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Abstract 
In this short communication, I analyze cases of failed predictions for protein-protein 

complexes with Alphafold2, and show that they either point to erroneous annotations in the 

PDB or correct binding site regions. 

 
 

The Alphafold2 method 1 has unquestionably revolutionized the field of protein 

structure prediction, achieving very high accuracy for most targets during the CASP14 

initiative 2. Recently, the Alphafold2 strategy has been extended to predict protein-protein 

complexes 3. In the article presenting the multimer version of Alphafold2, a set of 17 

complexes obtained after the network training date was considered to compare with previous 

strategies based on the initial Alphafold2 system 4. Out of these 17 complexes, Alphafold2 

multimer achieved correct predictions for 14 cases, as assessed by the DockQ score 5. 

I looked at the three cases where Alphafold2 produced models with low DockQ 

scores 3. In the first version of the study 3, the three failed cases were 5ZNG (DockQ = 0.02), 

6A6I (DockQ=0.05) and 7NLJ (DockQ=0.06)1. I reproduced Alphafold2 predictions with a local 

installation of the ParaFold pipeline 6, installed in November 2021, excluding the templates 

newer than April 2018 (--max_template_date=2018-04-30, which is the network training 

date). Each prediction run generates 5 models and I considered the model with the highest 

confidence value as the final prediction. Overall, I am able to replicate published results, as 

shown in Table S1. 

 
1 A second version of the article was posted on the 10th of March, with improved prediction 
for 5ZNG (DockQ=0.69) and worst prediction for 7P8K (DockQ=0.05), thanks to new 
networks trained with modified loss measures. I do not discuss these results here because 
the local installation I used is anterior to these new networks. 
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For 5ZNG, the predicted models are indeed very distant from the complex annotated 

as biological assembly in the PDB (DockQ score=0.02). However, the 5 models are almost 

identical, and have good confidence value (~0.7). They are very similar to the complex 

annotated as asymmetric unit (DockQ score=0.7), see Figure 1. The complex reported in the 

article accompanying the 5ZNG structure is indeed the one annotated as asymmetric unit in 

the PDB entry 7, not the one annotated as biological assembly and generated by PISA 8. Thus, 

also in this case, the Alphafold2 prediction was indeed accurate: the predicted model was 

indeed the one described as biologically relevant 

 

 
Figure 1: Comparison between the structural information available for 5ZNG and the 

Alphafold2 models. The biological assembly discussed in the article introducing the structure 

is the one annotated as asymmetric unit in the PDB (top right). 

 

  For 6A6I and 7NLJ, I performed triplicate runs of Alphafold2 and I obtained models 

with highest DockQ scores than previously reported 3: DockQ=0.39/0.24/0.18 for 6A6I and 

DockQ=0.21/0.16/0.16 for 7NLJ, with low confidence values~0.2-0.3. In these cases, the 

asymmetric units and biological assemblies of the PDB entries are identical, and I found no 

obvious reason for such discrepancy.  

It is worth noting that, even if these models are far from the high quality threshold 

(DockQ>0.8), they indeed provide an approximate prediction of the true binding site regions, 

as shown in Figure 2.  
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Figure 2: Comparison between PDB structures and Alphafold2 predictions for 6A6I and 7NLJ.  

 

In conclusions, even in the cases where Alphafold2 did not achieve correct predictions for 

multimers, the examination of failed cases in this very small data set suggests that the 

predictions could detect errors in PDB annotation (like 5ZNG) or, more interestingly, 

determine approximate binding sites (like 6A6I and 7NLJ). In the last case, the models could 

provide a good starting point for conventional docking tools with restraints to these binding 

sites. In addition, since Alphafold2 achieves the very difficult task of predicting both the 

subunit folds and their binding mode, one could wonder what accuracy it could attain in a 

classical docking context when the monomer structures are known. This indicates that 
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Alphafold2 could revolutionize the field of protein-protein docking as it has done for protein 

structure prediction. 
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Table S1. DockQ scores for Alphafold2 models 

PDB 

code 

DockQ scores from 3 DockQ scores from 

this study 

(confidence score) 

5ZNG 0.02 0.02 (0.72) 

6A6I 0.05 0.39 (0.31) 

0.24 (0.29) 

0.18 (0.28) 

6GS2 0.50 0.51 (0.95) 

6H4B 0.80 0.81 (0.89) 

6IF2 0.74 0.65 (0.88) 

6II6 0.73 0.84 (0.93) 

6ONO 0.64 0.64 (0.83) 

6PNQ 0.56 0.58 (0.85) 

6Q76 0.91 0.88 (0.90) 

6UO8 0.93 0.92 (0.89) 

6ZBK 0.79 0.85 (0.91) 

7AYE 0.88 0.85 (0.81) 

7D2T 0.78 0.78 (0.90) 

7M5F 0.89 0.85 (0.94) 

7N10 0.86 0.87 (0.88) 

7NLJ 0.06 0.21 (0.21) 

0.16 (0.20) 

0.16 (0.22) 

7P8K 0.86 0.87 (0.83) 

 


