Works Cited
Allan, R. P., & Soden, B. J. (2008). Atmospheric warming and the
amplification of precipitation
extremes. Science , 321 (5895), 1481-1484.
Bailey, S. W. (2020) Tracking the Fate of Plagioclase Weathering
Products. Biogeochemical Cycles: Ecological Drivers and
Environmental Impact , 248:151-162.
Benettin, P., Bailey, S. W., Campbell, J. L., Green, M. B., Rinaldo, A.,
Likens, G. E., … & Botter, G. (2015). Linking water age and solute
dynamics in streamflow at the Hubbard Brook Experimental Forest, NH,
USA. Water Resources Research, 51(11), 9256-9272.
Biron, P. M., Roy, A. G., Courschesne, F., Hendershot, W. H., Côté, B.,
& Fyles, J. (1999). The effects of antecedent moisture conditions on
the relationship of hydrology to hydrochemistry in a small forested
watershed. Hydrological Processes , 13 (11), 1541-1555.
Bolton, D. (1980). The computation of equivalent potential temperature.Monthly weather review , 108 (7), 1046-1053.
Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow
hydrographs from a mature glaciated plateau. Water Resour.
Res , 13 (3), 637-643.
Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference
understanding AIC and BIC in model selection. Sociological methods
& research , 33 (2), 261-304.
Burns, D. A., McDonnell, J. J., Hooper, R. P., Peters, N. E., Freer, J.
E., Kendall, C., & Beven, K. (2001). Quantifying contributions to storm
runoff through end‐member mixing analysis and hydrologic measurements at
the Panola Mountain Research Watershed (Georgia,
USA). Hydrological Processes , 15 (10), 1903-1924.
Contosta, A. R., Adolph, A., Burchsted, D., Burakowski, E., Green, M.,
Guerra, D., … & Routhier, M. (2016). A longer vernal window: the role
of winter coldness and snowpack in driving spring transitions and
lags. Global change biology .
Cox, M. H., Su, G. W., & Constantz, J. (2007). Heat, chloride, and
specific conductance as ground water tracers near streams. Ground
Water , 45 (2), 187-195.
Creed, I. F., & Band, L. E. (1998). Export of nitrogen from catchments
within a temperate forest: evidence for a unifying mechanism regulated
by variable source area dynamics. Water Resources
Research , 34 (11), 3105-3120.
Cun, C., & Vilagines, R. (1997). Time series analysis on chlorides,
nitrates, ammonium and dissolved oxygen concentrations in the Seine
river near Paris. Science of the total
environment , 208 (1), 59-69.
Daley, M. L., Potter, J. D., & McDowell, W. H. (2009). Salinization of
urbanizing New Hampshire streams and groundwater: effects of road salt
and hydrologic variability. Journal of the North American
Benthological Society ,28 (4), 929-940.
Davis, S. N., Thompson, G. M., Bentley, H. W., & Stiles, G. (1980).
Ground‐Water Tracers—A Short Review. Ground
water , 18 (1), 14-23.
Detty, J. M., & McGuire, K. J. (2010). Threshold changes in storm
runoff generation at a till‐mantled headwater catchment. Water
Resources Research , 46 (7).
Duncan, J. M., Band, L. E., & Groffman, P. M. (2017). Variable nitrate
concentration–discharge relationships in a forested watershed.Hydrological Processes , 31 (9), 1817-1824.
Faruk, D. Ö. (2009). A hybrid neural network and ARIMA model for water
quality time series prediction. Engineering Applications of
Artificial Intelligence , 23 (4), 586-594.
Fovet, O., Humbert, G., Dupas, R., Gascuel-Odoux, C., Gruau, G.,
Jaffrézic, A., … & Grimaldi, C. (2018). Seasonal variability of
stream water quality response to storm events captured using
high-frequency and multi-parameter data. Journal of Hydrology ,559 , 282-293.
Grand-Clement, E., Luscombe, D. J., Anderson, K., Gatis, N., Benaud, P.,
& Brazier, R. E. (2014). Antecedent conditions control carbon loss and
downstream water quality from shallow, damaged peatlands. Science
of the Total Environment , 493 , 961-973.
Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend
analysis for monthly water quality data. Water resources
research , 18 (1), 107-121.
Hooper, Richard P., and Christine A. Shoemaker. ”A comparison of
chemical and isotopic hydrograph separation.” Water Resources
Research 22.10 (1986): 1444-1454.
Hooper, R. P. (2003). Diagnostic tools for mixing models of stream water
chemistry. Water Resources Research , 39 (3).
Inamdar, S., Rupp, J., & Mitchell, M. (2009). Groundwater flushing of
solutes at wetland and hillslope positions during storm events in a
small glaciated catchment in western New York, USA. Hydrological
processes , 23 (13), 1912-1926.
Inserillo, A., Green, M., Shanley, J. B., & Boyer, J. (2017). Comparing
Catchment Hydrologic Response to a Regional Storm Using Specific
Conductivity Sensors. Hydrological Processes.
Kirchner, J. W. (2003). A double paradox in catchment hydrology and
geochemistry. Hydrological Processes , 17 (4), 871-874.
Kirchner, J. W., Feng, X., Neal, C., & Robson, A. J. (2004). The fine
structure of water‐quality dynamics: the (high‐frequency) wave of the
future. Hydrological Processes , 18 (7), 1353-1359.
Likens, G. E. (2013). Biogeochemistry of a forested ecosystem .
Springer Science & Business Media.
Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001).
Monte Carlo experiments: Design and implementation. Structural
Equation Modeling , 8 (2), 287-312.
Pellerin, B. A., Wollheim, W. M., Feng, X., & Vörösmarty, C. J. (2008).
The application of electrical conductivity as a tracer for hydrograph
separation in urban catchments. Hydrological
Processes , 22 (12), 1810-1818.
Pellerin, B. A., Saraceno, J. F., Shanley, J. B., Sebestyen, S. D.,
Aiken, G. R., Wollheim, W. M., & Bergamaschi, B. A. (2010). Taking the
pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal
patterns of nitrate and dissolved organic matter variability in an
upland forest stream. Biogeochemistry , 108 (1-3), 183-198.
Pinder, G. F., & Jones, J. F. (1969). Determination of the ground‐water
component of peak discharge from the chemistry of total
runoff. Water Resources Research , 5 (2), 438-445.
Robson, A., Neal, C., Smith, C. J., & Hill, S. (1992). Short-term
variations in rain and stream water conductivity at a forested site in
mid-Wales—implications for water movement. Science of the total
environment , 119 , 1-18.
Rode, M., Wade, A. J., Cohen, M. J., Hensley, R. T., Bowes, M. J.,
Kirchner, J. W., … & Skeffington, R. (2016). Sensors in the stream:
the high-frequency wave of the present. Environmental Science &
Technology .
Sen, P. K. (1968). Estimates of the regression coefficient based on
Kendall’s tau. Journal of the American Statistical
Association , 63 (324), 1379-1389.
Sklash, M. G., & Farvolden, R. N. (1979). The role of groundwater in
storm runoff. Developments in Water Science , 12 , 45-65.
Vogt, T., Hoehn, E., Schneider, P., Freund, A., Schirmer, M., & Cirpka,
O. A. (2010). Fluctuations of electrical conductivity as a natural
tracer for bank filtration in a losing stream. Advances in Water
Resources , 33 (11), 1296-1308.
von Freyberg, J., Studer, B., & Kirchner, J. W. (2017). A lab in the
field: high-frequency analysis of water quality and stable isotopes in
stream water and precipitation. Hydrology and Earth System Sciences, 21,
1721-1739.
Walling, D. E. (1975). Solute variations in small catchment streams:
some comments. Transactions of the Institute of British
Geographers , 141-147.
Yu, L., Zhong, S., Pei, L., Bian, X., & Heilman, W. E. (2016).
Contribution of large-scale circulation anomalies to changes in extreme
precipitation frequency in the United States. Environmental
Research Letters , 11 (4), 044003.