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Abstract. This paper deals with the stability analysis of the fractional nonlinear systems. It

treats the asymptotic stability of the fractional nonlinear systems with Hurwitz state matrix,

using the Lyapunov direct method. We give algebraic conditions under which the fractional

nonlinear systems are asymptotical stable. Two numerical examples are provided to illustrate

the proposed theoretical results.

§1 Introduction

Fractional differential equations are generalizations of classical differential
equations of integer order that have recently proved to be valuable tools for the
modeling of many physical phenomena, and have been the focus of many studies
due to their frequent appearances in various applications, such as physics, biol-
ogy, finance and fractional dynamics, engineering, signal processing and control
theory [14], [9], [7], [16], [10] and [17]. Finding solutions to fractional differ-
ential systems is rather complicated, consequently, the stability results of the
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fractional differential systems have been the main goal of the previous stud-
ies. For example, in [18], the authors studied the Stability of fractional-order
nonlinear dynamic systems using the Lyapunov direct method and generalized
Mittag-Leffler stability. In [6], the authors provided a method for the asymp-
totic stabilization of fractional-order linear systems with saturation nonlinearity.
In [11], Shahri and al. proposed a new stability condition for estimating the do-
main of attraction via ellipsoid approach based on saturation functions. In [12],
Esmat and al. study the stability and the stabilization for a class of uncer-
tain fractional order (FO) systems subject to input saturation. The authors
investigate the problem of the robust stability of saturation control. In [13],
the authors used the Lyapunov approach for the study of uncertain FO system
stability analysis. To the best of our knowledge, the researches on the stability
and stabilization of the fractional-order systems using the Lyapunov approach
are not abundant enough.
In this paper, we studied the stability of Caputo fractional-order systems us-
ing the Lyapunov function. We suppose that the nonlinear part of the system
satisfies the Lipschitz condition and the one-sides Lipschitz with the quadratic
inner-bounded condition, we give some sufficient conditions which imply the
asymptotical stability of the system.
The result of this paper is organized as follows. In Section 2, we introduce some
Definitions and the necessary Lemmas. In Section 3, we given our main result.
two examples are given to show the validity of the proposed method in Section
4. Finally, some conclusions are presented in Section 5.

§2 Notations and preliminaries

We start by introducing some notations that will be useful throughout the
paper.
Notation:
Rn: the real n-dimensional vector space.
Rn×n: the set of all n× n real matrices.
⟨., .⟩: the usual inner product on Rn.
∥x∥: the norm of the vector x that belongs to Rn, i.e.

√
⟨x, x⟩ = ∥x∥.

Let A ∈ Rn×n:
the matrix A is positive semi-definite (A ≥ 0) if ⟨Ax, x⟩ ≥ 0 for all x ∈ Rn;
A is negative semi definite if −A is positive semi definite;
AT denotes the transpose of the matrix A;
A is symmetric if AT = A;
λ(A) denotes the set of all the eigenvalues of A;
λmax(A) = max{Re(λ) : λ ∈ λ(A)}, λmin(A) = min{Re(λ) : λ ∈ λ(A)}.

In the following, we recall some classical definitions and results which will play
important roles in our study.

Definition 1 (Caputo fractional derivative [4]). Let k ∈ N∗ and k−1 ≤ α < k,
the Caputo fractional derivative of a function x of order α > 0 is defined as
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CDα
t0x(t) =

1

Γ(k − α)

∫ t

t0

(t− s)k−α−1x(k)(s)ds. (1)

Let the system described by
CDα

t0x(t) = f(t, x), (2)

where the map f : R×U → Rn is continuous locally Lipschitz, f(t, 0) = 0, ∀ t ≥
0 and U is an open set of Rn. Denote x(t, t0) the solution of (9) starting at x0

at time t0.

Definition 2. The equilibrium point x = 0 of the system (9) is said to be:

i) stable if

∀ε > 0,∀t0 ≥ 0,∃δ = δ(t0, ε) > 0, such that ∥ x0 ∥< δ =⇒∥ x(t, t0) ∥< ε, ∀t ≥ t0

ii) attractive if there exists a neighborhood V of 0 such that for any initial
condition x0 belonging to V, the corresponding solution x(t, t0) is defined
for all t ≥ t0 and lim

t→+∞
x(t, t0) = 0.

If V = Rn, x = 0 is globally attractive.

iii) asymptotically stable if it is stable and attractive.

iv) globally asymptotically stable (GAS) if it is stable and globally attractive.

Definition 3. Let us consider the following control system :{
CDα

t0x = X(x, u)
x ∈ U, u ∈ U (3)

where U is an open set of Rn,U ⊂ Rm, x is called the state of (3), u is called
the control and X : U × U −→ Rn is a smooth function satisfying X(0, 0) = 0.
We say that the system (3) is stabilizable (respectively globally stabilizable), if
there exists a feedback function u = u(x) such that the vector field X(x, u(x)) is
at least continuous and the closed-loop system:

CDα
t0x = X(x, u(x))

admits the origin as an asymptotically stable equilibrium point (respectively glob-
ally asymptotically stable).

Definition 4. [3] A continuous function γ : [0, t) −→ [0,+∞) is said to belong
to class K if it is strictly increasing and γ(0) = 0.

Lemma 1. [15] Let V : D → R be a continuous positive definite function
defined on a domain D ⊂ Rn that contains the origin. Let Bd = {x ∈ Rn :
∥x∥ < d} ⊂ D for some d > 0. Then there exist class K functions λ1 and λ2

defined on [0, d), such that

λ1(∥x∥) ≤ V (x) ≤ λ2(∥x∥), (4)

for all x ∈ Bd. If D = Rn, the functions λ1 and λ2 are defined on [0,∞).
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Theorem 1 (Fractional-order extension of Lyapunov direct method [5]).
Let x = 0 be the equilibrium point of the fractional-order system (9). Assume
that there exists a fractional Lyapunov function V (t, x(t)) : [0,∞) × Rn → R
and class K functions λi, i = 1, 2, 3 satisfying:

(i) λ1(∥x∥) ≤ V (t, x(t)) ≤ λ2(∥x∥),

(ii) CDα
t0V (t, x(t)) ≤ −λ3(∥x∥).

Then the fractional-order system (9) is asymptotically stable.
Moreover, if U = Rn, then the fractional-order system (9) is globally asymptot-
ically stable.

Lemma 2. [8] Let x(t) ∈ R be a real continuous and differentiable function.
Then, for any time t ≥ t0,

1

2
CDα

t0x
2(t) ≤ x(t)CDα

t0x(t), for all 0 < α < 1. (5)

Remark 1. [1] In the case when x(t) ∈ Rn, lemma (2) is still valid. That is,
α ∈ (0, 1) and t ≥ t0,

1

2
CDα

t0x
T (t)x(t) ≤ xT (t)CDα

t0x(t).

In addition, let x(t) ∈ R be a real continuous and differentiable function. Then,
for any p = 2n, n ∈ N, we have

CDα
t0x

p ≤ p xp−1 CDα
t0x(t),

where 0 < α < 1.

Lemma 3. [2] Let x(t) ∈ Rn be a vector of differentiable function. Then, for
any time instant t ≥ t0, the following relationship holds

1

2
CDα

t0x
T (t)Px(t) ≤ xT (t)PCDα

t0x(t).

where P ∈ Rn×n is a constant, square, symmetric and positive definite matrix.

Remark 2. Lemma 3 is also correct if P is a symmetric and positive semi-
definite matrix

Definition 5. If there exists a nonnegative constant L satisfying the following
inequality for any x1(t), x2(t) ∈ Rn,

∥f(t, x1)− f(t, x2(t))∥ ≤ L∥x1(t)− x2(t)∥, (6)

then the function is said to be Lipschitz continuous.

Definition 6. The nonlinear function f(t, x) is said to be one-sided Lipschitz
if there exist ρ ∈ R such that

⟨f(t, x1)− f(t, x2), x1 − x2⟩ ≤ ρ∥x1 − x2∥2, (7)

where ρ ∈ R is called the one-sided Lipschitz constant.

Definition 7. The nonlinear function f(t, x) is called quadratically inner-bounded
if there exist β, γ ∈ R such that

[f(t, x1)− f(t, x2)]
T
[f(t, x1)− f(t, x2)] ≤ β∥x1−x2∥2+γ⟨x1−x2, f(t, x1)−f(t, x2)⟩

(8)
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Remark 3. if any function f(t, x) satisfies the Lipschitz condition, then it also
satisfies the one-sides Lipschitz and quadratic innerbounded condition, but the
converse is not true. Usually, the one-sided Lipschitz constant can be much
smaller than the Lipschitz constant. In addition, the constants ρ, β, γ ∈ R can
be arbitrary, while the Lipschitz constant must be positive. So the nonlinear part
being considered in this paper is fairly general,

§3 Main Result

In this section, we will pay attention to the following Caputo fractional differ-
ential system. The main purpose of this section is to analysis the asymptotical
stability of the system.

CDα
t0x(t) = f(t, x(t)) = Ax(t) + a(t, x(t)), x(t0) = x0 (9)

where α ∈ (0, 1), x ∈ Rn represents the state vector of the system, A ∈ Rn×n

is a constant matrix, and a : R+ × Rn → Rn is a nonlinear function satisfying
a(t, 0) = 0, for every t ≥ 0.
Let a(t, x(t)) = 0, then we obtain the following particular fractional nonlinear
systems expressed by

CDα
t0x(t) = Ax(t), x(t0) = x0 (10)

The fractional systems define by (10) are called the Caputo fractional linear
systems. We have the following results.

Theorem 2. Let x = 0 be an equilibrium point of the system (10). If the state
matrix A is Hurwitz then the trivial solution of the fractional linear system (10)
is fractional asymptotically stable.

Proof We choose a Lyapunov candidate function V (t, x(t)) = x(t)TPx(t)
where ATP +PA = −Q and Q is positive definite. The α Caputo derivative of
V along the trajectories of (10) is given by

CDα
t0V (t) ≤ xT (t)PCDα

t0x(t) = xT (t)PAx(t) + xT (t)ATPx(t)

= xT (t)(PA+ATP )x(t)

≤ −λmin(Q)∥x(t)∥2

Using Theorem 1, we conclude that the trivial solution of the fractional
system (10) is fractional asymptotically stable.

�
Now, we consider the perturbation term a(t, x(t)) ̸= 0 for all x(t) ̸= 0.

Theorem 3. Let x = 0 be an equilibrium point of the system (10). Let that
the state matrix A is Hurwitz and the condition ∥a(t, x(t))∥ < ϱ∥x(t)∥ holds. If
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there exist a positive definite matrix P such that the following inequality holds

ϱ <
λmin(Q)

2λmax(P )

where ATP +PA = −Q, then the trivial solution of the fractional linear system
(10) is fractional asymptotically stable.

Proof Let V (t;x(t)) = x(t)TPx(t) where ATP +PA = −Q and Q is positive
definite. The α Caputo derivative of V along the trajectories of (10) is given by
CDα

t0V (t) ≤ xT (t)PCDα
t0x(t) = xT (t)P [Ax(t) + a(t, x(t))] + [Ax(t) + a(t, x(t))]TPx(t)

= xT (t)(PA+ATP )x(t) + xT (t)Pa(t, x(t)) + a(t, x(t))TPx(t)

≤ −λmin(Q)∥x(t)∥2 + 2λmax(P )∥a(t, x(t))∥∥x(t)∥
≤ −λmin(Q)∥x(t)∥2 + 2ϱλmax(P )∥x(t)∥2

≤ (−λmin(Q) + 2ϱλmax(P ))∥x(t)∥2

Using Theorem 1, we conclude that the trivial solution of the fractional
system (10) is fractional asymptotically stable. �

Theorem 4. If the function a(t, x(t)) is Lipschitz continuous, L is Lipschitz
constant. Assume that the following assumption is satisfied: There exists a
positive symmetric matrix P and positive constant ϵ such that the following
inequalities hold ATP + PA + ϵI < 0 and L < ϵ

2λmax(P ) , then the trivial

solution of the fractional linear system (10) is fractional asymptotically stable.

Proof Choose a Lyapunov function V (t;x(t)) = x(t)TPx(t) . The α Caputo
derivative of V along the trajectories of (10) is given by
CDα

t0V (t) ≤ xT (t)PCDα
t0x(t) = xT (t)P [Ax(t) + a(t, x(t))] + [Ax(t) + a(t, x(t))]TPx(t)

= xT (t)(PA+ATP )x(t) + xT (t)Pa(t, x(t)) + a(t, x(t))TPx(t)

≤ −ϵ∥x(t)∥2 + 2λmax(P )∥a(t, x(t))∥∥x(t)∥
≤ −ϵ∥x(t)∥2 + 2Lλmax(P )∥x(t)∥2

≤ (−ϵ+ 2Lλmax(P ))∥x(t)∥2

Using Theorem 1, we conclude that the trivial solution of the fractional
system (10) is fractional asymptotically stable. �

Theorem 5. If the function a(t, x(t)) satisfies the conditions (7) and (8) with
constants ρ, β and γ. Assume that there exists two matrices P and Q which
verifies:

ATP + PA = −Q, (11)
{(β + 1) + ρ(γ + 2)}λmax(P ) < λmin(P ) + λmin(Q), (12)

then the origin of system (10) is fractional asymptotically stable.

Proof Let us choose a Lyapunov functional candidate as follows

V (x) = xT (t)Px(t) (13)
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From Lemma 3, we can conclude
CDα

t0V (t) ≤ xT (t)(ATP + PA)x(t) + 2xT (t)Pa(t, x(t))

≤ −xT (t)Qx(t) + 2xT (t)Pa(t, x(t))

We denote a(t, x(t)) := a. Since a(t, 0) = 0, we have

2xTPa = [x+ a]
T
P [x+ a]− xTPx− aTPa (14)

Since P satisfies the following inequality,

λmin(P )∥a∥2 ≤ aTPa ≤ λmax(P )∥a∥2 (15)

So,
[x+ a]

T
P [x+ a] ≤ λmax(P ) [x+ a]

T
[x+ a] (16)

Using the quadratic inner-bounded, we get

[x+ a]T [x+ a] = xTx+ 2xT a+ aT a

≤ xTx+ 2xT a+ βxTx+ γ⟨x, a⟩

≤ (β + 1)xTx+ (γ + 2)xT a

From (16) and one-sided Lipschitz, we get

2xTPa ≤ λmax(P )
[
(β + 1)xTx+ (γ + 2)xT a

]
− xTPx− λmin(P )∥a∥2

≤ {λmax(P ) [(β + 1) + ρ(γ + 2)]− λmin(P )}xTx

So, we deduce that
CDα

t0V (t) ≤ −xTQx+ {λmax(P ) [(β + 1) + ρ(γ + 2)]− λmin(P )}xTx

≤ −{λmin(Q) + λmin(P )− λmax(P ) [(β + 1) + ρ(γ + 2)]} ∥x∥2

By Theorem1, it is easy to verify that the origin of system (10) is fractional
asymptotically stable, the proof is completed. �

Let consider the following fractional differential system
CDα

t0x(t) = Ax(t) +Bu+ a(t, x(t)), x(t0) = x0. (17)

Where B ∈ Rn×p is a constant matrix and u ∈ Rp is the control input to be
defined.

Theorem 6. If the function a(t, x(t)) satisfies the conditions (7) and (8) with
constants ρ, β and γ. Assume that there exists a positive symmetric matrix P ,
a constant matrix K ∈ Rp×n and positive constant ϵ such that:

(A+BK)TP + P (A+BK) = −ϵI (18)

{(β + 1) + ρ(γ + 2)}λmax(P ) < λmin(P ) + ϵ, (19)
then the control law u(x) = Kx render the system (17) fractional asymptotically
stable.
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Proof Let us choose a Lyapunov functional candidate as follows V (x) =
xT (t)Px(t) From Lemma 2, we can conclude
CDα

t0x(t) ≤ xT (t)((A+BK)TP + P (A+BK))x(t) + 2xT (t)Pa(t, x(t))

≤ −ϵxT (t)x(t) + 2xT (t)Pa(t, x(t))

≤ −ϵxT (t)x(t) + {λmax(P ) [(β + 1) + ρ(γ + 2)]− λmin(P )}xT (t)x(t)

≤ −{ϵ+ λmin(P )− λmax(P ) [(β + 1) + ρ(γ + 2)]} ∥x(t)∥2

By Theorem 1, it is easy to verify that the origin of the closed-loop system
Tαx(t) = Ax(t) +BKx(t) + a(t, x(t)) is fractional asymptotically stable. �

§4 Numerical example

In this section, two examples will be provided to demonstrate the effective-
ness of the proposed results.

Example 1. Consider the following fractional system:

CDα
t0x(t) = Ax(t) + a(t, x(t)) (20)

Where x(t) = (x1(t), x2(t)), A =

(
−3 1
1 −5

)
and a(t, x(t)) = (sinx1(t), sinx2(t)),

where P = I2. The α Caputo derivative of V along the trajectories of (20) is
given by

CDα
t0V (t) ≤ xTPCDα

t0x = xTP [Ax+ a(t, x)] + [Ax+ a(t, x)]TPx

= xT (PA+ATP )x+ xTPa(t, x) + a(t, x)TPx

≤ −3x2
1 + 2x1x2 − 5x2

2 + 2x1 sinx1 + 2x2 sinx2

≤ −(x1 − x2)
2 − 2x2

2

Hence CDα
t0V (t) is negative definite which implies the trivial solution of the frac-

tional nonlinear system (20) is fractional asymptotically stable. This conclusion
can be obtained by applying the Theorem 4. To see that, we can remark the state
matrix A is Hurwitz and the condition L < ϵ

2λmax(P ) is hold, with L = 1, ϵ = 3

and λmax(P ) = 1, thus the trivial solution of (20) is fractional asymptotically
stable.
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Fig 1: Evolution of the state x1(t) and x2(t) of Example 1
and initial conditions x1(0) = −0.2 and x2(0) = 0.2.

The numerical solution to the system (20) is shown in the Figure 1 for some
suitable value of fractional order α = 0.4. It indicates that the zero solution is
asymptotically stable

Example 2. Consider the following fractional system:

CDα
t0x(t) = Ax(t) +Bu+ a(t, x(t)). (21)

Where x(t) = (x1(t), x2(t)), A =

(
1 1
−1 1

)
,B =

(
−2
1

)
and a(t, x(t)) = (x2

1(t) + x2
2(t))

(
x1(t)
x2(t)

)
.

We note the parameters of the one-sided Lipschitz condition and quadratic inner-
boundedness inequality are ρ = 0, β = −100 and γ = −99. Now select K =(

2
−5

)
then, AK = A+BK =

(
−3 11
1 −4

)
is Hurwitz, we also choose ϵ = 1.

The matrix P is given by P =

(
9.8571 2.6429
2.6429 0.7857

)
, the condition 18 and the

condition 19 are holds, and

TαV (t) = xT (t)((A+BK)TP + P (A+BK))x(t) + 2xT (t)Pf(t, x(t))

≤ −{ϵ+ λmin(P )− λmax(P ) [(β + 1) + ρ(γ + 2)]} ∥x(t)∥2
≤ −1.4596||x(t)||2

.
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Hence the system (21) is fractional asymptotically stable.

0 10 20 30 40 50 60 70 80
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (t)

 

 
x

1
(t)

x
2
(t)

Fig 2: Evolution of the state x1(t) and x2(t) of Example 2
and initial conditions x1(0) = −0.1 and x2(0) = 0.1.

The numerical solution to the system (21) is shown in the Figure 2 for some
suitable value of fractional order α = 0.24. It indicates that the zero solution is
asymptotically stable

§5 Conclusion

We have discussed in this paper the asymptotic stability and stabilization
of the fractional nonlinear system with Hurwitz state matrix. It contributes to
giving practical conditions under which the fractional nonlinear systems with
perturbation terms are asymptotically stable.
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