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Abstract1

1. The Cormack-Jolly-Seber (CJS) model and its extensions have been widely applied to the study of2

animal survival rates in open populations. The model assumes that individuals within the population3

of interest have independent fates. It is, however, highly unlikely that a pair of animals which have4

formed a long-term pairing have dissociated fates.5

2. We examine a model extension which allows animals who have formed a pair-bond to have correlated6

survival and recapture fates. Using the proposed extension to generate data, we conduct a simulation7

study exploring the impact that correlated fate data has on inference from the CJS model. We compute8

Monte Carlo estimates for the bias, range, and standard errors of the parameters of the CJS model for9

data with varying degrees of survival correlation between mates. Furthermore, we study the likelihood10

ratio test of gender effects within the CJS model by simulating densities of the deviance. Finally, we11

estimate the variance inflation factor ĉ for CJS models that incorporate sex-specific heterogeneity.12

3. Our study shows that correlated fates between mated animals may result in underestimated standard13

errors for parsimonious models, significantly deflated likelihood ratio test statistics, and underestimated14

values of ĉ for models taking sex-specific effects into account.15

4. Underestimated standard errors can result in lowered coverage of confidence intervals. Moreover,16

deflated test statistics will provide overly conservative test results. Finally, underestimated variance17

inflation factors can lead researchers to make incorrect conclusions about the level of extra-binomial18

variation present in their data.19

Keywords: Cormack-Jolly-Seber models, correlated fates, goodness-of-fit testing, nested models, overdis-20

persion, pair-bonds, variance inflation factors21

1 Introduction22

Mark-recapture experiments are a well-known and effective method of studying the demographics of wildlife23

populations (Burnham, Anderson, White, Brownie, & Pollock, 1987). Mark-recapture data is collected by24

capturing individuals from the population at several repeated sampling occasions, marking them with a25

unique identifier, recording their encounter history, and then releasing them back into the study region.26

The data collected from these studies is typically analyzed by fitting capture-recapture models to generate27

estimates of the demographic rates pertaining to the population under study. Most open population models28

fall within the framework of the Cormack-Jolly-Seber (CJS) model (Cormack, 1964; Jolly, 1965; Seber,29
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1965). Data collected from populations of animals that exhibit complex behaviors are often in violation30

of the original assumptions of the CJS model. Extensions intended to relax these assumptions include31

accounting for heterogeneity with individual-specific covariates (Lebreton, Burnham, Clobert, & Anderson,32

1992), multiple strata (Arnason, 1973), missing covariates (Bonner & Schwarz, 2006), and random effects33

(see e.g. Pledger, Pollock, & Norris, 2003; Royle, 2008). However, nearly all capture-recapture models34

assume that fates of animals are independent during the sampling period (consider Lebreton et al., 1992;35

Anderson, Burnham, & White, 1994; Bischof, Dupont, Milleret, Chipperfield, & Royle, 2020).36

Long-term pair-bonds are common among avian species in which a portion of the life-history pattern is37

shared between mates (see for instance Maness & Anderson, 2008; Culina, Lachish, Pradel, Choquet, &38

Sheldon, 2013; Rebke, Becker, & Colchero, 2017). It is likely that there is correlation between survival or39

recapture fates for the individuals within a pair (Lebreton et al., 1992; Anderson et al., 1994). Consider,40

for instance, Harlequin ducks (Histrionicus histrionicus) which are waterfowl that typically mate for life41

(Smith, Cooke, & Robertson, 1996). These ducks migrate from their wintering ground to their breeding42

grounds with their partners and mostly stay together during the breeding season (Smith et al., 1996). Male43

Harlequin ducks within a pair-bond have been shown to be extra-vigilant in monitoring their nesting partner,44

which has been theorized to improve survival likelihoods of the female (Bond et al., 2009). Furthermore, a45

study designed to monitor a population that forms pair-bonds would likely be performed at the breeding46

ground due to ease of access. As a consequence, the probability of capturing both individuals within a pair47

will likely be elevated due to being in close proximity of one another (Lebreton et al., 1992). The shared48

life-history and elevated probability of paired individuals constitutes a violation of the standard assumption49

of independence within capture-recapture models that do not separate their demographic parameters by sex.50

As such, failing to account for dependence within populations that contain long-term social groupings may51

result in overestimation of the true precision for parameter estimates of common mark-recapture models (see52

any of Lebreton et al., 1992; Anderson et al., 1994; Bischof et al., 2020).53

In this work, we conduct a simulation study to examine the effects that dependence between mated pairs has54

on inference from the CJS model. Motivated by a long-term mark-recapture study of Harlequin ducks at the55

McLeod River region in Alberta, Canada, Challenger (2010) proposed an extension to the CJS framework56

by introducing a correlation parameter, ρ, to account for the dependence in the recapture events within57

pairs. Using our extension to simulate data, we introduce another correlation parameter, γ, that accounts58

for dependence in survival events of pair-bonded animals. As a further extension, we also allow all pairs59

to undergo periods of temporary separation when they choose not to breed due to, for instance, external60

stressors such as lack of food or increased predation (see for example Ludwig & Becker, 2008). During a61

3



period of temporary separation, our model treats individuals within a pair as having independent survival62

and recapture events.63

In our simulation study, we assess the standard CJS model’s ability to compute accurate demographic64

estimates for varying levels of survival correlation between mates. Using our proposed extension to generate65

correlated mark-recapture data, we compute estimates from the standard CJS model and consider the bias,66

precision, and width of the confidence intervals as survival correlation between pairs increases. Furthermore,67

our study considered whether asymptotic assumptions of the likelihood ratio test hold when comparing68

group-specific CJS models against reduced CJS models in the presence of mated correlation. Finally, we69

assess the ability of the variance correction ĉ (Lebreton et al., 1992) to detect and address the issue of70

overdispersion due to dependent fates among mated pairs.71

2 Materials and Methods72

2.1 Outline of Extended CJS Model73

We present an extension of the standard CJS model, originally proposed by Challenger (2010) and slightly74

modified in this work, that accounts for correlation between two animals that have formed a permanent mate75

pairing. Instead of monitoring all n individuals within a mark-recapture dataset, we instead will consider a76

collection of n/2 ≤ m ≤ n entities. An entity j ∈ {1, . . . ,m} is either a set of two animals, male and female,77

that have formed a pair-bond or a single animal that has not formed a pair-bond (Challenger, 2010). We78

assume that the recapture and survival fates are independent between entities and that individuals within79

a pair-bond are strictly monogamous (Challenger, 2010). Furthermore, if an individual within a pairing80

perishes, at some discrete sampling occasion t ∈ {1, . . . , T}, in which T is the total number of occasions,81

then the widowed partner will not seek out a mate during the remainder of the study period (Challenger,82

2010). Finally, we condition on the first capture of either individual in an entity in a manner similar to the83

standard CJS model. When conditioning on the first capture for a pair-bond, the individuals within the84

pairing are assumed to have become mates before entering the study (Challenger, 2010).85

For the following subsections, consider some fixed entity j ∈ {1, . . . ,m} at some sampling occasion t ∈86

{1, . . . , T}.87

2.1.1 Temporary Separation Process88

Let the indicator variable dj,t−1 ∼ Bernoulli(δj,t−1) denote the event that pair j remain together from time89

t − 1 to t and δj,t−1 = P(dj,t−1 = 1). If a paired entity is temporarily separated then it is assumed that90

4



its member’s fates are independent from one another between the sampling periods t− 1 to t. This process91

occurs before the survival and recapture step at every sampling occasion. Finally, note that if entity j92

consists of a single individual (widowed or unmated) then dj,t−1 = 0.93

2.1.2 Survival Process94

In the standard CJS model, it is assumed that the time dependent survival process is governed by a95

Bernoulli distribution, conditioned on the previous survival state (Lebreton et al., 1992). Let Si,t|Si,t−1 ∼96

Bernoulli(φi,t−1Si,t−1) be the event that individual i ∈ {1, . . . , n} both survived and remained in the study97

area from time t − 1 to t. The probability of surviving from t − 1 to t, given that the individual is alive98

and present at t − 1, is φi,t−1. If the individual is dead or has emigrated at time t − 1, they remain so at99

subsequent time points.100

For this extension, we assume that males and females may have distinct probabilities of survival from time t101

to t− 1. Let φGj,t be the probability that the individual of sex G ∈ {M,F} of entity j ∈ {1, . . . ,m} survives102

from time t − 1 to t. For pair-bonded entities there are four different survival states in the model: both103

members survive, only the female survives, only the male survives, or neither survive (Challenger, 2010).104

This is represented in the state vector Sj,t = (SMj,tSFj,t, SFj,t(1−SMj,t), SMj,t(1−SFj,t), (1−SMj,t)(1−SFj,t)) indicating105

the possible survival outcomes for entity j at time t, in which SMj,t is the indicator that the male of entity j106

is alive at time t and SFj,t is similarly defined for the female of pair j. If both partners are alive at t, then107

the distribution of Sj,t is governed by a joint Bernoulli distribution with dependent variables (see Appendix108

A.1 for the derivation). The parameters of this distribution are:109

• Φmfj,t−1 = dj,t−1γj,t−1σ
F
φ,j,t−1σ

M
φ,j,t−1 + φFj,t−1φ

M
j,t−1 is the probability that both members of entity j110

survive from t− 1 to t111

• ΦG0
j,t−1 = φGj,t−1 − Φmfj,t−1 is the probability that only the individual of sex G ∈ {M,F} survives from112

t− 1 to t given that both members were alive at time t− 1113

• Φ00
j,t−1 = 1− Φmfj,t−1 − Φm0

j,t−1 − Φf0
j,t−1 is the probability that both members of entity j perish between114

times t− 1 to t115

where,116

• σGφ,j,t−1 =
√
φGj,t−1(1− φGj,t−1) is the standard deviation of survival event for individual of sex G ∈117

{M,F} in entity j at time t− 1118

• γj,t−1 ∈
[
−min

(
1√

OP(φF
j,t−1,φ

M
j,t−1)

,
√

OP(φFj,t−1, φ
M
j,t−1)

)
,min

(
1√

OR(φF
j,t−1,φ

M
j,t−1)

,
√
OR(φFj,t−1, φ

M
j,t−1)

)]
119
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is the correlation coefficient for survival of pair j from t− 1 to t (see section A.2 in the Appendix for120

the derivation of the bounds and definitions of the odds ratio (OR) and the odds product (OP)).121

Finally, we condition on dj,t−1 such that if there is temporary separation then the correlation coefficient122

becomes zero and Sj,t becomes the product of two independent Bernoulli variables. Now the partially123

observed survival process for entity j at time t can be described with the following multinomial distribution:124

Sj,t|Sj,t−1, dj,t−1 ∼ Multi


1,Sj,t−1



Φmfj,t−1 Φf0
j,t−1 Φm0

j,t−1 Φ00
j,t−1

0 φFj,t−1 0 1− φFj,t−1

0 0 φMj,t−1 1− φMj,t−1

0 0 0 1




. (1)

2.1.3 Recapture Process125

The methodology for modelling the process of recapture is analogous to the method in the ρ-CJS model126

proposed by Challenger (2010). Consider the standard CJS model, we assume that the observation process127

is governed by a Bernoulli distribution conditioned on the current survival state (Lebreton et al., 1992).128

Let Xi,t|Si,t ∼ Bernoulli(pi,tSi,t) be the event that individual i ∈ {1, . . . , n} was recaptured at time t. The129

probability of being recaptured at time t, given that the individual is alive and present at t, is pi,t.130

For this extension, we assume that males and females may have distinct recapture probabilities at time t.131

Let pGj,t be the probability that the individual of sex G ∈ {M,F} of entity j ∈ {1, . . . ,m} is recaptured132

at time t. There are four different recapture outcomes for paired entities in the model: both members133

are observed, only the female is observed, only the male is observed, or neither are observed (Challenger,134

2010). The possible recapture outcomes for entity j at time t can be represented by the vector Xj,t =135

(XM
j,tX

F
j,t, X

F
j,t(1−XM

j,t), XM
j,t(1−XF

j,t), (1−XM
j,t)(1−XF

j,t)), in which XM
j,t is the indicator that the male of136

entity j is recaptured at time t and XF
j,t is analogously for the female. If both partners are alive, then the137

distribution of Xj,t is governed by a joint Bernoulli distribution with dependent variables (see Appendix138

A.1 for the derivation). The parameters of this distribution are:139

• Pmfj,t = dj,t−1ρj,tσ
F
p,j,tσ

M
p,j,t + pFj,tp

M
j,t is the probability that both members in pair j are captured at140

time t141

• PG0
j,t = pGj,t − P

mf
j,t is the probability that only the individual of sex G ∈ {M,F} is captured at time t,142

given that both members were alive at time t143

• P 00
j,t = 1− Pmfj,t − Pm0

j,t − P
f0
j,t is the probability that both members of pair j are unobserved at time t144
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where,145

• σGp,j,t =
√
pGj,t(1− pGj,t) is the standard deviation of recapture for individual of sex G ∈ {M,F} in entity146

j at time t147

• ρj,t ∈
[
−min

(
1√

OP(pF
j,t
,pM

j,t
)
,
√

OP(pFj,t, pMj,t)
)
,min

(
1√

OR(pF
j,t
,pM

j,t
)
,
√

OR(pFj,t, pMj,t)
)]

is the correla-148

tion coefficient for recapture between members of pair j at time t.149

Finally, we condition on dj,t−1 such that if there is temporary separation then the correlation coefficient150

becomes zero and Xj,t becomes the product of two independent Bernoulli variables. Now the recapture151

process for entity j at time t can be described with the following multinomial distribution:152

Xj,t|Sj,t, dj,t−1 ∼ Multi


1,Sj,t



Pmfj,t P f0
j,t Pm0

j,t P 00
j,t

0 pFj,t 0 1− pFj,t
0 0 pMj,t 1− pMj,t
0 0 0 1




(2)

2.2 Simulation Study153

2.2.1 Data Generating Process154

To study the impact of dependence between mated individuals on the standard CJS model, we used the the155

statistical programming software R (R Core Team, 2020) to generate 1000 samples from the extended model156

(detailed in Section 2.1) for each of the following parameter settings:157

• n = 200 (Fixed Sample Size)158

• T = 4 (Fixed Number of Sampling Occasions)159

• δj,t = 1.0 (Fixed Probability of Remaining Together for Mated Pairs)160

• φFj,t = φMj,t = 0.7 (Fixed Survival Probabilities)161

• pFj,t = pMj,t = 0.8 (Fixed Recapture Probabilities)162

• γj,t ∈ {−0.4,−0.3, . . . , 0.9, 1.0} (Grid of Survival Correlations)163

• ρj,t ∈ {−0.25, 0.0, 0.25, 0.5, 1.0} (Grid of Recapture Correlations)164

in which these settings hold ∀j ∈ {1, . . . ,m} and t ∈ {1, . . . , T}. Moreover, we simulated the gender of each165

animal with an unbiased coin toss. We assumed that all 200 individuals were marked on the first occasion166
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(a single cohort) and that there are as many pairings as possible. Specifically, if there were 105 simulated167

males and 95 females there would be 95 mated pairs, 10 unmated males, and a total of m = 105 entities in168

our sample. Finally, we assumed that there was no temporal variation across all parameters. Given this, we169

omit the subscripts j and t going forward. Note that the case in which γ = 0 and ρ = 0 is equivalent to the170

standard CJS model.171

2.2.2 Data Modelling Process172

Using the standard CJS model, we computed estimates of survival and recapture rates, goodness-of-fit173

statistics, and overdispersion corrections using program MARK (White & Burnham, 1999), a popular mark-174

recapture modelling software among ecological researchers, with the R library RMark (Laake, 2013). We175

consider the following model settings:176

{(φ, p), (φG, p), (φ, pG), (φG, pG)} (3)

in which, using the notation discussed in Burnham et al. (1987), φG denotes a sex-specific effect for survival177

and pG denotes a sex-specific effect for recapture.178

2.2.3 Standard Metrics to Assess Model Performance179

To study the impact that varying levels of survival correlation within mark-recapture data has on estimates180

of survival rates, we computed the range and coverage percentage of the corresponding 95% confidence181

intervals, along with the relative bias of the survival estimates. The results were computed across a grid of182

survival correlations ranging from −0.4 to 1.0 increasing by increments of 0.1 for model (φ, p). Furthermore,183

we present the percent coverage of the 95% confidence intervals for each of the cases in equation 3. Finally,184

in order to better isolate the impact of correlation within entities on the hidden state process, we set the185

recapture correlation between mated pairs to zero.186

Let K = 1000 denote the number of replicate data sets for each scenario and φ̂ :=
∑K
k=1 φ̂k/K where φ̂k187

represents the estimate of φ from the kth replicate. Let UBk and LBk denote the kth values of the upper and188

lower bounds of the 95% confidence intervals of φ̂k, respectively. Our computed simulation study metrics189

are then:190

• Mean Relative Bias: B(φ) :=
∑
k(φ̂k − φ)/Kφ = (φ̂− φ)/φ,191

• Mean Relative 95% CI Width: R(φ) =
∑
k(UBk − LBk)/Kφ,192
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• Percent Coverage of 95% CI: C(φ) =
∑
k I(φ̂ ∈ [LBk,UBk])/K,193

in which I(A) denotes the indicator function of some event A occurring.194

2.2.4 The Likelihood Ratio Test in Mark-Recapture Modelling195

The likelihood ratio test (LRT) is a statistical test used to compare a general model against a nested196

model that exists on a reduced parameter space (Lebreton et al., 1992). The test determines whether the197

reduced model captures a sufficient amount of variability relative to the general model and is performed by198

computing a transformation of the maximum likelihood statistic of the data under both the null (reduced)199

and alternative (general) hypothesis called the deviance (Lebreton et al., 1992). Consider a case of the CJS200

model in which we are testing whether survival varies by gender and we assume that recapture does not.201

Then our hypothesis test can be expressed as:202

H0 : φF = φM & pF = pM

Hα : φF 6= φM & pF = pM

The likelihood ratio statistic is defined as the ratio between the maximum likelihood optimized over the203

parameter space given by the null hypothesis and the maximum likelihood optimized over the parameter204

space given by the alternative (Lebreton et al., 1992):205

∆ :=
Sup(φ,p)L(φ, p|y)

Sup(φF ,φM ,p)L(φF , φM , p|y) . (4)

The deviance is then G2 := −2 log(∆). Under the null hypothesis, the deviance follows the chi-squared206

distribution with degrees of freedom equal to the difference between the degrees of freedom between the207

general and reduced model (Lebreton et al., 1992). In our example, we have G2 H0∼ χ2
1 and our p-value is208

then computed with p = P(G2 ≥ χ2
1). Moreover, by the probability integral transformation theorem, we209

know that p d∼ U(0, 1).210

In our study, we compared the probability densities of both the deviance statistic and the correspond-211

ing p-value for the both the LRT comparing (φG, p) against (φ, p) and (φ, pG) against (φ, p) across γ ∈212

{0.0, 0.3, 0.6, 0.9, 1.0} with a fixed value of ρ = 0.0. We investigated whether dependence between mated213

pairs in mark-recapture data impacted the ability of the LRT to perform reliable model selection.214
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2.2.5 The ĉ Correction in Mark-Recapture Models215

When mark-recapture data is thought to violate the model assumption of regular binomial variation, an216

estimate of the variance inflation factor, called ĉ, can be computed to assess the level of overdispersion in the217

model. Under appropriate binomial variation, data that emerged from the CJS model would give a result218

of ĉ ≈ 1 (Anderson et al., 1994). On the other hand, ĉ >> 1 suggests that the data has excess variation219

implying that either model structure is inadequate (ĉ >> 5) or the underlying model assumptions have been220

violated (Anderson et al., 1994). One well-known consequence of overdispersion due to the dependent fates221

of individuals is that standard error estimates will by understated by the CJS model (see Anderson et al.222

(1994) or Bischof et al. (2020)). The recommended approach to dealing with this in practice is to scale223

up the standard error by a factor of
√
ĉ (Lebreton et al., 1992; Anderson et al., 1994; Pradel, Gimenez, &224

Lebreton, 2005). Furthermore, Anderson et al. (1994) have shown that the presence of overdispersion due225

to data replication can impact goodness-of-fit testing by inflating the deviance statistic which increases the226

type I error rate of the LRT.227

There are three popular estimators of overdispersion in mark-recapture modeling (Cooch & White, 2020).228

They can be referred to as the deviance ĉ estimator (Anderson et al., 1994), Pearson’s (or the chi-square)229

ĉ estimator (Lebreton et al., 1992; Pradel et al., 2005), and Fletcher’s ĉ estimator (Fletcher, 2012). In our230

study, we consider the deviance approach. Specifically, when performing model selection the most general231

model should fit the data reasonably well compared to the saturated model, otherwise the data is likely232

to have extra-binomial variation (Lebreton et al., 1992; Anderson et al., 1994). The deviance between the233

saturated model and the general model over the difference in their degrees of freedom can be used to compute234

an approximation to the distribution of the variance inflation factor (Anderson et al., 1994),235

ĉ ∼
χ2

dfdeviance

dfdeviance
. (5)

In our simulation study, we drew samples from the density of ĉ and generated a point estimate of the overdis-236

persion by taking the median. We call it the median ĉ estimator (similar to the median ĉ estimator discussed237

in Cooch & White (2020)) and it is denoted as ĉmed := median(ĉ). We repeated this process for different238

values of γ ∈ {0.0, 0.3, 0.6, 0.9, 1.0} and a fixed ρ = 1.0. We assessed whether variation induced by mated239

pairs having correlated fates is detectable by considering whether the density of ĉ and the corresponding240

point estimates, ĉmed, indicated overdispersion. In order to assess whether the behavior of the estimator is241

in line with current literature, we computed ĉmed for all four models in equation 3.242
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3 Results243

3.1 Standard Errors for CJS Models under Pair-Specific Linear Correlation244

Monte Carlo estimates for the survival probability, relative confidence interval width, and relative bias in245

model (φ, p) are not impacted by changes in the amount of survival correlation present between mated pairs246

in the data (see Figure 1). That said, as survival correlation increases between mated pairs, the percent247

coverage of the confidence intervals decreases below the expected 95% value down to an extreme of about 87%248

(Figure 1). This implies that the standard errors of the survival probability estimates are being understated249

by the (φ, p) model, since they are the only term that in the confidence bounds that can vary due to the data.250

Moreover, percentage coverage is only understated at high levels of survival correlation in models that do251

not account for the effect of gender on survival (see Figure 2). On the other hand, the models that account252

for sex-specific differences in their survival probabilities have coverage percentages that tend to stay around253

95%, with acceptable statistical variation, and thus continue to produce reliable standard error estimates254

(Figure 2).255

3.2 Behavior of the LRT under Pair-Specific Linear Correlation256

As the level of survival correlation within the data increases, the tails of the density for the likelihood ratio257

test statistic, comparing models (φG, p) and (φ, p), become lighter than those of the assumed χ2
1 distribution258

(Figure 3). The density of the p-values, in turn, shift from a uniform distribution towards a left-skewed one259

(Figure 3). The case in which there is no survival or recapture correlation serves as a basis of comparison. This260

result implies that the likelihood ratio test will not reject the underlying null hypothesis with a probability261

equal to its significance level (in this case α = 0.05), but will instead fail-to-reject with a higher probability.262

The violation of the independence assumption across observations deflates the deviance statistic leading to263

the goodness-of-fit test favoring the more parsimonious hypothesis. A technical example illustrating why the264

density of the deviance begins to shrink towards zero as the survival and recapture correlation increases is265

available in Appendix B.2. Interestingly, if we consider the likelihood ratio test between models (φ, pG) and266

(φ, p) (Figure 4), in which the recapture correlation is fixed at ρ = 0, we find that added survival correlation267

has minimal impact on the test’s efficacy. These results suggest that increasing mated survival correlation268

between paired individuals does not have a large impact on goodness-of-fit testing for gender effects in269

recapture rates. Overall, the goodness-of-fit test comparing the effect of gender on survival is impacted by270

survival correlation between mated-pairs, while the test comparing the effect of gender on recapture is not.271
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Relative bias of φ̂ across varying levels of γ. The red line indicates a relative bias of zero.
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3.3 Behavior of the ĉ Correction under Pair-Specific Linear Correlation272

For models that account for gender in either of their parameter estimates (all but (φ, p)), the sampling273

densities of ĉ (see Figure 5) are within a close neighborhood of 1.0, regardless of survival or recapture274

correlation between mates. In fact, with the exception of (φ, p) it appears that the median estimate of275

ĉ is decreasing as the survival correlation increases (see Table 1). For these model settings, ĉ has proven276

incapable of detecting the violated assumption of independence within the data. However, model (φ, p) does277

not account for sex-specific differences in its parameter estimation and so when γ = 1 and ρ = 1 the mark-278

recapture data appear to be nearly replicates. Anderson et al. (1994) showed that under this construction279

(replicated data without assigning treatment groups to each replicate) ĉmed ≈ 2. (φ, p) can be thought of as280

a control with respect to the other models in the study. Given that estimates of c are typically computed281

from the most general model under examination (Cooch & White, 2020), the variance correction would not282

be applied to the standard errors or be used to rescale goodness-of-fit testing metrics. As such, when data283

replication occurs due to correlation among treatment groups (sex in our example), the ĉ estimator will be284

understated for studies that include these groups in their construction.285

Table 1: Median(ĉ) for varying levels of (γ) across all models

Survival Correlation

Model γ = 0.0 γ = 0.3 γ = 0.6 γ = 0.9 γ = 1.0

(φ, p) 1.17 1.34 1.59 1.86 2.00

(φ, pG) 1.09 1.06 1.03 0.94 0.93

(φG, p) 1.05 1.04 1.01 0.93 0.93

(φG, pG) 1.10 1.09 1.08 1.02 1.03
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ĉ

D
en

si
ty

Model (φ,p)

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5

ĉ
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4 Discussion286

The results of our study show that the presence of correlation between paired individuals introduces extra-287

binomial variation to the data, resulting in underestimated standard errors and lowered coverage of confidence288

intervals for models that fail to account for sex-specific effects. Our example in Appendix B.1 shows that289

the most extreme case of paired correlation in the data corresponds to ĉ ≈ 2.290

Furthermore, we have identified an issue with the inferences provided by the likelihood ratio test. Sex-specific291

correlation in the data caused the asymptotic distribution of the simulated deviance statistic to differ from292

its theoretical distribution for the test of whether there was an effect of gender present in survival and/or293

recapture rates. As such, increased levels of correlation for survival and/or recapture outcomes resulted in294

overly conservative test results (failure to reject H0 more frequently than theoretically expected). Issues with295

asymptotic assumptions surrounding the likelihood ratio test in mark-recapture models are not unique to this296

study. Sparse contingency tables have been shown to skew the density of the deviance statistic (both up and297

down) stemming from the likelihoods of multinomial models (Koehler, 1986; Afroz, Parry, & Fletcher, 2019).298

By introducing correlation into the CJS model structure we are, in a sense, reducing the effective sample size299

of each generated dataset. Consider an example in which recapture and survival correlations are set to one300

in a population of 200 animals consisting of exactly 100 males and females with each animal in a long-term301

pair-bond. Under this setup each pair effectively acts as a single individual (Lebreton et al., 1992). If one302

animal from the pair dies (or is recaptured), then its partner will die (or be caught) as well. In this case,303

we need only model the outcomes of one individual from each pair-bond using the standard CJS model to304

compute reliable estimates of the survival and recapture probabilities. This is, in effect, reducing our sample305

size down from n = 200 down to n = 100 and halving the expected cell frequencies of our contingency table306

as well. We contend, however, that sparse data is not the key issue at play here as we designed our simulation307

study to mitigate these known effects. Recall that the survival and recapture probabilities used to generate308

our data were 0.7 and 0.8 across all time points for all individuals, respectively. Furthermore, our simulation309

included one cohort in which all first captures occurred at time t = 1. Table 2 shows the expected cell310

frequencies in our simulation study for the cases in which n = 100 and n = 200. Koehler & Larntz (1980)311

showed that the distribution of the deviance is not well approximated by the chi-squared distribution when312

the ratio of the sample size against the number of possible cells is less than five. In our case, this ratio is313

equal to n/8 = 25 and so we expect that the deviance should be asymptotically chi-squared. Moreover, if314

the majority of expected cell frequencies lie below 0.5, then the test is said to be overly conservative (Larntz,315

1978). On the other hand, if most of the cell frequencies lie within the interval [0.5, 4], then the test becomes316

too liberal (rejects H0 too often) (Koehler, 1986).317
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Table 2: Recapture cell probabilities for simulation study

Histories Probability Expected(n=100) Expected(n=200)

1000 0.351 35.062 70.125

1011 0.044 4.390 8.781

1101 0.044 4.390 8.781

1110 0.138 13.798 27.597

1100 0.202 20.250 40.499

1010 0.034 3.450 6.899

1001 0.011 1.098 2.195

1111 0.176 17.562 35.123

The expected cell frequencies shown in Table 2 all lie above 0.5 for both n = 100 and n = 200. While sparsity318

will have an impact on the distribution of the deviance, the extreme shift from the chi-squared distribution319

that we observe goes well beyond the expected difference introduced by sparsity found in our simulated data.320

The large spike in p-values as correlation increases is largely due to the nature of the duplicated data along321

with the models under consideration in our simulation study. Consider Appendix B.2 for a mathematical322

example illustrating why correlation within groups in mark-recapture data deflates the the deviance of the323

likelihood ratio test along with a small simulation study showing the effect of increased sparsity on the324

density of the deviance statistic without any correlation present between genders.325

Anderson et al. (1994) showed that mark-recapture data with overdispersion due to data replication inflates326

the size of the deviance when comparing across CJS models that fail to account for the cause of the data327

replication. Our results show that the source of overdispersion and the models under consideration are vital328

components to determining the behavior of the deviance. When replicated mark-recapture data is split by329

treatment groups (males and females) and the mark-recapture model used to study the data accounts for330

these groups in its parameter estimates, we have shown that the computed values of ĉ are understated. This331

case occurs when comparing group-specific heterogeneity for data in which there is a significant amount332

of correlation between the two groups being tested. Therefore, we need to both identify whether there is333

replication in our sampling data and if there is an underlying group structure separating the replicates (in334

our example the gender of the animals).335

For models that took group-specific heterogeneity into account, estimates of the overdispersion parameter336

ĉ were too small to indicate any significant departure from binomial variation, regardless of the degree of337
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survival and recapture correlation. As such, overdispersion due to dyadic correlation in populations that are338

highly segmented into pairs may not be easily detectable. Consider, Appendix B.3 for technical example339

demonstrating why this is the case. The small study presented in Appendix B.3 shows that these results also340

apply to the Pearson (Pradel et al., 2005) and Fletcher’s (Fletcher, 2012) ĉ estimators. The overdispersion341

introduced by our model does not result in a large violation of the inherent structure of the CJS model. The342

new parameters δ, γ, ρ are, in essence, controlling how similar the male and female sample data will be to one343

another. The estimates of φ and p will remain largely unbiased because the maximum likelihood estimation344

procedure is unaffected by departures in binomial variation (see the discussion in Pradel et al., 2005). Lack345

of biased estimates is not surprising when dealing with unmodelled dependence structures in mark recapture346

data. For instance, Challenger (2010) found that the CJS model produced reasonably unbiased estimates347

when modelling data with group-specific correlations using Bayesian methods. Bischof et al. (2020) also348

showed that spatial capture-recapture models with induced correlation between groups (of sizes ≥ 2) did not349

lead to heavily biased estimates of model parameters. As such, if the estimates of c were able to reliably350

detect overdispersion introduced by high dyadic correlations, quasi-likelihood approaches should provide a351

reasonable adjustment to standard error estimates (Anderson et al., 1994). The issue is that the estimator352

ĉ is incapable of reliably detecting overdispersion in replicated data when the replicates are accounted for in353

the modelling process as groups. Unfortunately, we have shown here that failing to account for correlation354

between mated-pairs has the significant consequence of severely violating the asymptotic assumptions of the355

likelihood ratio test and understating standard errors in reduced models. Lebreton et al. (1992) suggested356

that when dealing with highly correlated data between sexes it may be reasonable to consider the sample357

population of only one gender. Indeed, this approach will mitigate issues of understated standard errors358

and failings of the variance inflation factor. However, one would need a priori knowledge of the dependence359

between mated pairs in order to make this judgment, as we have shown that the likelihood ratio test for360

group-specific differences, sometimes referred to as TEST1 (Burnham et al., 1987), will overly favor the null361

hypothesis H0 for data with high levels of pair-specific correlation. In an applied setting, researchers will not362

be able to determine whether the LRT favors the more parsimonious model because of excessive correlation363

between mated-pairs or if it is due to the parameters of interest being the same between both sexes without364

any large violations to independence. As such, it is important to be conscious of these issues when studying365

animal populations that are suspected to form correlated known social groupings. If a researcher suspects366

this to be the case, we suggest analyzing the data for each gender separately in order to isolate the source of367

overdispersion. For instance, one can simulate estimates of c using the full data with the model (φ, p) (see368

chapter 5 in Cooch & White, 2020), separate the data by gender, and then repeat the process for each subset369

of the data. If the majority of the overdispersion stems from group-specific correlations, the ĉ estimates370
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generated from the data for each specific gender should be close to one. If, however, the ĉ estimates remain371

high for each group then it is likely that there may be other major sources of extra-binomial variation present372

within the data. When a large majority of the overdispersion comes from association between known pairs373

the researcher should either scale the standard errors and information criteria with the ĉ estimate from (φ, p)374

or study the data for only one of the two sexes.375

A cleaner approach would be to estimate group-specific correlation explicitly using extended models. Directly376

estimating group-specific correlation with mark-recapture models will allow researchers to glean further377

insights into the social dynamics at play between individuals within the population of interest. For instance,378

we could study how the effect sizes of meaningful covariates pertaining to survival rates change in the presence379

of group-specific correlations. Does having a mate improve or hamper the chance of an animal surviving380

when facing external selective pressures? There are, however, a whole new set of issues that come with381

explicitly modelling group-specific correlations as well. The assumption of mated pairs forming permanent382

(even in highly socially monogamous populations) pairings is unrealistic and can lead to issues with parameter383

estimation (Gimenez, Lebreton, Gaillard, Choquet, & Pradel, 2012). Divorce is quite common among animals384

that form long-term mate pairings (Smith et al., 1996; Ludwig & Becker, 2008; Maness & Anderson, 2008;385

Gimenez et al., 2012; Culina et al., 2013). Researchers will need to explicitly model the mate status of386

each individual animal, their current partner, and their partner transitions, otherwise risk issues of pseudo-387

replication (Culina et al., 2013). The issue of missing data is inflated here as well - what if one of the388

study participants is mated with an individual who has not yet been tagged? In most capture-recapture389

studies social detection is imperfect, even among animals with highly correlated fates (Hoppitt & Farine,390

2018; Gimenez et al., 2019). Currently these issues have been addressed with niche state-space models that391

are not easily generalizable to many animal populations (see for instance the work done by Culina et al.392

(2013)). One might suggest omitting the data points for animals that are seen with multiple partners in393

populations that mostly practice social monogamy (low divorce rates). Unless the population has very few394

cases of partner swapping, omitting these individuals will likely result in inflated standard errors and biased395

estimates. The question then becomes: should we risk understated or overstated standard errors when396

modelling our data? These issues will need to be addressed in future work if social independence is to be397

accounted for with an extended and estimable model structure.398
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