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Abstract
The inverse nodal problem for Sturm-Liouville operator with a constant delay has been

investigated in the present paper. To do so, we have computed the nodal points and nodal
lengths. Therefore, we have tried Chebyshev interpolation method to obtain the numerical
solution of inverse nodal problem. Following that, a number of numerical examples have been
given. The numerical calculations in the present paper have been conducted via pc applying
some programs encoded in Matlab software.
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1 Introduction

The research area known as Inverse problem (IP) explores the inversion of models or data. It
is a mathematical framework which is utilized to achieve information regarding physical object or
system with regard to observed measurements.

Once a solution is found for such a problem, it can be used to find out information relating to
physical parameter that can not be observed directly. Hence, such problems (IPs) are considered
significant and extensively investigated in science and mathematics.

A large number of applications can be attributed to IPs, a few of which are medical imaging,
geophysics, computer vision, astronomy, and non-destructive testing.

IPs can be dealt with via two different approaches, that is, either to survey inverse eigenvalue
problem or to investigate inverse nodal problem [1–3]. It was McLaughlin [4] who for the first
time solved inverse nodal problem regarding the Sturm-Liouville problems (SLP). It was proved by
McLaughlin that the potential function of the SLP could be achieved via certain dense subset of
the nodes for the eigenfunction relating to a constant.

The definition of inverse nodal problem is to find potential function and some constants in
boundary conditions from nodal point(zeros of eigenfunction). A number of authors considered the
inverse nodal problems (see [4–13]).
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In various real-world processes, the future behavior of the system depends not only on its present
state and rate of change of the state (corresponding to the values of the function and its derivatives
at the current point), but also on its states in the past. Such processes are described by functional
differential equations with delay and reflected in physics, biology and especially in engineering and
control theory (see the monographs [14, 15]).

Many authors studied these problems with the constant delay (for example see [16–20]). Rashed
computed the approximate solutions of integral equations (IEs) and integral-differential equations
(IDEs) by Chebyshev interpolation approach in [21, 22].

For SLPs, we have three types of problems: direct problems, isospectral problems, and inverse
problems (IPs). In direct problems, the eigenvalues, eigenfunctions, and some properties of the
problem are estimated from the known coefficients. Different numerical methods for solving di-
rect problem are applied in [23, 24]. In isospectral problems, for a given problem, we want to
obtain different problems of the same form, which have the same eigenvalues of the initial problem.
Isospectral SLPs are studied in [25–27]. The third type of problems related to the SLPs are IPs. The
inverse spectral SLP can be regarded from three aspects: existence, uniqueness, and reconstruction
of the coefficients with specific properties of eigenvalues and eigenfunctions, (see [28–33] and the
references therein).

In [4, 5, 8], the authors solved the inverse nodal SLPs without the constant delay by using
Chebyshev polynomials. In this study, we have tried to communicate between the inverse nodal
problem including a delay constant and the integral equation and apply Chebyshev interpolation
method to solve the inverse nodal problem with a delay constant.

We consider SLP Li = Li(q, h), i = 0, 1 with a constant delay of the form

−y′′(x) + q(x)y(x− a) = λ y(x), 0 < x < 1, (1.1)

with initial conditions:

y′(0)− h y(0) = y(i)(1) = 0, (1.2)

in which

• a ∈ (0, 1),

• h is a real number,

• q(x) = 0 for x ∈ (0, a],

• λ is the spectral parameter,

• q(x) is a real function and integrable on (a, 1).

In Section 2, the asymptotic form of nodes and nodal lengths are calculated. In Section 3, we
approximate the solution of inverse nodal problem by Chebyshev interpolathon method and present
some examples to show the numerical results in Section 4.

2



2 Preliminaries

In the present part, we present a description of the asymptotic form of eigenvalues, nodes and
the length of nodes of the boundary value problems Li, i = 0, 1 .

Let N ∈ N be such that aN < 1 ≤ a(N + 1), i.e. a ∈ [ 1
N+1

, 1
N
). Let φ(x, λ) be solution of the

Eq. (1.1) under the initial conditions φ(0, λ) = 1, φ′(0, λ) = h, then the result can be written as
(see [16])

φ(x, λ) = φ0(x, λ) + φ1(x, λ) + ...+ φN(x, λ),

where 
φ0(x, λ) = cosρx+ h sinρx

ρ
, x ≥ 0,

φk(x, λ) =
∫ x

ka
sinρ(x−t)

ρ
q(t)φk−1(t− a, λ)dt, x ≥ ka,

and φk(x, λ) = 0 for x ≤ ka. Therefore, for ρ → ∞, the following estimate hold:

φ(x, λ) =
sin ρ(x− a)

2ρ

∫ x

a

q(t)dt+
sin ρx

ρ
h+ cos ρx+ o

(
1

ρ

)
. (2.1)

Then, for i = 0, 1

∆i(λ) := (−ρ)i cos(
iπ

2
− ρ) + h

sin( iπ
2
+ ρ)

ρ1−i
+

sin( iπ
2
+ ρ)(1− a)

2ρ1−i

∫ 1

a

q(t)dt+ o

(
1

ρ1−i

)
.

Let the eigenvalues of the boundary value problems Li, i = 0, 1 to be λ0i < λ1i < ... → ∞ and
0 < xni

1 < ... < xni
j < 1, j = 1, n− 1 be the nodes of n-th eigenfunction.

Lemma 2.1. [16] The eigenvalues {λni}n≥0, i = 0, 1 for n → ∞ in the boundary value problems
Li, i = 0, 1 are formulated in the form of

ρni :=
√

λni = (n+
1− i

2− i
)π +

h

nπ
+

cos(n+ 1−i
2−i

)πa

2nπ

∫ 1

a

q(t)dt+ o

(
1

n

)
, i = 0, 1. (2.2)

Theorem 2.2. Suppose the equation (1.1) be considered regarding the initial conditions

y(0, λ) = 1, y′(0, λ) = h.

Therefore, the nodes of boundary value problems Li, i = 0, 1 and the length of nodes are formulated
in the following form

xni
j =

(j − 1
2
)π

ρni
+

h

ρ2ni
+

cosρnia

2ρ2ni

∫ xni
j

a

q(t)dt+ o

(
1

n2

)
, i = 0, 1, j = 0, 1, ..., n− 1, (2.3)

lnij =
π

ρni
+

cosρnia

2ρ2ni

∫ xni
j+1

xni
j

q(t)dt+ o

(
1

n2

)
, i = 0, 1, j = 0, 1, ..., n− 1. (2.4)
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Proof. We have from (2.2)

φ(x, λ) = cos ρx+ h
sin ρx

ρ
+

sin ρ(x− a)

2ρ

∫ x

a

q(t)dt+ o

(
1

ρ

)
.

Now, we set φ(xni
j , λni) = 0, because the nodes {xni

j }, i = 0, 1, n > 1, j = 1, n− 1, are the zeroes of
n−th eigenfunction. Thus,

cos ρnix
ni
j + h

sin ρnix
ni
j

ρni
+

sin ρni(x
ni
j − a)

2ρni

∫ xni
j

a

q(t)dt+ o

(
1

ρni

)
= 0.

It can be written as

cot ρnix
ni
j = − h

ρni
− [cos ρnia− cot ρnix

ni
j sin ρnia]

1

2ρni

∫ xni
j

a

q(t)dt+ o

(
1

ρni

)
.

Then,

cot ρnix
ni
j [1 + o

(
1

ρni

)
] = − h

ρni
− cosρnia

2ρni

∫ xni
j

a

q(t)dt+ o

(
1

ρni

)
.

We apply Taylor’s expansion as n → ∞ for the arccot and gain

xni
j =

(j − 1
2
)π

ρni
+

h

ρ2ni
+

cosρnia

2ρ2ni

∫ xni
j

a

q(t)dt+ o

(
1

n2

)
.

So, the length of nodes are

lnij = xni
j+1 − xni

j ;

therefore,

lnij =
π

ρni
+

cosρnia

2ρ2ni

∫ xni
j+1

xni
j

q(t)dt+ o

(
1

ρ2ni

)
.

3 Main results

Inverse Problem (IP). Presenting the nodes {xni
j }, i = 0, 1, n > 1, j = 1, n− 1, xni

j > a construct
of the potential function q(x).

Since the nodes {xni
j }, i = 0, 1, n > 1, j = 1, n− 1, xni

j > a are the zeroes of n-th eigenfunction
φ(x, λni), the result will be

φ(xni
j , λni) = 0, n > 1, j = 1, n− 1, xni

j > a, i = 0, 1.
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Using (2.1), we have∫ xni
j

a

sin ρni(x
ni
j − a)q(t)dt ∼= −2ρni cos ρnix

ni
j − 2h sin ρnix

ni
j . (3.1)

Equation (3.1) is the first kind of Fredholm type integral equation, where the nodes {xni
j },

i = 0, 1, n > 1, j = 1, n− 1, xni
j > a are known input data and the potential function q is an

unknown function.
As a result, for the purpose of finding the solution to IP, all we need to do is to compute the

solution of Fredholm integral equation (3.1). One way to find the solution to integral equations and
integral differential equations is the application of Chebyshev polynomials as the basic function in
order to approximate the unknown function and to turn the integral equation into the system of
linear equation. Then, this method can be used to solve the integral equation (3.1).

The first kind of Chebyshev polynomials Tk(t) on the interval [−1, 1] are described by a relation
which has a recursive relation:

T0(t) = 1, T1(t) = t,

Tn+1(t) = 2tTn(t)− Tn−1(t).

With the application of Chebyshev interpolation technique for the function q(t), it can be show
that [21, 22]

q(t) ∼=
N∑

m=0

qmlm,N(t), t ∈ (a, 1), (3.2)

where

lm,N(t) =
2δm
N

N∑
k=0

′′

Tk(
−2

a− 1
t+

a+ 1

a− 1
) cos(

kmπ

N
),

δm =


0.5 m = 0, N ,

1 0 < m < N ,

and the functions Tk(t), k = 0, N are the first kind of Chebyshev polynomials and the numbers qm,
m = 0, N exist the values of function q(t) in the points tm = (a+ 1− (a− 1) cos(mπ

N
))/2 which are

the extrema of TN(
−2
a−1

t + a+1
a−1

). Meanwhile,
∑′′ is the aggregate amount of all terms, but not the

first and last two sentences in such a way that the aggregate amount of half of the sentences taken
into account.

Replacing Eq. (3.2) at Eq. (3.1), we have

N∑
m=0

qm
2δm
N

N∑
k=0

′′ ∫ xni
j

a

sin ρni(x
ni
j − a)Tk(

−2

a− 1
t+

a+ 1

a− 1
) cos(

kmπ

N
)dt
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∼= −2ρni cos ρnix
ni
j − 2h sin ρnix

ni
j . (3.3)

Denote g(xni
j ) = −2ρni cos ρnix

ni
j − 2h sin ρnix

ni
j , n > 1, j = 1, n− 1, xni

j > a, i = 0, 1 and

Ik(x
ni
j ) =

∫ xni
j

a

sin ρni(x
ni
j − a)Tk(

−2

a− 1
t+

a+ 1

a− 1
)dt,

R(tm, x
ni
j ) =

2δm
N

N∑
k=0

′′

Ik(x
ni
j ) cos(

kmπ

N
).

Using the above formulas, we have
N∑

m=0

R(tm, x
ni
j )qm = g(xni

j ), n > 1, j = 1, n− 1, i = 0, 1, xni
j > a.

Consequently, one can compute the solution of IP by employing the algorithm below.

Algorithm 1. An Algorithm to obtain the approximate solution of inverse problem via Chebyshev
interpolation method.

Let the nodes {xni
j }, i = 0, 1, n > 1, j = 1, n− 1, xni

j > a.

Step 1. Choose N .

Step 2. Determine the coefficients qm, m = 0, N by utilizing the next linear system:

Aq̂ ∼= B,

in which q̂ = [q0 q1 ... qN ]
T ,

A = [R(tm, x
ni
j )], i = 0, 1, j = 1, n− 1, n = N + 2, xni

j > a, m = 0, 1, ..., N.

Moreover

B = [g(xni
j )], i = 0, 1, j = 1, n− 1, n = N + 2, xni

j > a.

4 Numerical examples

Matlab software program has been used to find out the figures of exact and approximate solutions
of IP.

Test example 4.1. Let the potential function q(x) = sin(3πx), i = 1, a = 0.4 and h = −1
be given. We get the nodes xn1

j , n = 23, j = 1, 22 of the boundary value problem L1 by using
the formulas (2.2) and (2.3) shown in Table 1. Now, with the assumption that q is the known
function and the eigenvalues and nodes that are computed in Table 1 are the given data in the
IPs. The numerical values of the potential function q can be achieved via the application of the
above mentioned algorithm in IP and the given data in Table 1 and by computing the approximate
solution of IP through replacing the obtained numerical values with (3.3). In Fig. 1, we can observe
the exact solution and the numerical approximation that are computed with N = 21.
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Table 1: The nodes xn1j in Example 4.1.

j 1 2 3 4 5 6
xn1
j 0.43170 0.47717 0.52264 0.58810 0.61357 0.65904

j 7 8 9 10 11 12
xn1
j 0.70450 0.74996 0.79542 0.84088 0.88634 0.93181

Fig. 1. Approximate and exact solutions of IP in Example 4.1: (∗ ∗ ∗) for the exact solution and (o o o)
for the approximate solution with N = 21.

Test example 4.2. Let the potential function q(x) = (x − 0.6)3, i = 0, a = 0.3 and h = 0.2 be
given. We calculate the nodes xn0

j , n = 23, j = 1, 22 of the boundary value problem L0 by using
the formulas (2.2) and (2.3) seen in Table 2. Now, we suppose that q is the unknown function and

Table 2: The nodes xn0j in Example 4.2.

j 1 2 3 4 5 6 7 8
xn0
j 0.31917 0.36173 0.40428 0.44683 0.48938 0.53193 0.57448 0.61704

j 9 10 11 12 13 14 15
xn0
j 0.65959 0.70214 0.74469 0.78724 0.82979 0.87234 0.91490

the nodes obtained in Table 2 are the input data in the IPs. The exact solution and the numerical
approximations calculated with N = 21 are shown in Fig. 2.

5 Conclusion

We have explored the inverse nodal SLP featuring a delay constant, and then Chebyshev inter-
polation approach has been employed to achieve the approximate solution of the assumed problem.
In other words, it can be said that the above mentioned method is an approximate way to find the
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Fig. 2. Approximate and exact solutions of IP in Example 4.2: (∗ ∗ ∗) for the exact solution and (o o o)
for the approximate solution with N = 21.

solution for the inverse nodal problem with a delay constant via the application of a limited number
of nodal points.
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