Acknowledgements
This work was supported by the National Natural Science Foundation of China [NO: 21808167 and 21676203].
Literature Cited
1. Cheng Lian, Honglai Liu, Chunzhong Li, and Jianzhong Wu, ”Hunting ionic liquids with large electrochemical potential windows,” AIChE Journal 65 (2019). 2. Zhongde Dai, Luca Ansaloni, Douglas L. Gin, Richard D. Noble, and Liyuan Deng, ”Facile fabrication of CO2 separation membranes by cross-linking of poly(ethylene glycol) diglycidyl ether with a diamine and a polyamine-based ionic liquid,” Journal of Membrane Science 523, 551-560 (2017). 3. Christopher P. Fredlake, Jacob M. Crosthwaite, Daniel G. Hert, Sudhir N. V. K. Aki, and Joan F. Brennecke, ”Thermophysical Properties of Imidazolium-Based Ionic Liquids,” Journal of Chemical & Engineering Data 49 (4), 954-964 (2004). 4. Zhiqi He and Paschalis Alexandridis, ”Ionic liquid and nanoparticle hybrid systems: Emerging applications,” Advances in Colloid and Interface Science 244, 54-70 (2017). 5. Tomo Sakanoue, Fumihiro Yonekawa, Ken Albrecht, Kimihisa Yamamoto, and Taishi Takenobu, ”An ionic liquid that dissolves semiconducting polymers: a promising electrolyte for bright, efficient, and stable light-emitting electrochemical cells,” Chemistry of Materials 29 (14), 6122-6129 (2017). 6. José O. Valderrama and Roberto E. Rojas, ”Mass connectivity index, a new molecular parameter for the estimation of ionic liquid properties,” Fluid Phase Equilibria297 (1), 107-112 (2010). 7. Yoshihiro Hayashi, Yuki Marumo, Takumi Takahashi, Yuri Nakano, Atsushi Kosugi, Shungo Kumada, Daijiro Hirai, Kozo Takayama, and Yoshinori Onuki, ”In silico predictions of tablet density using a quantitative structure–property relationship model,” International Journal of Pharmaceutics 558, 351-356 (2019). 8. Min-Rui Gao, Jiayin Yuan, and Markus Antonietti, ”Ionic Liquids and Poly(ionic liquid)s for Morphosynthesis of Inorganic Materials,” Chem. – A Europ. J.23 (23), 5391-5403 (2017). 9. Ryosuke Yamada, Kazunori Nakashima, Nanami Asai-Nakashima, Wataru Tokuhara, Nobuhiro Ishida, Satoshi Katahira, Noriho Kamiya, Chiaki Ogino, and Akihiko Kondo, ”Direct Ethanol Production from Ionic Liquid-Pretreated Lignocellulosic Biomass by Cellulase-Displaying Yeasts,” Appl. Biochem. Biotech. 182(1), 229-237 (2017).
10. Samuel Kassaye, Kamal K. Pant, and Sapna Jain, ”Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps,” Renew. Energ. 104 , 177-184 (2017).
11. Wan-Qi Su, Cheng Yang, and Da-Zhen Xu, ”Ionic liquid [Dabco-C8][FeCl4] as an efficient and recyclable catalyst for direct C3 alkylation of indoles with electron-deficient olefins,” Catalysis Communications 100 , 38-42 (2017).
12. Isabel Bandrés, Rafael Alcalde, Carlos Lafuente, Mert Atilhan, and Santiago Aparicio, ”On the Viscosity of Pyridinium Based Ionic Liquids: An Experimental and Computational Study,” The Journal of Physical Chemistry B 115 (43), 12499-12513 (2011).
13. Divya P. Soman, P. Kalaichelvi, and T. K. Radhakrishnan, ”THERMAL CONDUCTIVITY ENHANCEMENT OF AQUEOUS IONIC LIQUID AND NANOPARTICLE SUSPENSION,” Brazilian Journal of Chemical Engineering 36 , 855-868 (2019).
14. Safar Ali Shojaee, Samira Farzam, Ali Zeinolabedini Hezave, Mostafa Lashkarbolooki, and Shahab Ayatollahi, ”A new correlation for estimating thermal conductivity of pure ionic liquids,” Fluid Phase Equilibria 354 , 199-206 (2013).
15. Nguyen Minh Quang, Tran Xuan Mau, Nguyen Thi Ai Nhung, Tran Nguyen Minh An, and Pham Van Tat, ”Novel QSPR modeling of stability constants of metal-thiosemicarbazone complexes by hybrid multivariate technique: GA-MLR, GA-SVR and GA-ANN,” Journal of Molecular Structure 1195 , 95-109 (2019).
16. Y. Q. Chen, G. M. Kontogeorgis, and J. M. Woodley, ”Group Contribution Based Estimation Method for Properties of Ionic Liquids,” Industrial & Engineering Chemistry Research 58 (10), 4277-4292 (2019).
17. João A. P. Coutinho, Pedro J. Carvalho, and Nuno M. C. Oliveira, ”Predictive methods for the estimation of thermophysical properties of ionic liquids,” RSC Advances2 (19), 7322 (2012).
18. Anna Rybinska, Anita Sosnowska, Maciej Barycki, and Tomasz Puzyn, ”Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids,” Journal of Computer-Aided Molecular Design 30 (2), 165-176 (2016).
19. Wenhui Tu, Lu Bai, Shaojuan Zeng, Hongshuai Gao, Suojiang Zhang, and Xiangping Zhang, ”An ionic fragments contribution-COSMO method to predict the surface charge density profiles of ionic liquids,” Journal of Molecular Liquids 282 , 292-302 (2019).
20. Fabrice Mutelet, Virginia Ortegavilla, Jean Charles Moïse, and Jean Noël Jaubert, ”Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids Using a Temperature-Dependent Linear Solvation Energy Relationship with Parameters Calculated through a Group Contribution Method,” Unt Scholarly Works 56 (9), 3598-3606 (2011).
21. Kamil Paduszyński and Urszula Domańska, ”A New Group Contribution Method For Prediction of Density of Pure Ionic Liquids over a Wide Range of Temperature and Pressure,” Ind. Eng. Chem. Res. 51 (1), 591-604 (2012).
22. Juan A. Lazzús, ”A group contribution method to predict the thermal conductivity λ(T,P) of ionic liquids,” Fluid Phase Equilib. 405 , 141-149 (2015).
23. Alireza Ahmadi, Reza Haghbakhsh, Sona Raeissi, and Vahid Hemmati, ”A simple group contribution correlation for the prediction of ionic liquid heat capacities at different temperatures,” Fluid Phase Equilibria 403 , 95-103 (2015).
24. Wensi He, Fangyou Yan, Qingzhu Jia, Shuqian Xia, and Qiang Wang, ”Prediction of ionic liquids heat capacity at variable temperatures based on the norm indexes,” Fluid Phase Equilibria 500 , 112260 (2019).
25. Fangyou Yan, Yajuan Shi, Ying Wang, Qingzhu Jia, Qiang Wang, and Shuqian Xia, ”QSPR models for the properties of ionic liquids at variable temperatures based on norm descriptors,” Chemical Engineering Science 217 , 115540 (2020).
26. Guangren Yu, Lu Wen, Dachuan Zhao, Charles Asumana, and Xiaochun Chen, ”QSPR study on the viscosity of bis(trifluoromethylsulfonyl)imide-based ionic liquids,” J. Mol.Liq.184 , 51-59 (2013).
27. Bor-Kuan Chen, Ming-Jyh Liang, Tzi-Yi Wu, and H. Paul Wang, ”A high correlate and simplified QSPR for viscosity of imidazolium-based ionic liquids,” Fluid Phase Equilibria350 , 37-42 (2013).
28. Guangren Yu, Dachuan Zhao, Lu Wen, Shendu Yang, and Xiaochun Chen, ”Viscosity of ionic liquids: Database, observation, and quantitative structure-property relationship analysis,” AIChE Journal 58 (9), 2885-2899 (2012).
29. Fangyou Yan, Wensi He, Qingzhu Jia, Qiang Wang, Shuqian Xia, and Peisheng Ma, ”Prediction of ionic liquids viscosity at variable temperatures and pressures,” Chemical Engineering Science 184 , 134-140 (2018).
30. Johannes Albert and Karsten Müller, ”A Group Contribution Method for the Thermal Properties of Ionic Liquids,” Industrial & Engineering Chemistry Research 53 (44), 17522-17526 (2014).
31. Wanqiang Liu, Haixia Lu, Chenzhong Cao, Yinchun Jiao, and Guanfan Chen, ”An Improved Quantitative Structure Property Relationship Model for Predicting Thermal Conductivity of Liquid Aliphatic Alcohols,” J. Chem. Eng. Data.63 (12), 4735-4740 (2018).
32. Karim Golzar, Sepideh Amjad-Iranagh, and Hamid Modarress, ”Prediction of Density, Surface Tension, and Viscosity of Quaternary Ammonium-Based Ionic Liquids ([N222(n)]Tf2N) by Means of Artificial Intelligence Techniques,” Journal of Dispersion Science and Technology 35 (12), 1809-1829 (2014).
33. Łukasz Marcinkowski, Emil Szepiński, Maria J. Milewska, and Adam Kloskowski, ”Density, sound velocity, viscosity, and refractive index of new morpholinium ionic liquids with amino acid-based anions: Effect of temperature, alkyl chain length, and anion,” J. Mol.Liq. 284 , 557-568 (2019).
34. V. E. Kuz’min, E. N. Muratov, A. G. Artemenko, L. Gorb, M. Qasim, and J. Leszczynski, ”The effect of nitroaromatics’ composition on their toxicity in vivo: Novel, efficient non-additive 1D QSAR analysis,” Chemosphere 72 (9), 1373-1380 (2008).
35. Kunal Roy, Rudra Narayan Das, and Paul L. A. Popelier, ”Quantitative structure–activity relationship for toxicity of ionic liquids to Daphnia magna: Aromaticity vs. lipophilicity,” Chemosphere 112 , 120-127 (2014).
36. Kunal Roy, Rudra Narayan Das, and Paul L. A. Popelier, ”Predictive QSAR modelling of algal toxicity of ionic liquids and its interspecies correlation with Daphnia toxicity,” Environmental Science and Pollution Research 22 (9), 6634-6641 (2015).
37. Wensi He, Fangyou Yan, Qingzhu Jia, Shuqian Xia, and Qiang Wang, ”QSAR models for describing the toxicological effects of ILs against Staphylococcus aureus based on norm indexes,” Chemosphere 195 , 831-838 (2018).
38. J. Lazzús, ”ρ(T, p) model for ionic liquids based on quantitative structure–property relationship calculations,” J. Phys. Org. Chem. 22 , 1193 (2009).
39. Fangyou Yan, Qiaoyan Shang, Shuqian Xia, Qiang Wang, and Peisheng Ma, ”Application of Topological Index in Predicting Ionic Liquids Densities by the Quantitative Structure Property Relationship Method,” J. Chem. Eng. Data. 60(3), 734-739 (2015).
40. Kamil Claudia L. AguirrePaduszyński, ”Extensive Databases and Group Contribution QSPRs of Ionic Liquids Properties. 1. Density,” Industrial & engineering chemistry process design and development 2019 v.58 no.13 (no. 13), pp. 5322-5338 (2019).
41. Kamil Paduszyński, ”Extensive Databases and Group Contribution QSPRs of Ionic Liquids Properties. 2. Viscosity,” Ind. Eng. Chem. Res. 58 (36), 17049-17066 (2019).
42. Wesley Beckner, Coco M. Mao, and Jim Pfaendtner, ”Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions,” Molecular Systems Design & Engineering3 (1), 253-263 (2018).
43. Yongsheng Zhao, Ying Huang, Xiangping Zhang, and Suojiang Zhang, ”A quantitative prediction of the viscosity of ionic liquids using S[sigma]-profile molecular descriptors,” Phys. Chem. Chem. Phys. 17 (5), 3761-3767 (2015).
44. Qiao-Li Chen, Ke-Jun Wu, and Chao-Hong He, ”Thermal Conductivity of Ionic Liquids at Atmospheric Pressure: Database, Analysis, and Prediction Using a Topological Index Method,” Ind. Eng. Chem. Res. 53 (17), 7224-7232 (2014).
45. Juan A. Lazzús and Geraldo Pulgar-Villarroel, ”Estimation of thermal conductivity of ionic liquids using quantitative structure–property relationship calculations,” J. Mol. Liq. 211 , 981-985 (2015).
46. Wensi He, Fangyou Yan, Qingzhu Jia, Shuqian Xia, and Qiang Wang, ”Description of the Thermal Conductivity λ(T, P) of Ionic Liquids Using the Structure–Property Relationship Method,” Journal of Chemical & Engineering Data62 (8), 2466-2472 (2017).
47. Fangyou Yan, Shuqian Xia, Qiang Wang, Zhen Yang, and Peisheng Ma, ”Predicting the melting points of ionic liquids by the Quantitative Structure Property Relationship method using a topological index,” The Journal of Chemical Thermodynamics62 , 196-200 (2013).
48. Fangyou Yan, Tian Lan, Xue Yan, Qingzhu Jia, and Qiang Wang, ”Norm index-based QSTR model to predict the eco-toxicity of ionic liquids towards Leukemia rat cell line,” Chemosphere 234 , 116-122 (2019).
49. Christoph Rücker, Gerta Rücker, and Markus Meringer, ”y-Randomization and Its Variants in QSPR/QSAR,” Journal of Chemical Information and Modeling 47 (6), 2345-2357 (2007).
50. Kunal Roy, Indrani Mitra, Supratik Kar, Probir Kumar Ojha, Rudra Narayan Das, and Humayun Kabir, ”Comparative Studies on Some Metrics for External Validation of QSPR Models,” Journal of Chemical Information and Modeling 52 (2), 396-408 (2012).
51. Ali Barati-Harooni, Adel Najafi-Marghmaleki, Milad Arabloo, and Amir H. Mohammadi, ”An accurate CSA-LSSVM model for estimation of densities of ionic liquids,” Journal of Molecular Liquids 224 , 954-964 (2016).
52. Juan A. Lazzús, ”A GROUP CONTRIBUTION METHOD TO PREDICT ρ-T-P OF IONIC LIQUIDS,” Chemical Engineering Communications 197 (7), 974-1015 (2010).
53. Juan A. Lazzús, ”ρ–T–P prediction for ionic liquids using neural networks,” Journal of the Taiwan Institute of Chemical Engineers 40 (2), 213-232 (2009).
54. Fangyou Yan, Qiaoyan Shang, Shuqian Xia, Qiang Wang, and Peisheng Ma, ”Application of Topological Index in Predicting Ionic Liquids Densities by the Quantitative Structure Property Relationship Method,” Journal of Chemical & Engineering Data 60 (3), 734-739 (2015).
55. Yongsheng Zhao, Ying Huang, Xiangping Zhang, and Suojiang Zhang, ”A quantitative prediction of the viscosity of ionic liquids using Sσ-profile molecular descriptors,” Physical Chemistry Chemical Physics 17 (5), 3761-3767 (2015).
56. Wensi He, Fangyou Yan, Qingzhu Jia, Shuqian Xia, and Qiang Wang, ”Description of the thermal conductivity λ (T, P) of ionic liquids using the structure–property relationship method,” Journal of Chemical & Engineering Data62 (8), 2466-2472 (2017).