum and its second and third derivatives there. Huffaker described, for convenience,
the unperturbed Morse potential by the three parameters p, o and 7, given by:

p=aR, (373)

o= Vz:hDe (374)
D

= TZ' (375)

. Then,
as a result of the perturbation calculation, Huffaker [132] obtained expressions for Dunham coefﬁcients Y,j, with
i +j < 4,asfunction of these p, o, 7 and b4, - - -, bg. He modified slightly the Dunham notation, expressing each Yj; as

The parameter o is approximately the number of bound states of the Morse oscillator, then o ~ =

Y = YIE'O) + Yl.f) + YI.E.“) + - - -, where the lowest-order term, of order / + j — 1 is given by YU(.O) and the terms of higher

order are Yl.j.z), )’1.5.4), etc. Some of these coefficients for rotational-vibrational energy levels of a PMO are given by:

0 0
P
67b
v\ =0? = 5 ( 3bg — 15bs + 25bg — —)

0 0 1-3b,
e ()

0 0
Yo =8 = 75

3 2
v =@ - ( s ) [% + 228 qap 4 15—p2(7p+9)b4+15p3b5]

80406

v = —wox?) = (%) [9b5 15— 35y + 49y + 10k 4, M3babs _ 1Tibybs 21765 ”%"i] (376)
vy = ol = (35) - 1]

VP =-al = (sg§p8) 22wt 139 g5, 4175 (@ ~ 1% 954 335) by

2
+5p3 (29” 15p+38) bs —150*(17p — 15)%5 + 175p5b; + p*(1043p + 1005) 24 — 71555 2455

1762
YO = w0y = (2 3)[ by + Sbs + Sbg — 4

0 0 23
= = () [ % 2+ B 100+ 5+ pPp ~ 1)y — +5%s
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where w(eo) and B(eo) correspond to Dunham’s we and B, and have the values:

0O = 2t (377)
o
and
©__T
BY = e (378)

Making power series expansion of the exponentials in Eq.(371) and comparing with Dunham expansion (4), Huffaker

obtained the relations between the a; Dunham coefficients and his b; coefficients:

a0 = 107,

a3 =p° (b5—2b4— }z) (379)
5b 13b,
a4:p4(b6—Ts+T4+%),
10b. 5b,
as :ps(b7—3b6+T5—T4—4170),

_ 6, _ Tby , 1965 25bs  8lbs _ 127
6 =P (bS 2tz g T8 T 2060

Ignoring the higher-orders correction w?, etc., Huffaker obtained the Morse parameters p, o and 7 from experi-

mental values of we, Be and ae, given by:

_ (aewe + 6B2)

380
652 (380)
2
we
= 381
T 18,57 (381)
o= 2, (382)
We

and with similar approximations, the first three perturbation parameter of Eq. (371) are given from we xe, ye and we ye:

2
by = Z [1 _ %] (383)
3 T
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1 [20%0%ye . 7p°  23p? 2
bs = L2 1 10p-5- -1)b. 384
5555 e 6 4+0p53p00 )bs4 (384)
1| 203weye 1762
bg=—- | ——— +bg—5b5+ ——|. (385)
5 T 4

To evaluate the convergence properties of the Yj;, Huffaker compared his method with Dunham'’s formulas, and

concluded that his method was not only most convenient (mathematically), but also the most accurate.

Huffaker chose the (' >*) CO diatomic system for testing the perturbed potential Morse Viyy£(R). He compared his
results with the RKR [8, 9, 10] experimental curves. For this diatomic system, the eight parameters o, p, 7, b4, cdots, bg
were calculated using the equations from (380) to (385). Then, the higher-order corrections w(f), 5(62)’ agz) and a)exgz)
also were calculated. Although of these to be practically negligible, these small corrections were included to obtain the

eight parameters before cited.

In order to compare the accuracy of his analytical potential in relation to others existing at the time, Huffaker chose
those that were also given by a power-series expansion, such as Dunham [23], SPF [128] and Thakkar [22] potentials.
The unperturbed Morse potential obtained by Huffaker showed to be superior to all others with a series using only 3
parameters, presenting the smallest mean absolute deviation from the carbon monoxide RKR potential. Moreover, the
percent deviation of predicted dissociation energy for CO, from the experimental value, was much smaller using the
Huffaker potential than using SPF, Thakkar, or Dunham potential.

Camacho et al. [133] in 1994, confirms the good accuracy of Huffaker potential for ('=*) CO. Huffaker showed

again to be more accurate than Dunham and SPF, and obtained similar results to Thakkar.

In a second paper, Huffaker [134] extended the calculations of PMO parameters up through b1, from spectral data
and applied this potential to some more diatomic systems: HF, HCl and CO (again) in their electronic ground states
and also for the B(? I'Igu) excited state of |,. Then, knowing that the highest PMO parameters to contribute with YI.J<.2k) is
byj+j+2k, he obtained the following modified Dunham coefficients: Yl.g)) fori < 6; )’/.(10) fori <5; YI.(OZ) fori < 4; Yl.(f) for
i <3 Yl.g‘) fori < 2,and )’[(14) for i < 1. Thus, using an iterative approach Huffaker calculated all twelve parameters: p, o,

T, by, - -, bya.

Huffaker [134] showed that of the diatomic systems chose, CO was the most suited for a PMO analysis including the
twelve parameters, with maximum discrepancy from RKR of only about 2 cm™" at the v = 19 vibrational level, whereas,
for HF, the error was about 200 cm~" at the v = 16. For HCI, the results were similar to HF, but problems of convergence
and truncation were not as bad. For the excited state of I, he obtained that the values of b/,s were so large that the
perturbation finally became bigger than the Morse potential, and because of the very large value of o, convergence
properties were good. Huffaker claims that an accurate PMO analysis through b1, should be possible for the ground
state of any diatomic system, and for excited states, consistent results should be obtained.

However, in 1979, Goble and Winn [135] obtained a potential function for the X25* and A1 of the weakly bound
system NaAr and the A2I'I3/2 state of NaNe derived by inverting spectral data to analytic potential functions. For
NaNe(Azl'Ig/z), the Huffaker function presented an inadequate behavior, similarly for NaAr, which led the authors to
believe that this performance was general for weakly bound molecules when the Huffaker potential is used. For these

cases, the Thakkar [22] function is more appropriate.
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3.29 | The Ogilvie function

Ogilvie presented his first potential for diatomic systems at the Canadian Spectroscopy Symposium, in Ottawa, 1974.
He stated that although there are many potential functions which can be fit to R, and k., and other parameters derived
from vibrational-rotational spectra, for a lower portion of the potential well a flexible and accurate function which will
reliably reproduce all the fitting procedures by which the spectroscopic parameters are derived, is still the Dunham [23]
potential function given by Eq. (2). Most of the potential functions purposed by Ogilvie was Dunham type, because
he believed that the general form of the potential energy of a diatomic system should be given as a function of some
general parameter related to internuclear separation R to be represented as a truncated polynomial or power series of
£ (see Eq. (2)). Also, Tipping and Ogilvie [136] derive matrix elements appropriate to a generalized (Dunham potential),
and these were the most accurate analytic results to date and were computed in detail for HCI (see details in Ref. [136]).
The Ogilvie potentials are known as the Ogilvie-Tipping series (O-T).

In 1976, Ogilvie and Koo [137] calculated the Dunham potential coefficients a;,0 < i < 6 (except 4 for HI), derived
from spectroscopic data of diatomic systems HF, HCI, HBr, Hl and CO in their electronic states. For this, they used the

Dunham potential function:

Voun = heao€?(1 + Z aiEh (386)
=

where ¢ = Rg—fe. This function has the following properties:

(i) V§OatR:Re;
(ii) % = ke, being k. the constant force.
R=Re

The coefficient aq is related to the force constant according to equations:

we _ keRe

T 4B T 2hc

a0 (387)
being w} and B} adjusted parameters where Dunham corrections to Yy; and Y;o were applied. The other Dunham
coefficients are determined by iterative procedure from equations (given by Dunham) using the energy level equation
(6). These coefficients a;, i > 1 determine the manner in which the lower portion of the potential function, vV < %De,
deviates from the parabolic form of the limiting case, a; = 0, for all / > 1, of the harmonic oscillator [137]. The results
obtained by Ogilvie and Koo were in good agreement with the previous sets of a; existing at the time.

They computed correlation matrices for the coefficients a;, w}, and B; and also for energy coefficients Y;; for all
diatomic systems. In general, the coefficients a; were not strongly correlated with each other and w} and B (absolute
values of off-diagonal elements less than 0.9) except that a; was fairly anti-correlated with a, (matrix element < —0.95).
The calculated coefficients Y}; also were not correlated with each other, except Yo4 and Y12 for which the matrix elements
~ 0.99. Nevertheless, the calculated Y;; are generally in good agreement with observed values. Ogilvie and Koo observed
also that for the hydrogen halide molecules the coefficient ag varied little in this group and the other potential coefficient
a; to a4 (except a4 of HI) showed a smooth monotonic increase as the halogen mass increases [137].

Still in 1976, Ogilvie [138] following the suggestion of Tipping, examined the series expansion (386) in the variable
&= E;—gz,withg =-1whenR — 0,and ¢ = 1 when R — . Note that, in this case, V(R) —» o at R = —R. and V(R) = 0
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at R = R, and at R = 0 we have V(R) defined (or regular), what allows one to introduce correct behavior near the origin
by Coulomb subtraction, i. e., without the Coulomb repulsion (For more details see section B of Ref.[139]). Then, the
truncated Coulomb-subtraction Ogilvie-Tipping series (CS-OT) yield finite values V(R) at both limits R = 0and R ~ .

Engelke [139]in 1978, compared the O-T and CS-OT functions with Thakkar [22] and SPF [128] potentials, because
all have the same feature: are a Dunham-type power series. He considered O-T function as:

Vor(R) = cot? (1 ) c,z") (388)

i=1

where ¢ = g;gz and the coefficients ¢; are related with Dunham coefficients. The first five coefficients are given by:

co = 4ag
c1=2(a; +1)
¢y = (4ap +6a7 +3) (389)
c3 = (4a3 + 8ap + 6a1 +2)
c4 = (16a4 + 40a3 + 40a, + 20a; + 5).

He calculated these coefficients c; for (1 scrg)2 state of H; and obtained that for R/R. > 1 both Thakkar and SPF
were slight better than O-T when ag, a; and a, Dunham coefficients were known. On the other hand, the CS-OT series
was superior to all the other series in this region. Now, for R/Re < 1, the O-T series was more accurate than Thakkar
and SPF potentials, and CS-OT is again better than all the other series [139].

The similar situation occurred when a, a1, az, a3 and a4 were known. In the region R/R. > 1 the Thakkar potential
was slightly superior and the SPF potential slightly inferior to the O-T series. On the other hand, for R/R. > 1the O-T
series was more accurate than both potentials. For 0 < R/R. < 5the CS-OT series was better than the all other, while
for R/R. > 5 the Thakkar potential became better [139].

In 1981, Ogilvie [140] proposed a general potential energy function for diatomic systems. This function more
flexible is showed as a family of functions including previous polynomial functions having more restricted validity, like
those presented before.

As before, Ogilvie considered the general form of potential energy as a function of internuclear separation R being
given by a truncated polynomial or power series of argument w:

i=1

k
Voc1(R) = dow” (1 ) d;-w") : (390)

He considered that w can assumes three forms, and therefore Vpgr(R) can be three different potentials series:

(i) ifw—x= R;fe, Vogr1(R) is the Dunham potential (386), and then, the coefficients d;,0 < i < k, are written as a;;
(i) ifw—y= R"RRE , Vog1(R) is the SPF potential (341), and the coefficients are written as b;;

(iii) ifw — z= 2(%?:::; is the new form proposed by Ogilvie, and the coefficients are written as ¢; (actually, this is the

same form presented by Ogilvie in 1976 [139], but using the 2¢ variable).

In all cases, the expansion series is made about R = Re, and thus z = 227")( - 22_—yy Note also thatforR ~ Rg, x ~ y ~ z

and ag = by = ¢p, and for R — 0and R — only z remains finite at both limits, with z = —2 and z = 2 respectively.
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For convenience, Ogilvie [140] considered a potential energy function of a general type of truncated polynomial
that could represent V(x), V(y) and V(z) in a single expression. This is given by:

n
V(Wmn) = d0"w2, (1 +>) d,.m"w;,,) , (391)
i=1

where the argument w,,, becomes a function of two integer parameters m and n as well as R and R.:

_(m+n)(R-Re)

Wmn = (mR + nRe) (392)

Note that these relations define a family of functions which, as earlier:

(i) if n = 0we have V(x);
(i) if m = O0wehave V(y);

(iii) if m = m # Owe have V(z2).

To check the accuracy of your family potentials, Ogilvie [140] chose the diatomic system Ar; in X' Z; state. For this,
he used a sample of 85 points in the range 2.5 < R/107'%m < 6.7, with geometrically increasing interval, in a general
routine LMM1 for fitting parameters in the same initial estimates of parameters d" were applied to each set of mand n.
Two sets of coefficients, numbering either seven (d'” — df"") or nine (¢'" — dg""), were tested. The data demonstrated

that the V() was slightly superior in these cases than V/(z), but four times as many iterations were required.

Ogilvie highlighted that, actually, V(y) and V(z) were not absolutely the best, but the case m = 4,n = 1 was the
best for determination of seven coefficients, whereas the case m = 4 and n = 3 was best for the set of nine coefficients.

The coefficients d/"" are related with ¢, coefficients in V(z) by equations:

co = dag"

¢1 = dmn 4 1= (393)

_ P k-1 _ ki ;
e = k) [(55) ~ e |+ + 3 () [(5) 0 — e ]

where (7) is the combinatorial m and k > 1.

Thus, the V(z) function defined according to the equation for V(wn,) is a useful function, and among the others,
itis the only one in which the w1 = z parameter possesses the desirable equivalence of magnitude of limiting values,
correspondingto R = 0 and R — oo, that ensure convergence within the entire range of accessible, real nuclear separa-
tion [140]. The same result was obtained by Engelke [139] as cited before, in which the function CS-OT corresponds to

V(z) without the Coulomb repulsion.
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3.30 | The Mattera function

From the 1970s, potentials began to present functional forms in power series expansions of Dunham-type, and closed
formulas began to appear less frequently. Simons et al. [128], Thakkar [22], Huffaker [132] and Ogilvie [137] are some
of the potentials presented earlier that are given in this way, and these proved to be accurate.

Then, in 1980, Mattera et al. [141] (MAT) presented a new representation of potential energy curves for diatomic

systems using a function Dunham-type:

Viar(R) = dof2(x)[1 + d1 F(x) + daF2(x) + - - -], (394)

where x = R,}fe and 7 (x) as well as the Thakkar proposal, which contains a free parameter:

Fx)=1- (1 + %X)w (395)

with p > 0.
The coefficients d; are given in terms of Dunham coefficients a;, the first five being:

dozj%
d1_"’7‘+1—
=i (i3] o (3] (499

d3::%+2(1+%)[d2—%(%+5)+%(;—2+%+3)]

_a .5 1 _ﬁ(u ) ﬁ(ﬁ 19 )_17(& 401 | 194 )]
d4_y4+2(1+p)[d3 s |lp T13)+ p2+p+6 300 p3+p2+p+31 .

These coefficients can be determined since the Dunham coefficients are known, and if p and y are properly chose.

The main advantage of the present expansion is the high flexibility of its leading term:

-p 2
1+ L (R—Re)} } , (397)
PRe

Vo(R) = d0{1 -

and this function has a interesting property, because V4 (R) becomes the Morse potential [7] for p — +oo, the Lennard-
Jones (6,12) potential [50] for p = 6 and the Kratzer potential [16] for p = 1[142].
Mattera et al. also obtained the vth vibrational level E, of a particle in the potential Vo(R) [143]:

BARAIRES
A2 AS

12 1+1 341
where m is the mass of particle, A = (zmd%y Re & = (32;’), +=3- :—p". The Eq. (398) is more accurate than the

Ev = do - do (398)

5
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Dunham [23] expansion of £,,, evaluate for Vg up to the cubic termin (v + 17)

For obtain the term V(R) appropriate for a given diatomic system, Mattera et al. proposed two ways:

(i) pandy are obtained from Dunham coefficients a; by setting d; = d, = 0in Eq. (396), producing:

~ 12a; — 1122 a1

12a, - 7a? ’ }'=—(1+1E),

do = 2 (399)

(i) do, RLE and p are determined by a direct fit of the vibrational spectrum with Eq. (398).

The procedure (ii) with the correct choice of R, proved to be more suitable, leading to a term V; that accurately
reproduces the RKR curves [8, 9, 10]. The procedure (i) showed to be less satisfactory in most cases, depending on quite
accurate knowledge of the Dunham coefficients. The V, term was calculated using both procedures for HHg and CO,
whereas for Ar,, Vo was obtained from the procedure (ii) only. Here, all diatomic systems considered are in their ground
electronic states.

Mattera et al. obtained that for CO both procedures yield accurate results and for HHg the procedure (ii) was more
adequate. Furthermore, the p values obtained in both ways, (i) or (ii), differed significantly from those obtained by
Thakkar [22]. They also showed that large p values are more suitable in describing molecular interactions, indicating
that the Morse potential was still a good representation of diatomic potentials.

In 1994, Camacho et al. [133] presented a comparative study of the eight most important power-series expansions,
including Dunham [23], SPF [128], Thakkar [22], Huffaker [132], Ogilvie [140], Mattera [141] and Surkus et al. [144](see
the next section), as fitting functions for approximating rotationless RKR potentials [8, 9, 10]. The eight potentials given
by truncated power series expansions were analyzed for CO (X'=*), Hp (X! ¥})and LiH (X'=* and A'=*) diatomic
system and for CO (X '=*) was analyzed also the behaviour of V; term.

Camacho et al. showed that the worst fit for CO corresponded to Ogilvie function due to the convergence of this
potential, which is very slow and its limits give a finite small number when R — 0. On the other hand, the Mattera
potential presented the smallest standard and mean deviations for this diatomic system. For the ground electronic state
of LiH, the best fitting was obtained by Thakkar potential, and in this case, the Dunham potential presented the worst fit,
followed by the Ogilvie potential, which also showed greater deviations than the others. For LiH (A'=*) and H, (X' 22,),
the Mattera potential presented, in both cases, lower deviations than Thakkar, SPF, Huffaker, Ogilvie, and Dunham.
Moreover, a good fit with only V; term of a power series expansion was obtained more accurately from functions with

two nonlinear parameters, such as the Mattera or Surkus potential.

However, Camacho et al. observed that for fitting power series expansions with an intermediate number of
fundamental basis functions it was better to use a type of function with only one non-linear parameter, such as the
Thakkar or Huffaker potential, because the effort in calculating the second optimum non-linear parameter of the

Mattera function, for instance, was not the precision of the fits.

3.31 | The Dmitrieva-Zenevich function

In 1983, Dmitrieva and Zenevich [145] (DZ) proposed a four-parameter potential energy function also inspired by the

Dunham expansion, following the trend of the proposals at the time. Inspired by Simons, Parr, and Filan [128], the

potential was proposed using the power series on ¢(R) = R;fe , and they presented the function as a closed-form.
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The potential proposed is given by:

2
Voz; (&) = (l_a%oﬁa ¢ <iénm
Vpz (&) = De- Rg(1c+§)5’ E>¢m,

where ag and a; are Dunham'’s coefficients [23]

and

AeWe
682

e

ar = -1

where ae, we and B, have their usual meanings.

The constants C and ¢, are obtained by relations:

Voz,;(Em) = Vpz;(Em)

ensuring also the continuity of the functionin &, and

dVpz,;
d¢

B dVDZ”
&=tm df

§=¢m
These conditions result in the quartic equation:

tn|-Sath+(8+da)tmr2]

6(1 —%a1§m)4 a

ao0

(400)

(401)

(402)

(403)

(404)

(405)

and the smaller positive root of this equation gives the desired &,,,. Then, the C parameter can be obtained from:

20¢m (2+ §218m) (1 + £m) RS

6(1 - %a1§m)4

Note that Eqn (400) fulfills:

(406)

(i) Asé — oo, the potential converges asymptotically to a finite value, and in this case, we have, Vbz;r — De;

7
(ii) The potential has aminimum (inthe region ¢ < &) at R = R, . e, Z;I

R=Re

(iii) Vpz,;, — coaté = —1(or equivalently at R = 0).
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Dmitrieva and Zenevich [145] analyzed their potential for Hy, I, No, O,, CO, NO, OH and HF diatomic systems
in their ground electronic states, and compared them with RKR [8, 9, 10] experimental curves [15]. Their potential
presented the mean error from 0.52% for HF and O, to 1.8% for NO and 1.9% for 5.

To calculate the anharmonicity we xe, they suggested to use the expression:

2
7 AeWe
=B |[1+ —~ 407
WeXe 3 e( + 653 ) ( )

and tested for the eight diatomic systems mentioned above, giving an average error of 7.9%, much lower than those pro-

duced with the potentials: Morse [7], Rosen-Morse [28], Rydberg 8], Poschl-Teller [29], Linnett [60], Frost-Musulin[113],
Lippincott [42] and Varandas [146].

3.32 | TheSurkus function

We have seen several potential energy functions represented as a power series, all based on Dunham'’s expansion,

ww=%ﬁt+iaﬂ (408)

i=1

with different proposals for ¢, being:

(i) &€= % by Dunham [23];

(ii) &= ERe) by spF[128];

(i) &= s(p)[1 - (%)p] by Thakkar [22];

(iv) &= 2(2122) by Ogilvie [140].

Then, in 1984, Surkus, Rakauskas and Bolotin [144] showed that actually, all these potentials (i)-(iv) could be
obtained from a generalized form for ¢, given by:

(RP — RE)

(RP + nRE) (409)

Esur = s(p)

where n and p are real numbers with the conditions that p # 0and n # —1,and s(p) = 1if p > 0and s(p) = -1if p <0,
like defined by Thakkar [22] (see Section 3.27).

Here & is a parameter in the Surkus (SUR) potential, given by:

wMMFmEp+Z&ﬂ. (410)

i=1

Surkus observed that:
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(a) ifn=0andp = -1in(409), we have (i);
(b) if n=0andp = 1in(409), we have (ii);
(c) if n=0in(409), we have (iii);

(d) ifn=1andp = 1in(409), we have (iv).

Note that the parameter &5z remains finite for any value of R, ensuring that the Surkus generalized potential may
produce a qualitative approximation of the potential curve for all parts of the internuclear separation.

The Dunham’s formulas to coefficients a; are defined by the derivatives of the potential energy function at the
minimum, in this case, given by:

2
a0 = LR2 [ FVsur (411)
dR? Jp_g

and

RQ’Z (di+2VSUR) (412)
R=R

Y Taoli + 2 |~ ar2

Surkus et al. [147] considering the case when p > 0, he obtained the parameters g; relating them to the Dunham

parameters a; by equations:
g0 = ap¢;?
g1 =aE; ! — 872
g2 = ad” - 3836 - 16360 - 3an6ady?
g3 =a3t® - 15526351_5 - Lt - gkt - e £33 — 28960872
g4 = asbyt — J 8280 — Lbaba 80 — LEsE — 10 — g b0b3E S — Labat - 32282 - 2gakstd - Sgstat?
g5 = ast] — frbsbady — mpbadséy — siobedi® — 58163838 — LSS - gmbatad® — 185t — h&283E

—g2b2b3tS — Lgababit — 3 gab2E Tt — 2g3bsl® — 3gukat;?
(413)
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where

bi=Reg e, T

fo= REZE oo, P2

b= RI%E oo, =GP -2 - 6 - ) 657

b= Rg%‘ oo, = 6P =20 =3) =288 (p = 1T = 11) + 36635~ 1)~ 241,

&= RS% ek, =&(p-1)p-2) - (p—4) - 10(p - 1)(p-2)(3p - 5) +30&3(p - 1)(5p - 7)

(414)
—240&1(p — 1) + 12087,

ts = RELE

6% =&(p-1)p-2) - (p-5-282(p—-1)(p-2)(31p* - 132p + 137)
R

=Re

+90E3(p — 1)(6p% — 19p + 15) — 40E%(p — 1)(39p — 51) + 1800£3 (p — 1) — T20£¢,

d7
il

T Eilp=1)(p—2)---(p—6)—14&2(p - 1)(p — 2)(p - 3)(9p? - 39p + 42)

+4283(p — 1)(p — 2)(43p? — 141p + 116) — 840} (p — 1)(10p? — 29p + 21) + 42003 (p — 1)(4p — 5)
~15120£5(p — 1) + 5040¢.

In the case that p < 0, relationships can be obtained from (413) by substituting —g1, —g3, —gs for g1, g3 and gs
respectively. Thus, if the spectroscopic constants F,; are known, the coefficients a; can be calculated with Dunham'’s
formulas [23], and substituting a; into (413) and (414) the parameters g; of the potential (410) can be obtained.

Surkus et al. [144] also obtained relations between the dissociation energy D and the coefficients g;. If p > 0 and

R — oo,then ¢ — 1, and thus we have:

N
D = &0 (1 + Zg,‘) . (415)

i=1

On the other hand, if p < 0and R — oo, then ¢ — 1; and thus we have:

N
_ &0 8i
D_nz(1+zni). (416)

Since the dissociation energy is known, relations (415) and (416) can be used to estimate the following coefficient
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gi on the basis of the coefficients determined.

Firstly, Surkus et al. [144] applied their potential for (X' Z;) H, diatomic system. In order to obtain coefficients g; of
the Vsyr(R) from Eq. (413), the values of p and n were estimated using the relationships:

2p }
n=|———| -1 (417)
[(P —a;-1)
and
2 9 9
p*-ai+6a-1=0. (418)
The roots of Eq. (418) provide two potentials [147], being:

(i) Vsur,:p=1.1634,n =0.3170, go = 0.465369 (au), g1 = g = O;
(i) Vsug,;:p=1,n=0.5 g9 =0.817083 (au); g1 = —0.4050, g = —0.009.

To evaluate their potential to (X' Z;r) H,, Surkus et al. [144] compared it with the Kolos-Wolniewicz potential (Vi w)
using the expression A; = (|Vkw (R;) — V(R;)|/D) x 100%, where D is the dissociation energy of the ground state of H,.
The mean error for Vsyg, and Vsyg,, potentials was 5.3%, whereas for SPF it was 5.9%, for Thakkar it was 6.2% and for
Ogilvie it was 7.5%.

The Surkus potential showed to be accurate mainly for diatomic systems containing cations in their ground elec-
tronic states. In 1991, he applied his generalized potential to SiF* [148] and obtained better results than SPF, Thakkar,
Ogilvie, and Huffaker. In 1992, he obtained the potential energy function of PO* [149], and in 1994, he obtained the
potential energy function of KrH* [150], standing out for the correct long-range behavior for both.

In 1994, the good result of the Surkus potential for (X' Z;;) H, was confirmed by Camacho et al. [133] which showed
that the Surkus potential was better and more accurate than Mattera [141], Huffaker [132], SPF [128], Thakkar [22],
Ogilvie [140], Engelke [139] and Dunham [23] potentials.

3.33 | ThePseudogaussian function

Still in 1984, Sage [151] introduces a new potential with three parameters, and as well as Morse [7], it can be used
for discussing large-amplitude stretching vibrations. Sage called his potential a Pseudogaussian (PG), and energy
levels and wavefunctions can be found for the three-dimensional rotating system using the same methods as for the

one-dimensional oscillator for this potential, in contrast with the Morse oscillator.

The Pseudogaussian potential proposed by Sage is given by:

B(, R:
1+ 5 1 _2
ke RZ

where g = -2+ (4 + 2A)'/2 with R, and D, having their usual meanings and A = 2D the Sutherland parameter.

w202

VpG(R) = De {1 - 5 —Fg

This function is similar to the three parameter Varshni lll potential (292) (presented in Section 3.21) in some aspects.
Note that Vpg(R) satisfies:
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(i) Vpg(R) come asymptotically to a finite value, in this case De, as R — oo;

2
(ii) Vpg(R)hasaminimumatR = R,,i. e, dg,’;G =0and dd\;’;G

R=Re R=Re

= ke;

(III) VPG — oatR =0.

We obtained the expressions for the spectroscopic parameters a, and we x, from Dunham'’s relations (15) and (16):

8+ 3A — (4 +2A)(4 + 2A)'/2 682
g = [BX3A-(+20)@+20) 7 | 65 (420)
3A We
and
_ 1/2 -16
wexe:{64(10+9A) 4(20 + 3A)(4 + 2A)(4 + 2A) +22(6+A)} 2.1078 x 10 , (421)
A2 3RZu

where, for we xe We use the approximation suggested by Varshni (see Eq. (7) in Ref. [14]).

For comparison only, if we use the equations (420) and (421) to calculate a, and we x, with the same experimental
value A used by Varshni (see table VIII in Ref.[14]) and with R, 4 and w, collected by Herzberg [95] for OH diatomic
system, the errors correspond to —23.15% and —15.1% respectively. However, for the Morse potential the errors are
only 0% and +13.9% for a, and we x¢, respectively. The results for Vpg(R) potential also are less accurate than the
Varshni potentials Vi ar; and Vy ag;;, both with three parameters.

As well as the Morse potential, PG function yields a soluble Schrédinger equation [152], but in many aspects, the PG
potential is easier than the Morse function. This can be seen when dealing with a non-rotating molecule, for example.

To obtain the PG eigenfunctions, Sage suggested an expansion of the Schrédinger equation in terms of a complete

set of three-dimensional pseudoharmonic (PH) oscillator functions given by [151]:

1

3 (422)

2
Vi = —keR2 (R% - %) .

The PH basis set corresponds to functions with the same equilibrium force constant k. and bond length R, as the
PG oscillator. Furthermore, these functions have reasonable behavior at R = 0, near the equilibrium bond length R,
and at co [153], and for small amplitude motion they correspond to the rotating and harmonically vibrating diatomic
molecule. As well as the PG potential, the PH oscillator provides exactly the energy levels and wavefunctions for any
angular momentum using the polynomial method, as demonstrated by Sage and Goodisman [154].

Sage analyzed the PG potential to the electronic ground state of the non-rotating OH system, and he compared his
results with the Morse [7] potential. The RKR [8, 9, 10] experimental curve was used as a reference to calculate the
deviations from these potentials.

The vibrational energy levels related to the PG potential were obtained from a linear variational calculating using a
PH basis set with a maximum of fifty basis functions. Sage observed that with 25 functions the lowest 8 energy levels
were determined to 0.1 cm™, but all states v > 10 had errors larger than 100 cm~', and even for 50 functions accurate
energy were found for v < 11. Thus, if there is interest in states near the dissociation limit, the PH functions should

be modified using smaller values of k. or larger values of R,. For example, using the force constant equal to 0.6k, and
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equilibrium bond length equal to 1.2R., Sage showed that only 25 PH functions gave comparable results to the original
calculations with 40 PH functions, a considerable improvement.

Sage observed that to OH system, the PG potential coincides with the Morse potential if R — Re and when
R — oo, but in other regions, the PG potential lies above the Morse. Although the potential PG itself has not promoted
major improvements over the potential of Morse, a modified version of this was able to accurately represent the true
internuclear potential. This modified version called MODPG is the sum of one PG potential with force constant 0.6k,
and dissociation 0.4D and one with 0.4k, and 0.6 D, respectively [151].

In 1985, Sage and Goodisman [154] showed the advantages that the pseudoharmonic function possess over the
harmonic, such as the pseudoharmonic potential has a lager force constant inside the equilibrium distance than outside
and becomes infinite for R = 0; its eigenfunctions and eigenvalues may be obtained in closed form, including when a
centrifugal force is present. Thus, pseudoharmonic functions are one of the best for building potential energy curves.

Royappaet. al [41], in a comparative study already cited before, compared for 14 diatomic systems in their ground
electronic state the Pseudogaussian potential with the potentials: Morse [7], Rydberg [8], Lippincott [42], Varshni
111 [14] and Deng-Fan [40], all with three parameters, and also with others potentials with 2, 4, 5 and 8 parameters (as
can be seen in before sections). In relation to the functions with three parameters, the Pseudogaussian potential energy
curve, on average, presented a lower error than Lippincott and Deng-Fan, but it proved to be less accurate than Varshni,
Rydberg and mainly in relation to Morse, with almost twice the average error. Particularly for OH diatomic system, the

same results were observed.

3.34 | The Varandas function

The construction of Varandas potential [155] was inspired a method known as many-body expansion (MBE). The many-
body expansion was proposed by Sorbie and Murrell [156], in 1975, when they presented the method for constructing
analytical potential energy surfaces for stable triatomic system from spectroscopic data. The analytical potential for
triatomic system are an extension of Extended Rydberg function [130]. They chose as variables, for the potential of the
ABC system, the three internuclear distances R1(R45), R2(Rgc) and R3(Rc 4). The three bond lengths are independent
coordinates but they must accomplish the triangulation restriction R; < R; + R¢. The complete potential is written as a
sum of two and three-body terms as follows:

V(R1,R2, R3) = Vag(R1) + Vc(R2) + Vac(R3) + Vi(R1, R2, R3), (423)
where the two-body potentials V4g(R1), Vsc(R2) and Vac(R3) are given by Murrell-Sorbie potential (354):
Vxy = —De(1 + a1R + a,R? + a3R%)e~ 1R (424)

and the three-body potential has the form:

3
Vi(Ry, Ry, Rs) = P(s1,53,53) | [(1 - tanhy;s;/2) (425)

i=1

being P a polynomial up to quartic terms and s; the internuclear distance relative to the triatomic equilibrium configura-

tion. V; becomes zero at all dissociation limits, i. e., when any two of the three coordinates becoming infinite.

The essential feature of the model is to take the potential as a many-body expansion the individual terms of which
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are determined by the potential functions for the dissociation fragments. The MBE was first applied to H,O system by
Sorbie and Murrell [156]. In 1976, Murrell, Sorbie, and Varandas [157] applied the same potential to Oz, making the
first application to a system in which there is more than one stable minimum in the triatomic surface.

Then, in 1977, Varandas and Murrell [158] extended the Sorbie and Murrell potential (423) to deal with larger
polyatomic systems. This extension is based upon a many-body expansion of the total potential energy and has the
objective of reproducing both the equilibrium properties of any stable molecule on the surface and the asymptotic
dissociation limits. In this work, they presented a general N-body potential which consists of expressing the total
molecular potential energy as a many-body expansion in the energy of all the fragments. According to this approach, the

potential of a polyatomic molecule is written as:
Vasc.nR) = Y VISR + > V3 (Ry, Ry, Rg) + -+ 3 ViD \(R) (426)

where the summations extend to all distinct interactions of a given type, and the energy of the separated atoms, in the
states which are produced by adiabatically removing them from the polyatomic, is taken as the zero of energy. The
coordinate R denotes the set of all interatomic separations and is assumed that only one atomic state is produced upon
dissociation. Analogously, VIS‘ZB)(R1 ) represents the two-body interaction potential for atoms A and B separated by R,
and V/(‘%B)(Rﬂ — 0 asymptotically, when Ry — oo. Still, Vg
zero as any of the three atoms is infinitely separated from the other two, and so on for the higher-order N-body energy

c(R1, Ra, R3) represents a three-body term that must become

terms.

In the same year, Varandas and Murrell [159] presented an MBE type function which covered a limited region of the
ground state surface of ammonia. This region contains the two minima and the inversion barrier. They concluded that
the surface, in general, was in fair agreement with the experimental data. However, the barrier to inversion however
was more than twice as great as the experimental value. In 1983, Spirko [160] showed that several approximations to
the ammonia potential function were introduced and this potential function was, unfortunately, of very limited accuracy.
At the time, Spirko presented a significantly better description of the genuine ammonia potential function by using a

modified Pliva potential function (see more details in Ref.[161]).

In 1982, Varandas and Brand&o [162] expressed the interaction diatomic potential in terms of the Hartree-Fock
(HF) interaction energy, V£ (R), and the interatomic correlation energy as approximated semi-empirically from the
second-order dispersion energy calculated including the effect of charge overlap between the electron clouds of the
two interacting species, Vjter/4isp(R)- The total interaction energy by the sum of the Hartree-Fock interaction energy

and the interatomic correlation energy that goes asymptotically to the dispersion energy:

V(R) = Vur(R) + vinter/disp(R) (427)

The dispersion energy calculated, including the effect of charge overlap, is given by:

Vinter/disp(R) == Y CluipXiaig(RIR™?E (428)
Ialp

with y,, ;, being R-dependent dispersion damping functions which account for the charge overlap effects. These

functions are given by general form [162]:

X115 (R) = {1 —exp[-di P x(1 + dr ) x)] 2t (429)
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with
x=K (430)
P
_ (Re + )’RO), (431)
2
Ro = 2((ra®)'/? + (rg)'/?), (432)

where R, is the equilibrium diatomic geometry, is to be self-consistently determined, Ry is the Le Roy [163] distance at
which the undamped dispersion energy, and deL)(i =1,2;L = 3,4, ---)are universal numerical constants which are
obtained from existing ab initio data on the 35} state of Hy. Still, (r42) is the expectation value of the square of the
radius of the outermost electrons in the interacting species A.

As the dispersion damping functions corresponding to a given value of L have the same R-dependence irrespective

of the specific pair (/4, Ig) involved, V; ¢,/ 4isp(R) assumes the approximate form to:

Vinter/disp(R) = = > Car {1 = exp[=dy @H)x(1 + &) x)]} 2 R72- (433)
L=3

with

Re + 2.5R,
= (Re 0 (434)
2
The short range repulsive region of the potential can be approximately described by Hartree-Fock theory. In many
cases the potential shows, in this region, an inverse exponential dependence in R which is commonly approximated by a

Born-Mayer [32] type function:

N
VHF(R) = Aexp (—Zb,’Ri) (435)

i=1

being N usually 1 or 2. Varandas and Brandao [162] obtained an equally good functional form given by:

N
Vur(R) = AR exp (— Z b,-R"). (436)

i=1

They showed that by combining the asymptotic power series expansion of the dispersion energy suitably damped
to account for charge overlap effects at a small R with the generalized Hartree-Fock repulsion good agreement was
obtained with the available information on the lowest triplet state potential of the alkali dimers. In all other applications
made including rare gas-rare gas, H-rare gas, and alkali-rare gas interactions as well as Mg, ( Zz,), and the isotropic
components of the H-H,, He-H, and H,-H, potential energy surfaces, the model given in (427) produced results in
excellent agreement with ab initio and experimental data. Thus, the model provides a physically correct description of
the interaction potential particularly at the intermediate regions close to the van der Waals minimum [162]. This success

indicated that a general potential for N-body systems was about to be born which would be widely used worldwide.
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Then, in 1984, Varandas [164] suggested using a double many-body expansion (DMBE) of potential energy surfaces
which, being an extension of the previous approach (426) leading to a reliable description of the potential surface
from short to large interatomic separations. He used for this a well-known approach making a further partition of
the molecular potential energy by splitting each N-body energy term into Hartree-Fock and correlation energy type
components.

In the DMBE approach the two-body energy terms is given by:

Via(R) = Vi3 e RN+ VLD o (RY) (437)

and analogously, the three-body energy terms is given by:

v Ra.R3)+ V<)

—y@
C(RLRZ’ RS) = VA ABC, corr

o (1, (R1. Ra. R3). (438)

As the two-body energy terms are written as a sum of the near Hartree-Fock energy, which is purely repulsive in
the case of interactions involving neutral closed-shell atoms, and approximate representation of the correlation energy
which is generally an attractive contribution, Varandas referred to this model by HFACE, i. e., Hartree-Fock-approximate
correlation energy [164]. From this moment, the long-range term V;,;c,4isp(R) is referred as Veorr(R).

This model was applied to the triatomic system HeH,, and the results were in good agreement with available

accurate ab initio calculations. Varandas [164] highlighted some advantages of using the DMBE approach:

Firstly, one expects different rates of convergence of the many-body expansion at short distances where the
Hartree-Fock energy is the dominant component, and at large distances where the interatomic correlation
energy dominates. Secondly, there are practical advantages in treating the Hartree-Fock and correlation
energy components separately due to their different functional forms. The third reason is related to our main
goal which is to interpolate the potential energy surface at intermediate distances, where a fully correlated
ab initio electronic structure calculation is prohibitively expensive, from its asymptotic energy components
at short and large distances which are much easier to compute. Finally, one should refer the advantages of
following current quantum chemical ideas on the partitioning of the total interaction energy, thus conveying

the model a sound full basis lying on physically meaningful energy components (VARANDAS, 1984).

In 1986, Varandas and da Silva [165] showed how to obtain diatomic potential energy surfaces, in special, using the
Hartree-Fock Approximate Correlation Energy (HFACE) model. As before, the total potential is given by:

V(R) = Vur(R) + Veorr(R) (439)
where Vi £(R) stands for the (extend) Hartree-Fock energy including the amount of correlation energy which is nec-

essary to guarantee the proper behavior on dissociation, and V.., (R) is the interatomic correlation energy which is

semiempirically represented by the dispersion energy damped.

The global short-range energy was chose as

Vue(R) = -DR®

3
1+ Z a;ri) exp(—yr), (440)
=1
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being r = R — R, D the dissociation energy and a can be zero, and in this case, it represents the Hartree-Fock energy by
the Extended-Rydberg potential, as suggested by Murrell and Sorbie [59]; or & = —1, which was imposed the proper
Coulombic behaviour at small values of R [165].

The y value can be obtained using the similar method (355) proposed by Murrell and Sorbie in the section 3.26,
from the quartic equation:

UD +4yu® +6y20@ + 430D +y*D =0, (441)
and then, the coefficients a;, i = 1, 2, 3, by the relations:

ag=—+y (442)

U2 au™m 2
2= ?+2y 5t (443)
(3) (2) (M
[U—+3 U—+3y2%+y (444)
being
i - IR (a5
dR’

the ith derivative of U(R) = —R™¥[V(R) — V¢orr(R)] with respect to R. The largest y-root gives the best potential in
general.

To represent V.o, they used:

Veorr = — Z C;;ABXH(R)Rin (446)
n=6,8,10,--

where now, the damping functions are defined as:

xn(R) = [1 - exp (—Ax — Bx?)]" (447a)
x =2R/(Re + 2.5R0) (447b)

A, =agn™™ (447¢)

B = Boexp (-pin) (447d)

where ag = 16.36606, a; = 0.70172, Bp = 17.19338 and B; = 0.09574 are universal parameters dimensionless for all
isotropic interactions, and Ry is given by Eq.(432).

Varandas and da Silva [165] suggested the universal relationship:

cAB _
=k, RO = 8,10 (448)
C6
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where a = 1.57, kg = 1 and ko = 1.13, and the coefficient Cg‘B is known (see Ref. [166]). From this correlation, they
obtained:

= k10, (449)

and in particular, for homonuclear interactions:

CAA
S =8.82((7)12)15T
CG
(450a)
CAA
% :88.59(<r2>1/2)3‘14.

6

They analyzed the behavior of the HFACE model for 77 diatomic systems in their ground electronic state. For bound-
state interactions, if @ = 0in Eq.(440), in general, in the valence region their potential and the Extended-Rydberg [59]
showed similar accuracy and, in the long-range region, the HFACE potential proved to be superior with correct behavior
at R — oo. Still, if a = —1, the results proved to be slightly less accurate than V£ with a = 0, when both are compared to
RKR data [30]. The HFACE model proved to be a real general analytic representation of the potential energy curves for
diatomic interactions. This potential was considered the most realistic and accurate to represent bound-state and van
der Waals diatomics systems, which is still widely used today. This model is known as EHFACE2 (extended Hartree-Fock

approximate correlation energy to diatomic systems).

Then, in 1992, Varandas and da Silva [167], following previous work, presented the best version of the general
potential for diatomic systems, called EHFACE2U then given by:

Venraceau = VEHF + Ve (451)

where now, the first term represents the extended-Hartree-Fock type energy and the second term provides the
dynamical correlation energy. Here, V. corresponds exactly to Vo, in Eq.(446), with the same characteristics of the
damping functions in Eq.(447).

One of the changes in relation to the potential previously proposed was the definition of the parameter y, which is

now given as:
¥ = vol1 + y1 tanh (12R)] (452)

adding two new parameters to potential proposed in Ref. [165]. However, these parameters provide the correct

asymptotic behavior at R — oo.

To obtain the a; and y; parameters, three fit methods were proposed by Varandas and da Silva. We discussed one of
these here, and the others can be seenin Ref. [167].

The a; and y; parameters were determined from a least-squares fit. The second essential difference between the
EHFACE2 and EHFACE2U is that, now, to make this least-squares fit, the total kinetic field of the total potential must be

normalized to give the correct description of the potential energy at R — 0, i. e. [167],

'/Om[T(R) —T(0)]dR = Z4Zp (453)
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where the electronic kinetic energy is given by:

dVerrace2(R) (454)

T =~Venraceaw(R) = R dR

and Z4 and Zg are the nuclear charges of the atoms A and B. This expression together with the expression for the
potential energy,

dVerrace2u(R) (455)

U =2V, R)+ R
eHFAcE20(R) R

provides the well known virial theorem relating the electronic kinetic energy T, the potential energy U and the total
Born-Oppenheimer energy V(R) = T(R) + U(R). Furthermore, T(0) = —W(0) is the energy of the united-atom (this
condition is represented by U in EHFACE2U).

From Egs.(453) and (3.34), the integral form of the virial theorem is obtained:

V= % {ZAZB - /om[r(m - T(oo)]dR’} (456)

and thus, the normalization condition ensures also the correct Coulomb potential [167]:

ZaZ5

R (457)

lim V, R) =
Jim EHFAcE20(R)

Varandas and da Silva also observed that, if T(c0) = =Veyraceau(e0) = 0, the normalization condition for Ve g
with a = —1, corresponds to impose:

3

1+ ai(=ReY

n=1

D exp {yo[1 - y1 tanh (y2Re)1} = ZaZs. (458)

The EHFACE2U potential energy function proved to be quite accurate to describe the 13 chemical stable diatomic
systems, which were evaluated: H,, Li,, Nay, Ky, Rb,, Cs,, Cly, N, and O,, HF, CO, OH and NO, all in their ground
electronic state. In addition, Varandas and da Silva presented a case study of Ar, van der Waals molecule and obtained
the most accurate potential energy curve reported at the time (see the details in Ref. [167]).

The EHFACE2U potential energy curve is considered one of the best and more accurate function to describe
diatomic interactions, it is still widely used in recent researches [168, 169, 170]. In a recent work presented by da Silva
and Ballester [171] the diatomic potential energy curves for triplet electronic states, X3~ and B33~ of SO has been
described using the approach proposed by Varandas and da Silva[167]. Another recent application this potential can
be seen in Ref. [172]. In a detailed investigation about the vibronic transition parameters as Franck-Condon factors,
r-centroids, Einstein coefficients, and radiative lifetimes for some bands of the second positive (C3n, — B3 Mg) and
Herman infrared (C"5I'I,, - A'SZ;:) band systems of N,. Again, the diatomic potential energy curves for all electronic
states studied have been modeled using the approach proposed by Varandas and da Silva[167].

3.35 | TheSchidberg function

We have seen that the Morse potential [7] is still, in relation to some potentials, more accurate. However, as mentioned

in the Section 3.3, the Morse potential presents some problems, such as not warranting proper asymptotic limits, i. e., if
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R — 0, Vpmor(R) assumes a finite value. Although this should not affect the bound states properties, it will give arise to
some difficulties in solving the collision problems considered. The Morse function also is inaccurate for large R, due to
the replacement of the Van der Waals term by an exponential.

In an attempt to obtain a potential that could improve the accuracy of the Morse potential, Schiéberg[173] (SCH)
proposed in 1986, a hyperbolic potential function with three parameters given by:

Vscr(R) = D[1 - o coth (aR)]? (459)

where D, a and o are adjustable positive parameters. Using the relation coth (aR) = %, the function (459) can be

rewrite as:

20 2

VSCH(R) =D|[1-0- m . (460)
The Schidberg potential must satisfy:
o dV
0 “en| <o
R=Re
(i) VscH(o0) = Vscr(Re) = De, where Dy is the depth of the well;
i) Cscn| g,
dR? R=Rs - ter
(iv) Vscy — atR =0.
Wang et al. [80] observed that to satisfy the condition (i), we must have:
eZaRe -1
o= eZaRe +1 : (461)
Now, by using the condition (ii), we obtain:
DA -0y -D|1 B D, (462)
(1-0f-D|i-0- | =0
and using the relation (461), we can obtain a relation to parameter D given by:
D,
D= Te(ezf”?e + 1) (463)

Substituting the expressions (461) and (463) into the potential (460), we have a new expression to Schiéberg
potential:

2aRe _ 1\2
e 11 ) (464)

VscH(R) = De (1 - eZaT

where 2a = b, being b a parameter in the Tietz-Hua potential(332).
Wang et al. [80] used this expression to compare the Schidberg potential with the Manning-Rosen potential [78]
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and with the Deng-Fan potential [40], and they concluded that these three functions correspond to the same potential,
actually.

The expressions for the vibrational rotational coupling parameter a, and anharmonicity parameter we x,, can be

obtained from Dunham’s relations (15) and (16):

e4aRe(eZaRe + 1)

8a3R3
ore={ 7 Re

682
. . 1} 685 (465)

We

(eZaRE _ 1)3

and

, (466)

1202 R¢ [64"R9(e4"R5 +1)?

16a*R2 [ e*2Re(7¢%2Re 4 22622Re 1 7)
A2 (€23Re — 1)3 B

A (BZaRe —1 )4

}2.1078>< 10716

WeXe = {
U

where B, and w, have their usual meanings, and A is the Sutherland parameter.

Schidberg [173] claimed that his potential was a better description for the potential energy of a molecular vibration
than the Morse function, and he showed it for H in its ground electronic state. In special, in the region of large R, the
Schi6berg potential is closer to reality than the Morse potential for some diatomic molecules [174]. However, in 2012,
Wang et al. [80] showed that the Schiéberg potential is not better than the traditional Morse potential in simulating the

atomic interaction for diatomic molecules.

3.36 | TheReduced function

In this moment of history, the problem of obtaining reliable diatomic potentials is considered solved, especially after the
EHFACE potential described earlier (Section 3.34). However, in 1989, according to Tellinghuisen et. al [175], there was
still a search for the “magic potential” which he called the Holy Grail of Spectroscopy.

The Holy Grail of Spectroscopy would be a universal analytical function that would describe the potential energy
curve accurately and without prior knowledge of the potential. Some researchers claimed that this function must also
satisfy the Lippincott criterion [15], which the average absolute deviation of less than 1% of D between experimental

energies and those calculated by the function at the distances of the spectroscopic potentials, i. e.:
Oav =100 > (Vexpt = Vearc))/(NpD), (467)

where N, is the number of points on the spectroscopically derived potentials.

The Reduced Potential Curves (RPC) method would produce such a universal potential with ideal characteristics.
The idea of the reduced state equation of gases in thermodynamics introduced by Puppi [176], in 1946, is analogous to
the reduced potential. Frost and Musulin [113] were the pioneers to use this method (see Section 3.20), proposing, in
1954, the first Reduced Potential Curve:

Vip)

Vrecr(p) = 5= with p(R) = (R = Rjj)/(Re = Rij) (468)

with

Rij = Re — A (469)
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being A = (KDe/ke)'/2.

Later, in 1963, Jenc and Pliva [177] observing the reduced Frost-Musulin model, they tested to obtain reduced
potential curves from experimental potential curves calculated by the RKRV method. The RKRV method was proposed
by Vanderslice and coauthors (see the references 7-16 in Ref. [177]) and was a modification of the Rydberg-Klein-
Rees [8, 9, 10] analytical method, being applied to calculate the potential functions of a series of diatoms.

By analyzing the diatomic systems H,, H;, LiH, BeH*, OH and OF in their ground electronic states, they concluded
that the mean value K in Eq. (263) should be K = 3.96 instead K = 4.00 used by Frost and Musulin, yielding better
coincidence of the reduced curves. In addition, the coincidence of the reduced curves for O, N,, CO, and NO, all in their
ground electronic states, were also analyzed, and for these a pronounced discrepancy using the Frost-Musulin potential
was observed, even using K = 3.96. This suggested some modifications to FM potential.

They observed that, for R = 0, the value p is negative and assumes different values for different diatomic systems.
Then, they proposed the reduced internuclear distance given by:

p=IR =1~ RP5) pyl/[Re ~ (1~ & R/PH) - pj] = (¢ + €7 = 1)/(e + €75 = 1) (470)

where p;; was introduced instead R;;, £ = R/pj; and £. = Re/p;;. This new definition for the parameter p satisfies the
conditions:

i p=0
(i) ifR — 0,thenp — 0;
(iii) ifR = Re, thenp = 1.

The parameter p;; is determined, assuming the universal value K = 3.96, as:
pij = (Re = A)/(1 — e RelPin), (471)

where A has been defined before.

For the modified Frost-Musulin potential the hydrides coincided remarkably, similarly, the curves of the other
molecules also showed a close coincidence. However, the two groups of molecules do not quite coincide. Then, Jen¢ and
Pliva concluded that Frost-Musulin curves exist for groups of closely related diatomic molecules, but not universally.
They also compared the reduced RKRV potential for LiH, BeH*, and HF with the Morse [7], Rydberg[8], Varshni | and
VI [14] and Lippincott [42] potentials and concluded that the approximations afforded by the individual functions are
different for different diatomic systems.

Then, in 1989, Tellinghuisen et. al [175] suggested that even where the reduced potentials presented poor agree-
ment, their repulsive branches were often in good agreement, and this behavior could be until in approximating unknown
potentials.

Tellinghuisen et. al to use a similar potential proposed by Frost and Musulin [113]:

VIR) _ »

Vepcr = = X (472)
e

with

x = (2n%cu/Deh) Pwe(R = Re). (473)
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They evaluated the behavior of their potential for 35 molecular states. The reduced potential curves for alkali-
metal diatomic systems in their ground electronic states were represented practically by a unique curve, coinciding
in the attractive region and slightly different in the repulsive region. For the ground electronic states halogens good
coincidence in the repulsive and spectroscopic region, but not so good in the attractive branch. However, for the excited
halogen states, the curves in the attractive region showed poor agreement and good coincidence in the repulsive branch.

Tellinghuisen et. al also obtained the reduced potential for homonuclear diatomic systems Cl,, N3, O, P2, S;, Se;
and Te, in their ground electronic states, and in addition, for N,(A) and ICI(X). The reduced potentials for all diatomic
systems coincided quite well in both branches.

The same alkali-metal diatomic systems were analyzed by Tellinghuisen et. al [175] using the Jenc and Pliva[177]
reduced potential (described above). For this group of the molecules, the Jen¢ and Pliva model showed considerably
less agreement in the attractive branch than the Tellinghuisen et. al approach.

Thus, it is possible to observe that obtaining a universal function to represent “all diatomics” in a unique reduced
potential curve is not a simple task.

3.37 | The Aguado and Paniagua function

One of the simplest and generally successful methods of obtaining potential energy curves for diatomic systems directly
from spectroscopic data is through the RKR methods [8, 9, 10], as already mentioned in previous sections, and used
in the vast majority of cases as a parameter for comparing whether the potential is well fitted. However, the results
obtained by the RKR method are presented in the form of tables containing, in general, the numbers v, G(v), B,, R+ and
R_, not being very convenient for a rapid interpretation of the potential behavior.

Aiming at producing accurate and well-behaved potential energy curves in 1992, Aguado, Camacho, and Pani-
agua [178] (ACP) presented a simple functional form, similar to the perturbed-Morse-oscillator (PMO) potential, with
better results mainly for the long-range region. ACP presented analytical potential energy curves for the CO and LiH
systems, both in X'=* electronic state, obtained by fitting the RKR values in the Chebyshev sense [178].

For a tabulated function y; = f(x;) (i = 1,2, - - -, n), where y; are the observed G(v) + Yy and x; are the turning
points rotation-less potential curve, they suggested a approximated potential function V4cp(R) written as a linear

combination of functions ¢ that will be conveniently chosen,

m

Vacr(R) = ) cedpic(x) (474)

k=0

where ¢ (x) belongs to the basis of functions {¢¢ },k =0,1,--- ,m.

To calculate error vector Q, with components g; given by g; = V(x;)— y;, related RKR data, the method the maximum
norm that uses the Chebyshev technique was chosen. Such a methodology was selected because of the interest in
getting an error vector Q with a limited value point by point [178].

The chosen basis function was one that contains functions similar to PMO
dr(x)=[1-€ePX1*, k=0,1,---,m. (475)
where g is a nonlinear parameter independently set to obtain the best approximation and x = R — R, with R and R, as

already defined in this work.
The procedure proposed by ACP [178] to obtain the energies and consequently of the potential energy curves
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for the systems of interest, starts with the use of V4cp(R) (474) and the functions ¢ (475) in the radial equation of
Schroédinger for J = 0:

-h  d?
4rpc dR?

+V(R)|wy = Eyyv (476)

Its resolution is carried out through the diagonalization of the Hamiltonian matrix, in order to obtain the eigenvalues

E,. For this is used as a basis the orthogonal functions of Hermite given by:

1n(x) = &2 H (@ 2x), n=0,1,2- (477)

where H, are the Hermite polynomials and o ~ 2zveu/h.

The Hamiltonian matrix obtained through of the integrals V,,m =< x,|e /% |ym >, which can be calculated using the

recurrence relation,
A (478)
a
where the first column (m = 0), provides Vyo = (g)”2 B 14a

ACP [178] showed that for the systems CO and LiH, both in the X'=* electronic state, the optimal numbers of
fundamental functions were 15 and 8 respectively. This already represents the first advantage of the method, because it
is a finite and relatively small set of parameters facilitating further calculations.

In general, the ACP [178] method provided an optimum fit for the potential energy curves of the tested systems. It
also presents an excellent degree of self-consistency for all evaluated parameters E,, B, and for the potential curves
themselves CO and LiH, both in the state X5 *.

However, still in 1992, Aguado and Paniagua [179] (AP) proposed a functional form to obtain analytical potentials

of triatomic molecules ABC, in which the full potential was written as an many-body-expansion (MBE) [55]:

Vagc = ) VA" + Vag® (Rag) + Vapc® (Rag, Rac, Rec) (479)
A

where Rag,R4acand Rgc are the internuclear distances and the sums are over all the terms of a given type and where
VA“) is the energy of atom A in its appropriate electronic state; VAB(Z) is the two-body energy that corresponds to the
diatomic potential energy curve which vanishes asymptotically when Rag — co and goes to infinity when Rag — 0;
Vagc® is the three-body energy.

The diatomic terms VAB(Z) of the potential (479) are expressed as a sum of two terms corresponding to the short-

and long-range potentials, and will be called Vap [179]:

VAP(Z)(RAB) = Vshort(2> + Vlong(z) (480)
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where
@ coe~%ABRAB
Vshort = Ri (481)
AB
and
N .
Vlong(z) = Z CiPIAB (482)
i=1

where (481), with the restriction ¢y > 0, ensures that the diatomic potential goes to infinity when Ryg — 0. Aguado-
Paniagua[180] showed that a modified form of the functions, introduced by Rydberg [8], in the polynomial variables p,
given by (480)

pag = Rage ™ heRag Bas? > 0. (483)

The linear parametersc;,i =0, 1, - - - , N and the nonlinear parameters apg, both in the Eq.(480) and Bag (Eq. (483))
are determined by fitting the ab initio energies for the diatomic fragments computed at the same level of theory than
the used in the triatomic system [179].

Although it is a proposition for a triatomic potential, the two-body term Vap(Rag) in Eq. (480) was known as a new
diatomic potential of Aguado-Paniagua, being very used today due to its high precision for several systems, in excited
states including (see for example Ref.[181]).

In 2019, arecent work by Araujo et. al [182] has compared four potential energy functions: Rydberg [8], Hulburt-
Hirschfelder [6], Murrell-Sorbie [59] and Aguado-Paniagua[180] to N,, O, and SO diatomic systems in their ground
electronic states. Based on PECs obtained by fit ab initio points, the spectroscopic parameters R, De, we and we xe
of the molecules have been computed. Although, in overall potential the Aguado-Paniagua function proved to be the
most accurate for all diatomic analyzed, the same did not happen with the spectroscopic parameters. Surprisingly, the
Rydberg potential, the oldest of the functions considered, showed less deviation in the calculation of the parameter Re
for N, and SO diatomic systems. In addition, the Rydberg function proved to be the second most accurate, behind AP, in
relation to the overall potential of the SO (see more details in Ref. [182]).

3.38 | The Williams-Poulios function

Potential energy functions that are exact solutions to the Schrodinger equation are extremely desirable, as we have
already seen throughout this article. Thinking about that,in 1993, Williams and Poulios [183] proposed a simple method
for generating exactly solvable quantum mechanical potentials. This method was applied to Gegenbauer polynomials
(see Ref.[184]) to generate the attractive radial Williams-Poulios (WP) potential, given by:

2 e R+ (A-8)e %R 1 (4 - A)

a
4 (1 — e-2aRY2 (484)

Vwp(R) =

where Ais areal constant and a > % is given by:

_A-2-472

8v+4 (485)
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being v the quantum number.

The energy for this solvable potential is obtained from:

2

a
E=211-4

4{

Ovando et. al [185] observed that the standard potential Vi, p was not a minimum. Then, they proposed to use the

(486)

2v+1

v2 +v+(A—2)/4r}

negative of the Williams-Poulios potential, given by:

2
Viyp(R) = % AF(R) +3F2(R) + (A~ 4) (487)
where
e—ZaR
f(R) = e (488)

The potential (487) has a minimum provided that [185]:

2
—2D,(e%%Re — 1) = % (489)
and
2aR ) _ 367
Do(e?*Re —1)? = =~ (490)
leading to
b,
D, = @A (491)
and
F(Re) = 2. (492)
for which
1 6
Re=%ln1—;. (493)

Ovando et. al obtained the relationships for parameters b and A, given by:

2v3De

= 37(R) (494)

and

A =—6f(Re) (495)
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using the expression (488).

They also showed that the multiparameter exponential-type potentials by Manning-Rosen [78], Deng-Fan [40],
Schioberg [173], Tietz [119], Tietz-Hua [122], Modified Extended Rydberg [186] and the negative Williams-Poulos
potential are equivalent. In this equivalence, the potential (487) can be rewrite as:

(496)

2
eZaRe -1
e2aR _ 1

Viyp(R) = De (1 -

Note that it is now easy to see that this potential meets the conditions:

. davy,
(l) d%P =0
R=Re

(ii) VVT/P(OO) - VVT/p(Re) = De.

The vibrational rotational coupling parameter a, and the anharmonicity we xe can be obtained from Dunham relations
(15) and (16), and are equivalent to the potentials mentioned above. In the Section 3.49 we will detail the multiparameter

exponential-type potentials.

3.39 | TheFayyazudin function

In 1995, Fayyazudin and Rafi [187] (FR) proposed an empirical potential function to describe the bound states of
diatomic systems. The potential has four parameters, which can be related to spectroscopic parameters well known.
The potential is given by:
K —-aR
Ver(R) = o + ARe (497)

where K, A and a can be determined from D, ke and R, and n is a free parameter greater than one.

This potential satisfies the desirable features, i. e., Ve — o0 at R = 0,and Vrg — 0at R — oo. In addition, this
potential must satisfy:

N dV .
0 =l =0

R=Re

(i) Vrr(c0) = VFR(Re) = De,i. €, VFr(Re) = —De ;

dZVFR _ _ 2.2 2
(iii) 2 = ke = 4m*ctpwg.

R=Re

From this conditions, Fayyazudin and Rafi obtained the relationships:

nK

Ae™@Re =
RI*1(1 - aRe)

(498)

- De(1 - aRe)
KR;"=-———°°
n+1-aRe

e

(499)
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and
2 4 3 2 2
+3n+2A) + +2n° + 5n%) — 4A —-1)+4A
ar, = (M ¥30+28) V(n* +2n3 + 5n%) = 4An(n - 1) (500)
2n
2
where A = k;;: is the Sutherland parameter. Only the negative sign in this equation is relevant.

The vibrational rotational coupling parameter a, and the anharmonicity we xe were obtained from Dunham relations
(15) and (16), but using the Varshni [14] method given by:

682
Ae = —2F (501)
We
and the anharmonicity we xe, is given by:
1
WeXe = gBeG (502)
where
1
F:—[§XR9+1 (503)
and
G= g (XRe)? - YR? (504)
Here,
f:
X=23 (505)
f
and
y-1f (506)
2
being f, = (ddiz) 3= (‘%‘/) and 4 = (‘%) . We canwrite X and Y in terms of wex. and a,:
R /R=Re R /R=Re R JR=Re
-3 | weae
X=— 1 507
R. |28, © ] (507)
and
y = 2x2_ BweXe (508)
3 BeR2

The expressions to Re X and R2Y obtained for the potential (497) can be seen in Ref, [187].
To evaluate the accuracy of their potential, Fayyazudin and Rafi calculated the values of a, and wex, for eight
diatomic systems in different electronic states: H, (X1Z}), I, (X‘)Zg), HF (X1=*), N, (X‘)Z;), Ny (A3Z)) Ny (a'y),
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N2 (B%Mg), Oz (X337), Oy (B33;), O2 (A%1f), OH (X2N;), OH (A%37), NO (X2n), NO (B2M), CO (X'x*), CO (2%A),
CO(a”3x%),CO (A'M) and CO (¢33 -). Then, they compared their results with other potentials already treated here:
Morse [7], Rosen-Morse [28], Rydberg [8], P6schl-Teller [29], Linnett [60], Frost-Musulin [73], Varshni [14] Ill and
Lippincott [42]. The average error for both spectroscopic parameters using the FR potential was less than for all other
potentials.

In addition, they analyzed the deviation of their potential from the RKR curve to H, (X' Z;) diatomic system, and
then, they compared with the same potentials. The FR potential provides good accuracy, being inferior only to the
potentials of Hulburt-Hirschfelder, Rydberg, and Péschl-Teller.

Then, in 1996, Fayyzudin et. al [188] extended the FR potential to five-parameters (F AY;) given by:

Vrayy(R) =% [g —a-b¢- 662] (509)

where ¢ = R/R, K, a, b, c ans t are parameters which can be obtained from known spectroscopic parameters.

They also considered the three-parameters potential function (F AY;77), doing a = ¢ = 0in Eq. (509):
_tt|K
VFAYH(R) =e ? - b§ (510)

These potentials must satisfy the equations (i), (i) and (iii) above, so that their parameters can be obtained. Fayyzudin
et. al[188] showed that for Vi 4y, the parameters K, a, b and c can be expressed in terms of parameter t determined

from polynomial:

t* + 483 —12A¢%2 + 24At —6A | (1 +F)(5F+1)—g =0 (511)

where F and G are defined in Egs.(503) and (504). Only the root real positive is considered.

For Vr ay,;, the parameters can be obtained, using the relationships (i)-(iii), and are given by:

_ De(t—1)

—t
Ke 2 s (512)
be t = M (513)
2
and
2+t-(1+20) =0, (514)

choosing the positive root again.

To evaluate the accuracy of their potentials Ve 4y, and Ve ay;,, seven diatomic systems in different electronic states
were chosen (practically the same used by Fayyazudin and Rafi described above, see Ref.[188]) and compared with the
Morse [7], Rosen-Morse [28], Rydberg [8], Poschl-Teller [29], Linnett [60], Hulburt-Hirschfelder [6], Frost-Musulin [73],
Varshni[14] Ill and Lippincott [42] potentials. They used the deviations from the RKR curve to check the behavior of the
potentials, using Lippincott’s criterion [15].

The five-parameters Ve 4y, was most accurate than all the others, except for the Hulburt-Hirschfelder potential
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which the average error was almost equal. The three-parameters Vr 4y,, perform slightly worse, but still showed more
accuracy than Morse, Rosen-MOrse, Péschl-Teller, Linnett, and Frost-Musullin.

In 2006, Lim [189] showed that the parameters of the Fayyazudin potential Vr ay;, can be related to the parameters
of the Extended-Rydberg potential proposed by Murrell and Sorbie [59]. From conversion matrices that convert the
former’s parameters into the latter and vice versa, they obtained a list of 71 sets of Fayyazuddin diatomic parameters
applying one of the conversion matrices on the Huxley-Murrell [130] data. Potential energy curves of the OSi, FO,
BeS, and HH diatomic parameters exhibit very good agreement between the two potential functions considered,
confirming the conversion matrices validity. Based on the Huxley-Murrell parameters, the Fayyazuddin parameters
were calculated for a total of 71 combinations of diatomic systems (see table 1 in Ref.[189]).

3.40 | TheModified Extended Rydberg function

In 1997, Sun [190] by analyzing the Extended Rydberg potential [59], observed that it is still necessary to obtain a better
theoretical method to easy calculate vibrational potential for stable diatomic systems, and for this, he suggested a

Modified Extended Rydberg potential (MER) as a alternative to calculate potential energy curves:

m
Vmer(R) = DB (B + ) an(R = Re)" | e7Po1(RRe) (515)
n=1
where S is an adjustable width parameter, and the potential width can be changed by varying the value of .

The coefficients a, can be obtained using the same equations (352) and (353) proposed by Murrell and Sorbie [59],
and derived from:

S1 n! _k
D#—;EM_M# Fi =0, (516)

and

- Fn n(n nk+1 a
%—QD(A)n +Zm) U,mzn (517)

The general expression for coefficients Fy can be obtained as:
=y 2 Vg ) (nss). (518)
Here D is a quantity related with D:
D = BDs,. (519)
Sun [190] considered the series to be truncated at fifth power and obtained the potential energy curve for N, and
CIF in their ground electronic states. He compared his results with the Morse [7] potential and the main difference for

N, occurred in the asymptotic region, precisely where the Morse potential fails.

In 2006, Royappa [41] showed that on average the Modified Extended Rydberg potential by Sun [190] provides the
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best accuracy among all 21 potential energy functions analyzed, including the Murrell-Sorbie potential [59].

Although the MER potential has better qualities than MS potential, it did not show satisfactory results in molecular
asymptotic region for diatomic molecular electronic excited states. Then, in 1999, Sun and Feng [186] tried to find a
physically better potential. For this, they proposed an energy-consistent method (ECM) which uses a new analytical
potential to calculate numerical vibrational potentials. They built a new analytical potential by adding a potential
correction A(R)SV(R) to the Extended Rydberg potential (356):

Vsr(R) = Ver(R) + A(R)SV(R) (520)

where the potential correction A(R)SV (R) remedies the Veg(R) potential such that the new potential Vg behaves well
enough not only in the equilibrium internuclear distance region, but also in the molecular asymptotic region. For §V(R),
they suggested:

SV(R) = Ver(R) = Vmor(R) (521)

where Viyor(R) = Do[e722(R-Re) _ 2¢=a(R-Re)] is the Morse [7] potential.

A(R)is Eq. (520) is a force-field function and was chosen as:
AR) = 2R ;Rs> [1 = e AUR-Re)/Re ], (522)

where A is an adjustable parameter. This function should play two roles:

(i) It scalesthe potential changes §V(R)in Eq. (521) properly to ensure the potential correction A(R)§V(R) behaves
correctly;
(ii) It ensures that the new potential satisfies the physical property that its nth-order derivative equals the nth force

constant, f,,, at equilibrium.

Thus, the new potential proposed by Sun and Feng [186] is given by:
Vse = [A + 1]VEr(R) = AVior(R) (523)

which is physically well defined potential.

The numerical values of this new potential agree much better with the known exact diatomic potential than other
analytical empirical functions, in particular for electronically excited states of diatomic systems as H, and O,. Therefore,
for Sun and Feng [186] the ECM generates much more accurate theoretical vibrational eigenvalues and eigenfunctions

for the corresponding stable molecular states than other analytical potentials.

In 2006, Royappa [41] showed that on average the Modified Extended Rydberg potential by Sun [190] provides the
best accuracy among all 21 potential energy functions analyzed, including the Extended Rydberg potential [59].Then,
although the potential has eight parameters,
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3.41 | TheRafifunction

In 2000, Rafi et. al [191] (RAF}) proposed a four-parameter potential energy function to describe stable diatomic
systems. This function is a modification of the Morse [7] potential, and is given by:

Vrar; (R) = D[1 — e R=R)2[1 4 ctanh (R - R.)] (524)

or

e?(R—Re) _ g=a(R-Re)

T+c—5—F—55= (525)

_ _ —a(R-Re)72
Vrar(R) = De[1- € ] —2RRa) 5 g—2R—R2)

where a is the Morse parameter given by a = / 2% and ¢ can be determined from known spectroscopic parameters.

This potential satisfies the conditions:

o dVRaAF
(l) dR L = 0;

R=Re

(i) Vrar;(00) = Vrar;(Re) = De;

o d2VRaF
(iii) L = ke = 4722 pw?.

= X ke, Where X is the cubic force constant.
R=Re

(v) d* VRAF;
ded

= Y ke, Where Y is the cubic force constant.
R=Re

Here, X and Y are the relationships defined by Varshni[14] given in Egs. (505) and (506). See Egs. (507) and (508) to
remember how these parameters are related with we xe and ae.

In 2005, Birajdar et. al [192] derived the vibrational rotational coupling parameter a, from Dunham relation (15):

- - 6B2
aez_[MJAliﬂ (526)
3 We
where they obtained the relationship for parameter c:
1
C:[A1/z_1_(%we) 1 (527)
682 || Re
where A'/2 = 2R, is the Sutherland parameter.
Using this expression for ¢, the anharmonicity we xe, is given by:
-16
woxe = [8A — 18AV/2 4 15(cR,y2 217X 102 (528)

R3u

Birajdar et. al [192] obtained the potential curves for |, and CO diatomic systems in their ground electronic states
using the Rafi potential Vi 4r,, With the c parameter given by Eq. (527) and their results presented large deviations from
the experimental RKR curves.
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Then, in 2007, Rafi et. al [193] (RAF;1) proposed a new four-parameter empirical potential function to describe
diatomic systems, given by:

VRafr(R) = Dele?R7REf (x) — 2¢72(R=Re)] (529)
where
Flx) = %{tanh [6(R = Ro)] + e~2R=Re) 4 sech [b(R = R.)]}. (530)

The potential (529) can be rewrite as:

eb(R—Re) _ g=b(R-Re)

Vear;; (R) = De |1 - 2672(R"Re) %e’aZ(R’Re) (— pe bRy 2 )

eb(R—Re) 1 g—b(R-Re) eb(R—Re) 1 g=b(R-Re) (531)

being b = Ba, where a is the Morse parameter a = ,/2%

)
e

and g can be obtained since the potential Vg 47, satisfies the

conditions (i)-(iv) above. In this case, bet a is given by:

XRe=—-3A"2

1+ %/33] (532)

where XRis XRe = — [“’e"’e + 1/, with we, ae and B, with their usual meanings.

682

To evaluate the accuracy of the potential Vz ar,;, Rafi et. al [193] using the Lippincott criterion [15], compared their
results with RKR experimental data, for 15 diatomic systems: H,, LiH, NaH, KH, CsH, K5, Na,, Rb,, CO, ICI, XeO, I,, Cs;
and RbH, in their ground electronic states and for (A31) state of ICI.

In addition, they compared their result with the Morse [7] potential, Fayyazudin-Rafi [188] potential and with the
first proposal of the Rafi [191]. The average error of the potential Vzar,,; was only 1.86% of D, whereas, Morse was
5.01% of D, Fayyazudin-Rafi was 3.30% of D and Vg ar, was 4.06% of D.

3.42 | The Noorizadeh-Pourshams function

In 2004, Noorizadeh and Pourshams [124] (NP) presented a new empirical potential energy function with four varia-
tional parameters. The purpose was to propose a mathematically simple and comprehensive potential, which can be
applied to different diatomic systems in fundamental and excited states.

The potential is given by:

aRl +m
Vnp(R) = TR (533)

where a, b, m and n are adjustable parameters.
This potential satisfies the basics conditions, i. e., Vyp — 0 at R = 0,and Vyp — 0at R — oo. In addition, this

potential must satisfy:

. dv,
(l) d%P =0
R=Re
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(ii) Viwp(c0) = Vivp(Re) = De;

(iii) dz\;llep ek, =ke = 47[202pr.

To evaluate the accuracy of the potential (533), Noorizadeh and Pourshams calculated the spectroscopic parameters
Re, De, Be, ke, we, we xe and a, for eight diatomic states in different electronic states, and then, they compared their
results with experimental data. The diatomic systems chosen were: H, (XB:;;), l (x1z;), HF (X'=*), Ny (X1Z§),
N2 (A333) N2 (a'M,), N2 (B3M,), O2 (X333), O, (B33y), 02 (A1]), OH (X2N;), OH (A25+), NO (X2M), NO (B2n), CO
(X13+),CO (a3A), CO (2’33 +) and CO (e337). The average error for the calculated quantities were: R, (0.43), D, (1.87),
B¢ (0.82), ke (3.68), we (2.08), we xe (9.42) and a, (10.78), showing good accuracy of the potential.

In addition, Noorizadeh and Pourshams [124] obtained the expressions for the vibrational rotational coupling pa-
rameter a, and anharmonicity parameter we xe, can be obtained from Dunham'’s relations (15) and (16). They compared
their results with nine potential energy functions already presented above: Morse [7], Rosen-Morse [28], Rydberg [8],
Poschl-Teller [29], Linnett [60], Frost-Musulin [73], Varshini [14] III, Lippincott [108] and Fayyazudin [188]. The NP
potential provided the most accurate result for we x, and for a, only the Fayyazudin potential showed better accuracy
than the NP potential.

The general behavior of the DN potential was also satisfactory for other diatomic systems. In the comparative
study by Royappa et. al [41], previously described, they showed that the Noorizadeh-Pourshams potential in average,
provide best accuracy than the potentials: Kratzer [16], Morse [7], Rosen-Morse [28], Rydberg [8], Poschl-Teller [29],
Linnett [60], Frost-Musulin [73], Varshini [14] I, Lippincott [42] Deng-Fan [40], Pseudogaussian [151], Levine [123],
Tietz[121] Il and Fayyazudin [188].

3.43 | TheExtended Lennard-Jones function

In 2000, considering the Lennard-Jones (2n,n) potential, Hajigeorgiou and Le Roy [194] proposed a modified version of

the function which is given by:

ni2
Vis(R) = D, [1 —(%) } ) (534)

Hajigeorgiou and Le Roy observed that although this function was considered to be a correct model to describe
diatomic systems, there was not the flexibility required to represent accurately extensive experimental information.
However, this function with the appropriate choice of the power n it has the correct theoretically predicted limiting
long-range functional behavior.

The Modified Lennard-Jones (MLJ) proposed has the generalized form:

R.\" 2
VmeLs(R) = De l1 - (f) ¢(R)} . (535)
where ¢(R) is a empirical function given by:

#(R) = e PmLs(2)z (536)

(R-R

being z = (R;R

:; one-half of the Ogilvie-Tipping expansion parameter [140].
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This function has the format R — o0 [194]:

Re\" C
VmLs(R) = Do — 2DeeP> (?s) = De - oo

where B = limg_e BmLs(2), and

Cp = 2De(Re)"e7P

or
Boo = In [QDE(Re)n/Cn-
The function B, (2) is expressed as a power series in z, given by:
M
Bmr(z) = Z Bmz"™
m=0
so that
M
B = lim(2)= 3" fm.
m=0

with the last term expressed by:

-1

M
Bm =In[2D6(Re)"/Cal = ) B

=0

(537)

(538)

(539)

(540)

(541)

(542)

Although this modified version of the Lennard-Jones potential is quite accurate, the function ¢(R) is complicated to

obtain.

Then, in 2010, Hajigeorgiou [195] proposed an Extended Lennard-Jones (ELJ) given by:

2
-
R

VEL)(R) = De

where the function n(R) is the simplest function:
n(R) = Po + pi¢ + Bat? + B3¢’

being

R - Re
T ZIR+ R,

with z = (R — R¢)/(R + Re) and g a even integer.

Note that the function n(R) is well-behaved in the limit R — oo, because in this case { — +1.

(543)

(544)

(545)
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The potential (543) satisfies:

() Vews(R) =0;
R=Re

(ii) VeLs(e0) = Vmrm(Re) = De.

Hajigeorgiou [195] concluded that for R < R, the best results were obtained with g = 6, and for R > R, with g = 4.
To determine the coefficients B;,i = 1,2,3 in Eq. (544), he related them with the Dunham coefficients [23], obtaining:

Bo = ,/g—‘:, (546)

2
aa o B
>

B = 2oDe +o (547)
_ da  hH
P2 = SpoD. ~ 2450 (548)
where
f, = 1Bg — 36p1 2 + 1863 + 1282 — 246081 + 1152, (549)
and
apas f3
= 3 550
Ps = 20D, * 24po (550
where

fy = 28613 + 1485 — 541 B2 + 3622 + 2183 + 1287 — 24B1 Bo — 22BoP1 + 24PoPa + 1082 + 36Pof2 +3B65.  (551)

Hajigeorgiou [195] tested his potential Vg, ; for sixteen diatomic systems in their ground electronic states: AgH,
Cl,, CO, Cs,, DF, HCI, HF, KLi, Liy, LiH, MgH, Na,, NaH, NaK, O, and RbCs. To evaluate the accuracy of these results he
used the Lippincott criterion [15] given by Eq. (467), where the experimental data were obtained from the RKR method.
Besides, Hajigeorgiou compared the ELJ potential with the Hulburt-Hirschfelder [6] and Murrell-Sorbie [59] potentials

and the average deviation of the Vg, ; was about four times less than the of ER and five times less than that of HH.

The potential Vg, was analyzed ignoring the cubic term in n(R), but it presented an inferior result.

3.44 | TheModified Rosen-Morse function

In 2012, Zhang et. al [196], proposed a modification for the Rosen-Morse potential [28]. Inspired by the reduced
potential curves suggested by Frost and Musulin [113] (see sections 3.20 and 3.36) they considered the effect of
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inner-shell radii R;; of two atoms for diatomic molecules given by:

KD
Rij = Re == e (552)
e
where K is defined by Eq. (263).
By introducing the parameter R;;, the Modified Rosen-Morse (MRM) potential is given by [28]:
2Re-Rj;) 2
e d +1
Vimrm(R) = De| 1 - el (553)
e d +1

This potential satisfies the three basics conditions:

(i) gl o

R=Re

(i) Vmrm() = Vimrm(Re) = De;

s d2V
(ifi) = ke = p},
R=Re

where Re, D, have their usual meanings, and k. is approximated with a slight correction being omitted [23].

Using the (iii) condition, Zhang et. al [196] obtained the value of the d parameter:

_1
ke 1 | ke —(Re—Rjj) 2%
2D, + Re—R; w ((Re Rij)A / D, e s (554)

where W is the Lambert W function, which satisfies z = W (z)e"(?) (see mathematical details of this function on p.331
in Ref. [197]).

d=2

Zhang et. al also obtained expressions for the Morse [7] parameter a and for the original Rosen-Morse [28]
parameter d. Then, they compared their Modified Rosen-Morse potential with the Morse and Rosen-Morse potentials
for six diatomic systems: ICI (A311,), I, (X0;}),Cs2 (x'3}),MgH (X2x+),6Liy (X! z})and TLiy (X7 2.

To evaluate the accuracy of these functions, Zhang et. al used the experimental RKR [8, 9, 10] data, and obtained
the average deviation from Lippincott criterion [15] given by Eq. (467). The Modified Rosen-Morse provided to be more
accurate for the six systems analyzed, with an average error between the evaluated systems of only 2.94% of D, while

the Morse potential is given an average error of 8.68% of D and the standard Rosen-Morse of 6.90% of D.

In 2014, Tang et. al [198] presented a study about the vibrational energy levels calculated using the Modified
Rosen-Morse potential for ’Li, (6'1,) and SiC (X3M), and both were in good agreement with the experimental RKR
data. For these diatomic systems, Tang et. al also compared the Modified Rosen-Morse potential with the Morse [7],
Frost-Musulin [113], Varshni [14] Il and Lippicott [199] potentials. For ”Li, (6'M,), the Modified Rosen-Morse potential

is the most accurate, and for SiC (X>1) this potential is superior to the Morse, Frost-Musulin, and Lippincott potentials.
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3.45 | TheUddin function

Still in 2012, Uddin et. al [200] (UDD) proposed a five-parameter potential energy to describe stable diatomic systems.
This potential is given by:

Vubp(@) = 553 e %(a+ b + ct?) (555)

where é(R) = R%, K, t,a, band c are parameters which can be obtained by spectroscopic parameters De, Re, ke,we Xe, de
and B, all previously defined throughout the text.

The first term of the potential corresponds to repulsive energy and the second term is analogous to the Extended-

Rydberg potential proposed by Murrell and Sorbie [59], but with a coefficient of cubic term equal to zero.

To determine the five parameters, Uddin et. al claimed that the potential (555) must satisfy two extra conditions, in

addition to the usual ones. They are:

(i) VUDD(f)’ = —De;
£=1
(i) Vupp(&)hasaminimumat R = R, i. e, dvgg’o =0;
£=1
s d2V
(iii) 7‘!?209 . = keRZ;
3
(iV) d:% = keR2X,where XR, = -3 (% + 1) is a anharmonic force constant;
£=1 g
4
(v) d:% = keR2Y,where YRZ = 3 X2R2 - 8“’;—;‘5 is a anharmonic force constant.
=1

Here, X and Y are the relationships defined by Varshni [14] given in Egs. (505) and (506).

These conditions applied to the potential (555) yields a six order polynomial [200]:

_ 2 2
€6-365 (44 %) 4+ 3¢ (% +4A + 20) + 3 (16AXRe - 28%Re 120

(556)
+6A2(~8X R + Y RZ — 40) + 24A(-Y RZ + 30) + 40A(6X R + YRZ) = 0

where A is the Sutherland parameter. This polynomial has six roots. They analyzed the behaviour of the potential Vypp

for 14 different states of the seven diatomic systems, and only one of the six roots was workable for all states.

Uddin et. al [200] suggested rewrite the potential (555) in the form:

Vupp(§) = De

(1+K/De)_(1+/</De

w5 P ) e t6D(a + bt + c£?)|, (557)

where the depth of the well D, was included, so that Vypp(R = Re) = 0and Vypp(0) — De.

Uddin et. al analyzed the diatomic systems: Hy (X 25), Ny (x1 25), Ny (a'Mg), N2 (B3N,), O, (X3Z;,), OH (X2n;),
OH (A2X*), HF (X' *), NO (X2 ;5), NO (B2M), CO (X' =*), CO (A'M), CO (¢ 7) and CO (a3 ), and compared them
with experimental RKR [8, 9, 10] curves. With the exception of the OH AZ5* state of OH and A'M state of CO, the
potential provide excellent agreement with the RKR curves.
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3.46 | TheNew Deformed Schiéberg-type function

In 2015, Mustafa [201] proposed a new deformed Schiéberg-type [173] (NDS) potential given by:
Vnps(R) = A(B + tanhg (aR))?, (558)

where A > 0, B, g and « are four adjustable parameters and the g deformation of the usual functions is defined by
relationships:

inhg(x . X_ge~X
tanhg(x) = %2((;); sinhg(x) = ==—
(559)
coshg(x) = elrge™

The potential (558) must satisfy:

M “hesl =0

R=Re

(i) Vnps() = Vnps(Re) = De;

s d2V
(iii) Z=Mps = ke = 472 pw?,
R=Re

where Re, De and k have their usual meanings. Mustafa added the additional condition, Vps(Re) = 0, which simply

shift the zero of potential, without physically affecting its properties.

Using these conditions, the parameters A, B and g can be obtained by:

A= Lo (grare s g (560)
4q2
eZaRe -q
B=- (m) , (561)
and
g=—|1- 25 |gare. (562)

ke
2D,

Mustafa [201] also showed that his New Deformed Schitberg-type is equivalent to the Tietz-Hua [122] potential,

2a

ke
2De

He obtained a closed-form analytical solution for the ro-vibrational energy levels using the supersymmetric quan-
tization. The ro-vibrational energy values obtained for NO (X '11,), O, (X3 ):;,), O; (x2 MNg) and the vibrational values
obtained for N, (X! Z}) presented high accuracy.

considering the correspondences: (1 —

= cand 2a = bin Eq.(332). Thus, the expressions to ae and we xe can be

obtained in the same way.



ARAUJO & BALLESTER 119

3.47 | Thelmproved Péschl-Teller function

The Poschl-Teller potential [29] has been widely explored by several researchers ([41, 124, 202], many times in different
versions. In this section, we present two of them.

In 1994, Simek and Yalcin [203] proposed a generalized Poschl-Teller (GENPT) potential which was also an exact
solution for the Schrédinger equation. This new potential as well as the original Péschl-Teller potential has four
parameters and is given by:

Ae—ZaR Be—ZaR

1+ b2e—ZaR)2 + 1- bze—ZaR)Z (563)

Veenpt(R) =

where a, b, A and B are constants that can be obtained in terms of spectroscopic constants.
The function (563) must satisfy the following properties:

. dV,
() ogper| o

R=Re

(ii) Voenpr(0) = VoenpT(Re) = De;

s d2VeeneT
(iii) o

= ke,
R=Re

where R¢, De and k. have their usual meanings.

Using these conditions, Simek and Yalcin [203] obtained the constants a, b, A and B in potential (563), given by:

a= i%, b? yee*‘/Z
(564)
_ Dt (-yo)t 4 p(1eye)*
R A=B (%)
where y, is given by:
+/[/A -1
[ (565)
1++/F/A
f _ 2 _1(f 2 2 _ d*VeeneT _ & VeeneT
being A = k¢ Rz /2D, the Sutherland parameter and I' = 5 (fz) Rz, withf, = or? ok and f3 = o3 e
=Re =Re
The vibrational rotational coupling parameter a, can be obtained from Dunham relation (15):
ao = |Refs 4] 8B (566)
R we
and the anharmonicity we xe, given by:
-16
wexe:8A2'1O78X]O . (567)
Rp

This version of the Poschl-Teller potential was not well accepted. The coefficients of the potential (563) are

extremely difficult to obtain, requiring the solution of complicated algebraic equations. Besides, in 1996, Znojil [204]
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demonstrated that the “exact” solution to the Schrédinger equation presented by Simek and Yalgin was not correct.

Then, in 2017, Jia, Zhang and Peng [17] presented a improved version of the Poschl-Teller potential [29]. They
considered the potential (147):

A B

— ~ - 2 B (568)
sinh® a(R - Re) cosh” a(R — Re)

Vpr(R) =

where, they assumed A = Z;gj B(B-1)and B = ;‘ig‘; Yy +1).

By using of the conditions (i), (ii) and (iii), applied to this potential, they obtained the following expressions to A and

B:
A = D, sinh* a(Re — Ro), (569)
B = D cosh* a(R, — Ry). (570)
To obtain Vp7(Re) = 0, they added a uniform shift —ﬁ(a — VAB)(B — 4/ AB) to the right hand of expression (568).
Thus, the improved Poschl-Teller (IMPT) potential proposed by Jiaet. al [17] is given by:
sinh* a(Re — Ry)  cosh* a(Re — R
Vimpr(R) = De + De | —— STl Y > (Ro — Ro) (571)
sinh” a(R - Ro) cosh” a(R — Rp)
where now,

a = Tcwe [% (572)
e

Using the Dunham relation (15), they obtained ae:

R P 8DsRea® [ sinh® a(Re — Ro)  cosh® a(R, = Ro) | | 6B2 (573)
° ke cosha(Re — Rg)  sinha(Re — Ro) || we
From Egs. (572) and (573), the parameter Ry is given by [17]:
2,2 2 3
471'26211(4)30’ L3 3h wg n 3hfmewy 1
1 2D eve T 2 4 3\ 2uD,
R ¢ In HRe ke ’ (574)

3 3h2wg 3h27rcw2 1

0 =
4rcw
ey H 4n2c2uwdae + 3

uRE R3 2uDe

Jiaet. al[17] applied the improved Poschl-Teller potential for Hy, LiH, LiD, HF, and CO in their electronic ground
states. They compared their function with the Morse potential [7] and calculated the average absolute deviations
of these potentials from experimental RKR curves. For all systems analyzed, for the overall potential, the improved
P6schl-Teller presented more accurate results than Morse. In the branch of R < R, the improved Poschl-Teller performs

better than Morse and in the branch R > R, they practically coincide.
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3.48 | TheFu-Wang-Jiafunction

In 2019, the interest in obtaining a closed-form representation of the interaction of two atoms for diatomic systems in
chemistry and physics remained very high, despite the various models presented over the nearly one hundred years of
research in the area.

Among the potentials presented, the Tietz potential has been evidenced as a typical potential energy model, widely
used in several recent researchers (see for example Refs.[205, 206]). Considering this, in 2020, Fu, Wang, and Jia[18]
has proposed an improved five-parameter exponential-type potential energy for diatomic systems, and they explored
the relationship between their potential and the Tietz potential.

We are referring to an improved model, because, in 2001, the same researchers Fu, Wang, and Jia [207] (FWJ)
presented a unified exponential-type molecule potential that contains special cases of most previously given exponential-
type molecule potentials and their deformations, such as the Generalized Morse potential [40] (proposed by Deng-Fan),

Tietz-Hua potential [122], improved Péschl-Teller potential [17], and others.

The five-parameter exponential-type potential energy is given by [207]:

P P
Vi R)=P; + + 575
Fws(R) = Py R g (@R 1 g (575)
where Py, P, P3, g and a are adjustable parameters, with g # 0.
This potential satisfies the following relationships:
o dV
i) 2 =o
R=Re
(i) Vews(0) = VEws(Re) = De;
(i) Ll g,
IR | ek,
where Re, Do and ke have their usual meanings.
By using these conditions, Fu et. al [18] obtained two expressions to parameters P, and Ps, given by:
P, = —2D,(e%%Re + q) (576)
Py = Do(e%Re 1 g)2. (577)
Substituting these expressions to P, and P; in Eq. (575), the potential is rewrite as:
2aRe 2
Vews(R) = P; + D¢ (1 - 762 i q) - De (578)
e2R + g
or putting Vew s(Re) = 0, and replacing a by a/2 for simplify, Fu et. al obtained:
2
e¥Re 4
Vew/(R) = De (1 - R—q) : (579)
eR+gq
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This potential corresponds exactly to the improved Tietz potential showed by same researchers in Ref.[125], and
choosing g = 0, the improved five-parameter exponential-type potential corresponds to Morse potential [7]. Still, if
q # 0, the parameter a is given by [18]:

2 1 2
a = TCUwWe | Hi_w (ﬂcngeCh / ZH g-moweRe ZF/De), (580)
De Re De

where W represents the Lambert W function, which satisfies z = W(z)e" () [197].

Fu et. al [18] analyzed the behavior of their potential for the ground electronic state of CO and compared their
results with RKR experimental curves, obtaining good agreement.

3.49 | Thelmproved Multiparameter Exponential-type function

In 2012, Garcia-Martinez et. al [208] proposed the solution to a spectral problem involving the Schrédinger equation for
a particular class of multiparameter exponential-type potentials (MPETP), given by:

qAeRIK qBe RIK q2Ce 2RIK

+ + 581
— qe—R/K (] — qe—R/K)Z (1 — qe—R/K)Z ( )

Vmperp(R) = "

where A, B, C, g and k are adjustable parameters.

Then, in 2020, Xie and Jia[209], observed that to represent the internuclear interaction of a diatomic systems, this

potential must satisfy the conditions:

AV
(i) P

=0;
R=Re

(i) VmpeTp(c0) = VimpeTP(Re) = De;

2
I e L
R=Re

where Re, De and k. have their usual meanings.

Using these conditions, they obtained the relationships:

A+B= —%(eRE/k ~q) (582)
and
B+C= D—g(e’?e/k - g2 (583)
q

Thus, by substituting the Egs. (582) and (583) into (581), Xie and Jia rewrite the MPETP potential as aimproved
multiparameter exponential-type potential IMPETP), given by:

Re/k _ -\2
° ") . (584)

% R)=D¢ |1 — ———
1mPeTP(R) e( oRIE_ g
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The IMPETP is equivalent to the Tietz [119] and Williams-Poulos [183] potentials (see Refs.[185, 125]).

In addition, Xie and Jia[209] obtained the expressions to parameters k and g as function of the known spectroscopic

parameters:

k= —m—m—— (585)

2u 1
271'0(09 De ~ Re

(o fpe
9= Tcwek \ 2u

To evaluate the efficiency of the improved multiparameter exponential-type potential, Xie and Jia simulated the

and

eRelk (586)

internuclear potential energy curve for A3, state of CIF and compared their results with the Morse [7] potential. They
used the Lippincott criterion to calculate the deviation of the IMPETP from RKR experimental curves. They obtained
that the average absolute deviation of the IMPETP was 0.653% of D, whereas the Morse potential given 8.56% of D,
showing that the Morse potential is not suitable for reproducing this molecular state of CIF. Furthermore, they obtained
the potential curve for X23* state of CP. Again, the IMPETP was more accurate than Morse and showed an excellent

agreement with the experimental RKR curve.

3.50 | TheNew Modified Morse function

This is the last potential that we will discuss here. This is the most recent analytical representation of potential energy
interaction for diatomic systems we found until the end of this work. The function is a New Modified Morse potential
and has been proposed in 2020 by Desai, Mesquita, and Fernandes [5] to try to reduce the discrepancy between the
experimental and calculated values. The new function contains one more parameter than the original Morse function,
and this will be responsible for improving accuracy in the region where the potential extends to near the dissociation
limit.

The New Modified Morse potential (NMM) is given by:
Vumm(R) = De{1 — exp[—a sinh (B(R - R.))]}? (587)

where «a is dimensionless constant, § is a parameter with units of cm~'. These parameters are related to the Morse

— ke —
aﬁ—,}ZDe—a (588)
?Vm

since 47 M — k.. In addition, as well as the Morse potential, Vypw satisfies also the conditions:

parameter a, by:

n o dVvmm —_0
i =g =0
R=Re

(i) Vvamm(0) = Vwmm(Re) = De, Where D, is the depth of the well.
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By using the Dunham relation (16), Desai et. al, obtained the anharmonicity constant given by:

2\ 2.1078 x 10716
WeXe = (azﬁz - E) O 8 x 0 : (589)
2 u
In the same way, we can obtain the parameter a, from Dunham relation (15):
6B,
_[.252p e
Ao = [a B2R. 1] . (590)

To obtain the optimized value of a parameter in Eq. (587), Desai et. al developed a program to solve the Schrédinger
equation for all values of a within a select range, from the observed value of w x.. Then, the range was extended till
they got the minimum value of the sum of the absolute difference between each calculated and observed vibrational
energy eigenvalue. These were obtained by solving the time-dependent Schrodinger equation for their dimensionless
reduced potential, which was calculated by applying the Matrix Numerov method (see all details in Ref. [5]).

Desai et. al analyzed the behavior of the New Modified Morse potential for the X! Z; state of the H, and N, systems
and compared them with RKR experimental curves. Morse [7] and Hulburt-Hirschfelder [6] potentials were also used in
the comparison.

They observed that in the region R > R, for the H,, the average absolute deviation for Viyyp was almost half that
produced by V4 and Vy,. For the Ny, the differences were even greater, with the average absolute deviation of the
New Modified Morse potential corresponding to practically one-third of the deviation of the Hulburt-Hirschfelder and
almost one-tenth of the deviation of the Morse.

The anharmonicity constant obtained using the New Modified Morse potential also proved to be quite accurate,
with a deviation of about 1.2% from the observed value, while the original Morse function presents about 21% deviation.

Although this function has been verified only two diatomic systems, the results obtained by Desai et. al suggest a
relatively simple new potential such as the original Morse function, but with far superior results.

4 | A COMPARATIVE ANALYSIS FOR N, (X' z;),CO (X'=*) AND HEH* (X'3+)
DIATOMIC SYSTEMS

With the intent of guiding the reader in some way to the most accurate potentials, we present here a comparative
analysis for the N,, CO, and HeH* diatomics systems in their ground electronic states.

We recognize that analyzing a few diatomic systems is not ideal, considering the particularities of each potential
presented in this review. However, along with the text we have already highlighted which systems each potential offers
the best accuracy. Thus, in this section, we want to give the reader a compact view of the behavior of potentials for
three different ranges of R: over the repulsive part of the potential, over the attractive part of the potential and over
the whole range.

The potential energy curves from functions that depend on adjustable parameters have been obtained by fit ab
initio points. To obtain accurate PECs, the electronic structure calculations for the homo-and heteronuclear systems
were carried out using as reference complete active space self-consistent (CASSCF) [210] wave function. Dynamical
correlation effects were included by means internally contracted multireference configuration interaction (MRCI(Q))
[211]. The aug-cc-pV5Z basis set of Dunning was employed, and we have performed CASSCF followed by MRCI(Q)

approach. All calculations were performed with the Molpro 2012 package of ab initio programs [212].
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On the other hand, the potential energy curves from functions that do not depend on adjustable coefficients have
been directly calculated using the experimental data from Ref. [95].

To have a precise measure of the accuracy of the various potentials, we have used the least-squares Z-test method
proposed by Murrell and Sorbie [59], given by:

Z= !
nAR

Z(VRKR - Vi)? (591)

where n is the total number of RKR points in the data set for each diatomic, AR is the range in R covered by these points,
Vrkr is the RKR value of the potential at some R in the data set and V; is the calculated value from a given potential
function at that R.

RKR data used in the comparison for the diatomic systems N, [213] and CO [214] were obtained from the literature.
For HeH* we have used the experimental Born-Oppenheimmer energy values [215], because the conventional RKR

method for obtaining experimental energy curves is intractable.

4.1 | Results

The results of the Z-teste for three ranges of R can be observed in the tables 1, 2 and 3, for (N,), (CO) and (HeH"*),
respectively. The smallest Z value implies the most accurate potential energy function.

For the diatomic system N, in the repulsive part, the most accurate potential energy function was the Extended
Rydberg (Veg). Then, the Levine (V, gy) potential presented the second better result. Both were obtained using the
experimental data, without fit. Next, the Extended Lennard-Jones (Vg ;) and the Varandas and da Silva (Ve raceau)
performed the best results, both fitted, in this case. On the other hand, in the attractive part, the best potential was the
Varshni (V AR;rr) potential, which does not depend on adjustable parameters. Next, we have Vg, ;, the Simons-Parr-
Filan (Vspfr) and the Modified Extended Rydberg (Vi £r), which were all fitted. V¢, , is superior to all other potentials
over the whole range of R. Next, Ver, Venraceau and Vspr proved to be more accurate than the others.

Thus, according to our comparative study, for the ground electronic state of N, the functions in order of decreasing
accuracy, over the whole range of R, are: Ve, j, Ver, Venraceaus Vsprs Viev, Wary VoG, Vsurs VHUF, VYmaT, VMER,
VrHas Vap, VNP, Viua: VRms VEm, Ve, ViIn, Voz, VTH = VEws = Vnps, Vimperpr, Vem: VNmm: Vi, VEavp, Vor,
Vmr, VNew, VimpT, VRYD: VMoRrs VRAFI;» VMs, Vmrm, Viy L, Ve, Virp, VGenkRAT: Ywy, Vi, VscHs Ywe, Vubb,
Vbav, Vrpcy; and Vey.

For the diatomic system CO, as well as for N5, the best potential in the repulsive part was the Extended Rydberg by
Huxley and Murrell [130]. Next, the Hulburt-Hirschfelder (Vi 4), Ve s and the Huggins (V) were the most accurate,
being all analytical functions which their parameters were obtained directly from experimental data, except Ve, ;. In
the attractive region, the results were similar to those in the repulsive region, being Vyy, Ve and Veg those with
the lowest Z value, respectively. The Hulburt-Hirschfelder potential proved to be the best among the 50 analyzed
considering the whole potential.

For the ground electronic state of CO the functions in order of decreasing accuracy, over the whole range of R, are:
Viur, Vers, Ver, Vuues VLIN, Vvor, VNEw, VTH = VEws = Vnps = Vimeere, Voz, Vap, Vems Vimet, VEm, VRAF I
Vnmm, YRy, ViEv, Vsur, Vspr, Voo, VTHA VmaT, Vscn = Ywe, Vaur, VEnFaceau, Ywy, Vs, W aryrr» VEM: VMR,
Ve, VoG, Vmrm, VEay; s Vor, Viie, Vi, VGENkRAT Viy L, VMER, VD av, VT, VRPCy s VupD, and V.

Finally, for the diatomic system HeH™ the results were slightly different from those obtained with N, and CO. The
best function for the repulsive range was the Dmitrieva-Zenevich (V z) potential without adjustable parameters. After,

the fitted Frost-Musulin (Vep) and Improved Péschl-Teller (Vipp7) potential functions were the most accurate. In the
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attractive range, the function with the lowest Z value was Vg, after Viyyg and Vippr, being the first a potential without
fit and the second fitted. Last, for the whole potential Vrppr yielded the least deviation. Next, Vp ~, Vep and Vg were
the most accurate, respectively.

For the ground electronic state of HeH* the functions in order of decreasing accuracy, over the whole range of
R, are: Vimpr, Voz, Vem, Vur, Viev, VRarIrrs WaRrrrr» Vars VER: VA VoI, VEL), VNEW, VvaT, VEm, VspF, Vsur,
Vmor, VrH = Vewy = VNps = Vimperp, Viue, Viur, VeHFaceaus Vmm, VRy D, VoG, VMR, VRM, VLIN, ViYL, VMRM,
Vs, VeeNkRAT> Vs, Vupp, VHEL: VscH = Ywe, Virp, Vo, Ywy, Vive: VEay;;, Ver and Viveg.

The Heller function (V. ) was the only one that was not possible to obtain a potential energy curves for N, and CO.
This is due to the fact that this potential describes well only van der Waals diatomics [21]. For HeH*, the Born-Mayer
(Vam), the Davidson (Vpav) and the Reduced (Vrpc, ;) potentials did not provide correct PECs.

Note that, for the three diatomic systems considered here, the results for functions V74, Vew, and Vyps are
identical, confirming the claims of Fu, Wang and Jia [18] and Mustafa [201], respectively. For CO and HeH™*, VippeTp
also proved to be equivalent to Vi, Vew s and Vi ps, and for N, their values for three regions analyzed yielded results
approximately equivalents, confirming the statement of Xie and Jia [209].

5 | FINAL REMARKS

We are concerned with several aspects of the potentials here described: the number of parameters, its simplicity and
quality in the short and long-range regions, and the diversity of diatomic systems that each function can be applied.
Nowadays, computational resources are much powerful than what we had in the recent past, making it possible, for
example, to obtain excellent ab initio points and, therefore, accurate PESs. In turn, for the here studied cases, functions
fitted to ab initio points did not necessarily provide better precision than those obtained without the fitting. For the
latter type, the best results were for those with five parameters, highlights for the Hulburt-Hirschfelder, Huggins, and
Extended Rydberg potentials. The Dmitrieva-Zenevich function with three parameters shows good results only for
HeH™. Furthermore, for CO and N,, among the fitted functions, the more accurate has six parameters, and for HeH",
the best choice has four adjustable parameters. Thus, a potential energy function with only three parameters, fitted or
not, is unlikely to provide the best results, as was thought possible in the past. The potential energy functions consisting
of power series expansions presented good accuracy for the diatomics treated here, highlighting mainly the EHFACE2U
and Aguado-Paniagua potentials. Mathematically (and physically) models containing a product of an exponential by a
polynomial, with its variations, remains the ideal potential energy function. A function that escapes this configuration
will hardly provide accurate results.

After analyzing these 50 potentials and the hundred years of history that were necessary to develop them, we
remain with the same opinion expressed by Varshniin 1957, and many other researchers: it is not possible to find a
universal potential energy function. However, as we can see, the search for the Holy Grail of Spectroscopy will continue
perhaps for another hundred years.
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TABLE 1 Results of the Z-test for No(X"X}). Z values are given in 1072 E2 ap ™'
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TABLE 2 Results of the Z-test for CO(X'=*). Z values are givenin 1079 E,2 ap~!
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TABLE 3 Results of the Z-test for HeH* (X' *). Z values are given in 1079 E,2 ap~"

RANGES AR/ ag GENKRAT L MOR RYD BM RM DAV
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