Acknowledgements
This work was supported by the National Natural Science Foundation of
China [NO: 21808167 and 21676203].
Literature Cited
1. Cheng Lian, Honglai Liu, Chunzhong Li, and Jianzhong Wu, ”Hunting
ionic liquids with large electrochemical potential windows,” AIChE
Journal 65 (2019).
2. Zhongde Dai, Luca Ansaloni, Douglas
L. Gin, Richard D. Noble, and Liyuan Deng, ”Facile fabrication of CO2
separation membranes by cross-linking of poly(ethylene glycol)
diglycidyl ether with a diamine and a polyamine-based ionic liquid,”
Journal of Membrane Science 523, 551-560 (2017).
3. Christopher P. Fredlake, Jacob M.
Crosthwaite, Daniel G. Hert, Sudhir N. V. K. Aki, and Joan F. Brennecke,
”Thermophysical Properties of Imidazolium-Based Ionic Liquids,” Journal
of Chemical & Engineering Data 49 (4), 954-964 (2004).
4. Zhiqi He and Paschalis
Alexandridis, ”Ionic liquid and nanoparticle hybrid systems: Emerging
applications,” Advances in Colloid and Interface Science 244,
54-70 (2017).
5. Tomo Sakanoue, Fumihiro Yonekawa,
Ken Albrecht, Kimihisa Yamamoto, and Taishi Takenobu, ”An ionic liquid
that dissolves semiconducting polymers: a promising electrolyte for
bright, efficient, and stable light-emitting electrochemical cells,”
Chemistry of Materials 29 (14), 6122-6129 (2017).
6. José O. Valderrama and Roberto E.
Rojas, ”Mass connectivity index, a new molecular parameter for the
estimation of ionic liquid properties,” Fluid Phase Equilibria297 (1), 107-112 (2010).
7. Yoshihiro Hayashi, Yuki Marumo,
Takumi Takahashi, Yuri Nakano, Atsushi Kosugi, Shungo Kumada, Daijiro
Hirai, Kozo Takayama, and Yoshinori Onuki, ”In silico predictions of
tablet density using a quantitative structure–property relationship
model,” International Journal of Pharmaceutics 558, 351-356
(2019).
8. Min-Rui Gao, Jiayin Yuan, and
Markus Antonietti, ”Ionic Liquids and Poly(ionic liquid)s for
Morphosynthesis of Inorganic Materials,” Chem. – A Europ. J.23 (23), 5391-5403 (2017).
9. Ryosuke Yamada, Kazunori Nakashima,
Nanami Asai-Nakashima, Wataru Tokuhara, Nobuhiro Ishida, Satoshi
Katahira, Noriho Kamiya, Chiaki Ogino, and Akihiko Kondo, ”Direct
Ethanol Production from Ionic Liquid-Pretreated Lignocellulosic Biomass
by Cellulase-Displaying Yeasts,” Appl. Biochem. Biotech. 182(1), 229-237 (2017).
10. Samuel Kassaye, Kamal K. Pant,
and Sapna Jain, ”Hydrolysis of cellulosic bamboo biomass into reducing
sugars via a combined alkaline solution and ionic liquid pretreament
steps,” Renew. Energ. 104 , 177-184 (2017).
11. Wan-Qi Su, Cheng Yang, and
Da-Zhen Xu, ”Ionic liquid [Dabco-C8][FeCl4] as an efficient and
recyclable catalyst for direct C3 alkylation of indoles with
electron-deficient olefins,” Catalysis Communications 100 ,
38-42 (2017).
12. Isabel Bandrés, Rafael Alcalde,
Carlos Lafuente, Mert Atilhan, and Santiago Aparicio, ”On the Viscosity
of Pyridinium Based Ionic Liquids: An Experimental and Computational
Study,” The Journal of Physical Chemistry B 115 (43),
12499-12513 (2011).
13. Divya P. Soman, P. Kalaichelvi,
and T. K. Radhakrishnan, ”THERMAL CONDUCTIVITY ENHANCEMENT OF AQUEOUS
IONIC LIQUID AND NANOPARTICLE SUSPENSION,” Brazilian Journal of Chemical
Engineering 36 , 855-868 (2019).
14. Safar Ali Shojaee, Samira Farzam,
Ali Zeinolabedini Hezave, Mostafa Lashkarbolooki, and Shahab Ayatollahi,
”A new correlation for estimating thermal conductivity of pure ionic
liquids,” Fluid Phase Equilibria 354 , 199-206 (2013).
15. Nguyen Minh Quang, Tran Xuan Mau,
Nguyen Thi Ai Nhung, Tran Nguyen Minh An, and Pham Van Tat, ”Novel QSPR
modeling of stability constants of metal-thiosemicarbazone complexes by
hybrid multivariate technique: GA-MLR, GA-SVR and GA-ANN,” Journal of
Molecular Structure 1195 , 95-109 (2019).
16. Y. Q. Chen, G. M. Kontogeorgis,
and J. M. Woodley, ”Group Contribution Based Estimation Method for
Properties of Ionic Liquids,” Industrial & Engineering Chemistry
Research 58 (10), 4277-4292 (2019).
17. João A. P. Coutinho, Pedro J.
Carvalho, and Nuno M. C. Oliveira, ”Predictive methods for the
estimation of thermophysical properties of ionic liquids,” RSC Advances2 (19), 7322 (2012).
18. Anna Rybinska, Anita Sosnowska,
Maciej Barycki, and Tomasz Puzyn, ”Geometry optimization method versus
predictive ability in QSPR modeling for ionic liquids,” Journal of
Computer-Aided Molecular Design 30 (2), 165-176 (2016).
19. Wenhui Tu, Lu Bai, Shaojuan Zeng,
Hongshuai Gao, Suojiang Zhang, and Xiangping Zhang, ”An ionic fragments
contribution-COSMO method to predict the surface charge density profiles
of ionic liquids,” Journal of Molecular Liquids 282 , 292-302
(2019).
20. Fabrice Mutelet, Virginia
Ortegavilla, Jean Charles Moïse, and Jean Noël Jaubert, ”Prediction of
Partition Coefficients of Organic Compounds in Ionic Liquids Using a
Temperature-Dependent Linear Solvation Energy Relationship with
Parameters Calculated through a Group Contribution Method,” Unt
Scholarly Works 56 (9), 3598-3606 (2011).
21. Kamil Paduszyński and Urszula
Domańska, ”A New Group Contribution Method For Prediction of Density of
Pure Ionic Liquids over a Wide Range of Temperature and Pressure,” Ind.
Eng. Chem. Res. 51 (1), 591-604 (2012).
22. Juan A. Lazzús, ”A group
contribution method to predict the thermal conductivity λ(T,P) of ionic
liquids,” Fluid Phase Equilib. 405 , 141-149 (2015).
23. Alireza Ahmadi, Reza Haghbakhsh,
Sona Raeissi, and Vahid Hemmati, ”A simple group contribution
correlation for the prediction of ionic liquid heat capacities at
different temperatures,” Fluid Phase Equilibria 403 , 95-103
(2015).
24. Wensi He, Fangyou Yan, Qingzhu
Jia, Shuqian Xia, and Qiang Wang, ”Prediction of ionic liquids heat
capacity at variable temperatures based on the norm indexes,” Fluid
Phase Equilibria 500 , 112260 (2019).
25. Fangyou Yan, Yajuan Shi, Ying
Wang, Qingzhu Jia, Qiang Wang, and Shuqian Xia, ”QSPR models for the
properties of ionic liquids at variable temperatures based on norm
descriptors,” Chemical Engineering Science 217 , 115540 (2020).
26. Guangren Yu, Lu Wen, Dachuan
Zhao, Charles Asumana, and Xiaochun Chen, ”QSPR study on the viscosity
of bis(trifluoromethylsulfonyl)imide-based ionic liquids,” J. Mol.Liq.184 , 51-59 (2013).
27. Bor-Kuan Chen, Ming-Jyh Liang,
Tzi-Yi Wu, and H. Paul Wang, ”A high correlate and simplified QSPR for
viscosity of imidazolium-based ionic liquids,” Fluid Phase Equilibria350 , 37-42 (2013).
28. Guangren Yu, Dachuan Zhao, Lu
Wen, Shendu Yang, and Xiaochun Chen, ”Viscosity of ionic liquids:
Database, observation, and quantitative structure-property relationship
analysis,” AIChE Journal 58 (9), 2885-2899 (2012).
29. Fangyou Yan, Wensi He, Qingzhu
Jia, Qiang Wang, Shuqian Xia, and Peisheng Ma, ”Prediction of ionic
liquids viscosity at variable temperatures and pressures,” Chemical
Engineering Science 184 , 134-140 (2018).
30. Johannes Albert and Karsten
Müller, ”A Group Contribution Method for the Thermal Properties of Ionic
Liquids,” Industrial & Engineering Chemistry Research 53 (44),
17522-17526 (2014).
31. Wanqiang Liu, Haixia Lu,
Chenzhong Cao, Yinchun Jiao, and Guanfan Chen, ”An Improved Quantitative
Structure Property Relationship Model for Predicting Thermal
Conductivity of Liquid Aliphatic Alcohols,” J. Chem. Eng. Data.63 (12), 4735-4740 (2018).
32. Karim Golzar, Sepideh
Amjad-Iranagh, and Hamid Modarress, ”Prediction of Density, Surface
Tension, and Viscosity of Quaternary Ammonium-Based Ionic Liquids
([N222(n)]Tf2N) by Means of Artificial Intelligence Techniques,”
Journal of Dispersion Science and Technology 35 (12), 1809-1829
(2014).
33. Łukasz Marcinkowski, Emil
Szepiński, Maria J. Milewska, and Adam Kloskowski, ”Density, sound
velocity, viscosity, and refractive index of new morpholinium ionic
liquids with amino acid-based anions: Effect of temperature, alkyl chain
length, and anion,” J. Mol.Liq. 284 , 557-568 (2019).
34. V. E. Kuz’min, E. N. Muratov, A.
G. Artemenko, L. Gorb, M. Qasim, and J. Leszczynski, ”The effect of
nitroaromatics’ composition on their toxicity in vivo: Novel, efficient
non-additive 1D QSAR analysis,” Chemosphere 72 (9), 1373-1380
(2008).
35. Kunal Roy, Rudra Narayan Das, and
Paul L. A. Popelier, ”Quantitative structure–activity relationship for
toxicity of ionic liquids to Daphnia magna: Aromaticity vs.
lipophilicity,” Chemosphere 112 , 120-127 (2014).
36. Kunal Roy, Rudra Narayan Das, and
Paul L. A. Popelier, ”Predictive QSAR modelling of algal toxicity of
ionic liquids and its interspecies correlation with Daphnia toxicity,”
Environmental Science and Pollution Research 22 (9), 6634-6641
(2015).
37. Wensi He, Fangyou Yan, Qingzhu
Jia, Shuqian Xia, and Qiang Wang, ”QSAR models for describing the
toxicological effects of ILs against Staphylococcus aureus based on norm
indexes,” Chemosphere 195 , 831-838 (2018).
38. J. Lazzús, ”ρ(T, p) model for
ionic liquids based on quantitative structure–property relationship
calculations,” J. Phys. Org. Chem. 22 , 1193 (2009).
39. Fangyou Yan, Qiaoyan Shang,
Shuqian Xia, Qiang Wang, and Peisheng Ma, ”Application of Topological
Index in Predicting Ionic Liquids Densities by the Quantitative
Structure Property Relationship Method,” J. Chem. Eng. Data. 60(3), 734-739 (2015).
40. Kamil Claudia L.
AguirrePaduszyński, ”Extensive Databases and Group Contribution QSPRs of
Ionic Liquids Properties. 1. Density,” Industrial & engineering
chemistry process design and development 2019 v.58 no.13 (no.
13), pp. 5322-5338 (2019).
41. Kamil Paduszyński, ”Extensive
Databases and Group Contribution QSPRs of Ionic Liquids Properties. 2.
Viscosity,” Ind. Eng. Chem. Res. 58 (36), 17049-17066 (2019).
42. Wesley Beckner, Coco M. Mao, and
Jim Pfaendtner, ”Statistical models are able to predict ionic liquid
viscosity across a wide range of chemical functionalities and
experimental conditions,” Molecular Systems Design & Engineering3 (1), 253-263 (2018).
43. Yongsheng Zhao, Ying Huang,
Xiangping Zhang, and Suojiang Zhang, ”A quantitative prediction of the
viscosity of ionic liquids using S[sigma]-profile molecular
descriptors,” Phys. Chem. Chem. Phys. 17 (5), 3761-3767 (2015).
44. Qiao-Li Chen, Ke-Jun Wu, and
Chao-Hong He, ”Thermal Conductivity of Ionic Liquids at Atmospheric
Pressure: Database, Analysis, and Prediction Using a Topological Index
Method,” Ind. Eng. Chem. Res. 53 (17), 7224-7232 (2014).
45. Juan A. Lazzús and Geraldo
Pulgar-Villarroel, ”Estimation of thermal conductivity of ionic liquids
using quantitative structure–property relationship calculations,” J.
Mol. Liq. 211 , 981-985 (2015).
46. Wensi He, Fangyou Yan, Qingzhu
Jia, Shuqian Xia, and Qiang Wang, ”Description of the Thermal
Conductivity λ(T, P) of Ionic Liquids Using the Structure–Property
Relationship Method,” Journal of Chemical & Engineering Data62 (8), 2466-2472 (2017).
47. Fangyou Yan, Shuqian Xia, Qiang
Wang, Zhen Yang, and Peisheng Ma, ”Predicting the melting points of
ionic liquids by the Quantitative Structure Property Relationship method
using a topological index,” The Journal of Chemical Thermodynamics62 , 196-200 (2013).
48. Fangyou Yan, Tian Lan, Xue Yan,
Qingzhu Jia, and Qiang Wang, ”Norm index-based QSTR model to predict the
eco-toxicity of ionic liquids towards Leukemia rat cell line,”
Chemosphere 234 , 116-122 (2019).
49. Christoph Rücker, Gerta Rücker,
and Markus Meringer, ”y-Randomization and Its Variants in QSPR/QSAR,”
Journal of Chemical Information and Modeling 47 (6), 2345-2357
(2007).
50. Kunal Roy, Indrani Mitra,
Supratik Kar, Probir Kumar Ojha, Rudra Narayan Das, and Humayun Kabir,
”Comparative Studies on Some Metrics for External Validation of QSPR
Models,” Journal of Chemical Information and Modeling 52 (2),
396-408 (2012).
51. Ali Barati-Harooni, Adel
Najafi-Marghmaleki, Milad Arabloo, and Amir H. Mohammadi, ”An accurate
CSA-LSSVM model for estimation of densities of ionic liquids,” Journal
of Molecular Liquids 224 , 954-964 (2016).
52. Juan A. Lazzús, ”A GROUP
CONTRIBUTION METHOD TO PREDICT ρ-T-P OF IONIC LIQUIDS,” Chemical
Engineering Communications 197 (7), 974-1015 (2010).
53. Juan A. Lazzús, ”ρ–T–P
prediction for ionic liquids using neural networks,” Journal of the
Taiwan Institute of Chemical Engineers 40 (2), 213-232 (2009).
54. Fangyou Yan, Qiaoyan Shang,
Shuqian Xia, Qiang Wang, and Peisheng Ma, ”Application of Topological
Index in Predicting Ionic Liquids Densities by the Quantitative
Structure Property Relationship Method,” Journal of Chemical &
Engineering Data 60 (3), 734-739 (2015).
55. Yongsheng Zhao, Ying Huang,
Xiangping Zhang, and Suojiang Zhang, ”A quantitative prediction of the
viscosity of ionic liquids using Sσ-profile molecular descriptors,”
Physical Chemistry Chemical Physics 17 (5), 3761-3767 (2015).
56. Wensi He, Fangyou Yan, Qingzhu
Jia, Shuqian Xia, and Qiang Wang, ”Description of the thermal
conductivity λ (T, P) of ionic liquids using the structure–property
relationship method,” Journal of Chemical & Engineering Data62 (8), 2466-2472 (2017).