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Abstract. In this paper, the inverse nodal problem is discussed for dis-
continuous periodic ( or anti-periodic) Sturm-Liouville problem. Such type
problems are different from regular problems because of discontinuity in the
boundary conditions. Firstly, results of Sturm-Liouville problem including
jump condition are present. Then, by deferring the zeros of eigenfunctions,
inverse problem is solved as we desired. The method is based on considering
a translation so that the periodic (or anti-periodic) problem is reduced to
a Dirichlet problem as in Cheng and Law’s paper [5]. But, our problem in-
cluding also discontinuous conditions. In addition to all of these, although
there are so many results on this subject, we combine both periodic condi-
tions and discontinuity.

1. Introduction

Let us consider the Sturm-Liouville operator in Liouville normal form

(1.1) Sy = −y′′ + q(x)y = λy,

where q ∈ L1[0, π] and λ is spectral parameter. The forward periodic problem
means to find the eigenvalues of the following two problems:

(1.2) Sy = λy,

(1.3) y(0) = y(π), y′(0) = y′(π)

and

(1.4) Sy = λy,

(1.5) y(0) = −y(π), y′(0) = −y′(π).

The eigenfunctions of (1.2),(1.3) are periodic, i.e., y(x + π) = y(x) and those
of (1.4),(1.5) are anti-periodic, i.e., y(x + π) = −y(x). We will indicate the
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eigenvalues of periodic(or anti-periodic) problems as λn ( λ̃n), respectively.
Also,we will use the term periodic spectrum for all periodic and anti-periodic
eigenvalues.

The term ”Hill equation” is a suitable abbreviation defining the class of
Sturm-Liouville equations with real and periodic coefficients. Hill equation has
many applications in engineering, mechanics and astronomy [2], [6],[7],[15],[17].

Let us consider the periodic Sturm-Liouville problem with discontinuity con-
ditions inside the interval (0, π)

(1.6) Sy = λy, 0 < x < π,

(1.7) y(0) = y(π), y′(0) = y′(π),

(1.8) y
(π

2
+ 0
)

= αy
(π

2
− 0
)
, y′

(π
2

+ 0
)

=
1

α
y′
(π

2
− 0
)
,

where α > 0 is real number.
Solution of discontinuous Sturm-Liouville problems appears in applied math-

ematics, mechanics and other branches. For instance, one of them is torsional
modes of the earth [12],[29]. For these type problems, inverse problems where
studied widely by many authors [21],[25],[26],[27],[28],[29],[30].

Inverse nodal problem means to look for the potential function q by po-
sition of zeros of eigenfunctions (nodal points). This problem was firstly
solved by Mclaughlin [18]. Later the uniqueness problem was defined for
the potential function q with general boundary conditions [31].The recon-
struction and stability of the potential have been given by many authors
[3],[4],[8],[10],[9],[11],[13],[14],[16],[19][22],[23][24]. Especially, the reconstruc-
tion formula for the potential function q was given as

q(x) = lim
n→∞

2λn

(
n−1∑
j=0

√
λnl

(n)
j x

(n)
j

π
− 1

)
,

where λn is the nth eigenvalue as the jth nodal point of the nth eigenfunction

and l
(j)
n = x

(j+1)
n − x(j)n as the nodal length and χA is characteristic function

[16].
In this paper, our aim is to study inverse nodal problem for Hill equation

with discontinuous conditions inside [0, π]. Firstly, we should give eigenval-
ues, nodal lengths and reconstruction formula for the potential discontinuous
Sturm-Liouville equation with Dirichlet boundary conditions. We have ob-
tained these results by Prüfer substitution [1] which is different from the other
technichs. It seems that this method was firstly applied for discontinuous
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Sturm-Liouville problem [20]. Note that, we will abbreviate Discontinuous Hill
Equation as DHE.

Firstly we need a translation to obtain the results. The periodic (or anti-
periodic) spectrum dos not change upon any translation of q for discontinuous
Hill equation. Then, when we translate the problem by a distance equal to
first nodal position x1, so that the periodic (or anti-periodic) problem becomes
a discontinuous Dirichlet problem. This idea is inspired by the work [16].

Let xjn (x̃jn) be periodic (anti-periodic) nodal points and λjn (λ̃jn) be the
spectrums of DHE. Denote zjn = xjn − x1n, ljn = zj+1

n − zjn. Then zjn are nodal
points of discontinuous Sturm-Liouville problem with Dirichlet conditions and
the asymptotic formula of zjn follows that of the Dirichlet case.

2. Asymptotics of Eigenvalue and Nodal Parameters of DHE

In this part, we will give the estimates of DHE. We are aware of that after
a translation x by the firstly nodal point x1, DHE becomes

y′′(x+ x1) + [λ− q(x+ x1)]y(x+ x1) = 0,

y(x1) = y(π + x1) = 0,

y

((π
2

)
+0

+ x1

)
= αy

((π
2

)
−0

+ x1

)
, y′

((π
2

)
+0

+ x1

)
=

1

α
y′
((π

2

)
−0

+ x1

)
.

Taking y(x + x1) = Y (x), q(x + x1) = Q(x), the above problem will recon-
sidered

(2.1) − Y ′′(x) +Q(x)Y (x) = λY (x),

(2.2) Y (0) = Y (π) = 0,

(2.3) Y
(π

2
+ 0
)

= αY
(π

2
− 0
)
, Y ′

(π
2

+ 0
)

=
1

α
Y ′
(π

2
− 0
)
,

which is Discontinuous Dirichlet Problem (DDP). Note that jth nodal point
of (2.1)-(2.3) will be

(2.4) zj = xj − x1.

Theorem 2.1. Let q be real-valued integrable on (0, π) and sm = λm(q) =
λ2n(Q). Also, denote

[
m+1
2

]
= n. Then, we get
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(i) for periodic case;

(2.5)

sm(q) = 4n+
1

8nπ

 π∫
0

q(s+ x1m)ds+ (−1)m

 π∫
0

q(s+ x1m)ds

−2

π
2∫

0

q(s+ x1m)ds


+O

(
1

m2

)
,

(2.6) xjm =
jπ

2n
+

1

32n2

xjm∫
0

q(s)ds+O

(
1

m3

)
,

(2.7) lj2n = Ljm =
2π

sm
+

1

2s2m

xj+1
m∫

xjm

q(s)ds+ o

(
1

m2

)

in case of xjm ∈
(
x1m,

π
2

+ x1m
)
.

(2.8) xjm =
jπ

2n
− j

4n2
γn +

1

32n2

xjm∫
0

q(s)ds− 1

32n2

π
2∫

0

q(s+ x1m)ds+O

(
1

m3

)
,

(2.9) lj2n = Ljm =
2π

sm
+
γm+1

sm
+

1

2s2m

xj+1
m∫

xjm

q(s)ds+ o

(
1

m2

)
.

in case of xjm ∈
(
x1m + π

2
, x1m + π

)
.

(ii) for anti-periodic case;

s̃m(q) = 2(2n− 1) +
1

4(2n− 1)π

 π∫
0

q(s+ x̃1m)ds+ (−1)m

 π∫
0

q(s+ x̃1m)ds

−2

π
2∫

0

q(s+ x̃1m)ds


+O

(
1

m2

)
,
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x̃jm =
jπ

2n− 1
+

1

8(2n− 1)2

x̃jm∫
0

q(s)ds+O

(
1

m3

)
,

L̃jm =
2π

s̃m
+

1

2s̃2m

x̃j+1
m∫

x̃jm

q(s)ds+ o

(
1

m2

)
.

in case of x̃jm ∈
(
x̃1m,

π
2

+ x̃1m
)
.

s̃m = 2(2n− 1) +
1

2(2n− 1)π2

 π∫
0

q(s+ x̃1m)ds+ (−1)2n−2

 π∫
0

q(s+ x̃1m)ds

−2

π
2∫

0

q(s+ x̃1m)ds


+O

(
1

m2

)
,

x̃jm =
jπ

2n− 1
− j

(2n− 1)2
+

1

8(2n− 1)2

x̃jm∫
0

q(s)ds− 1

8(2n− 1)2

π
2∫

0

q(s+x1m)ds+O

(
1

m3

)
,

L̃jm =
2π

s̃m
+
γm
s̃m

+
1

2s̃2m

x̃j+1
m∫

x̃jm

q(s)ds+ o

(
1

m2

)
.

in case of x̃jm ∈
(
x̃1m + π

2
, x̃1m + π

)
.

Proof. Proof consists of only the periodic case. The anti-periodic case is simi-
lar. Let us consider asymptotic formulas of the eigenvalues, nodal points and
nodal lengths for the Dirichlet discontinuous problem as [20]:

λn(Q) = 2n+
1

4nπ

(
ζ1 + (−1)n−1ζ2 +

8γ2n
π

)
+O

(
1

n2

)
,
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where

ζ1 =

π∫
0

Q(s)ds, ζ2 =

π∫
0

Q(s)ds− 2

π
2∫

0

Q(s)ds,

γn =


Arcsin

(
1√

1+α2

)
, if n is even,

−Arcsin
(

|α|√
1+α2

)
, if n is odd.

zjn =
jπ

n
+

1

8n2

zjn∫
0

Q(s)ds+O

(
1

n3

)
,

ljn =
2π

λn
+

1

2λ2n

zj+1
n∫
zjn

Q(s)ds+ o

(
1

λ2n

)
, zjn ∈

(
0,
π

2

)
,

and

zjn =
jπ

n
− jγn

n2
+

1

8n2

zjn∫
0

Q(s)ds− 1

8n2

π
2∫

0

Q(s)ds+O

(
1

n3

)
,

ljn =
2π

λn
+
γn
λn

+
1

2λ2n

zj+1
n∫
zjn

Q(s)ds+ o

(
1

λ2n

)
, zjn ∈

(π
2
, π
)
.

However, we can obtain the results of theorem 2.1 with Prüfer substitution,
we will use the method used in [16]. For this, we replace the nodal points of
Dirichlet problem by the first node x1, then we obtain desired results for the
periodic problem. Let m = 2n− 1 and by choosing sm = λm(q) = λ2n(Q) and
Q(s) = q (s+ x1m).

Now, we will chose z = s+x1m in above asymptotic formulas, then (2.7) and
(2.9) hold. Thus, eigenvalues and nodal points given in (2.5), (2.6), (2.8) are
obtained, respectively. This completes the proof. �

3. Reconstruction of the Potential Function

Theorem 3.1. Given the nodal set xjm. For x ∈
(
x1m, x

1
m + π

2

)
the poten-

tial function q ∈ L1[0, π] can be reconstructed for the discontinuous periodic
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problem (1.6)-(1.8)

(3.1) q(x) = lim
m→∞

2s2m

(
smL

j
m

2π
− 1

)
for j = jm(x) = max {j|xjm < x}.

Proof. From (2.7), we have

smL
j
m

2π
− 1 =

1

4πsm

xj+1
m∫

xjm

q(s)ds+ o

(
1

m

)
and appliying the mean-value problem, with fixed m and for each j, there
exists t ∈ (xjm, x

j+1
m ) such that

xj+1
m∫

xjm

q(s)ds = Ljmq(t).

Then we have

q(x) =
4πsm

Ljm

(
smL

j
m

2π
− 1

)
, x < x1m +

π

2
.

Furthermore Ljm = 2π
sm

+o
(

1
m2

)
Then, for m→∞ we complete the proof. �

Theorem 3.2. Given the subset Xj
m of the nodal points which is dense on

(0, π). Then, for x ∈
(
x1m + π

2
, x1m + π

)
, the potential function can be recon-

structed as

q(x) = lim
m→∞

2s2m

(
smL

j
m

2π
− γm+1

2π
− 1

)
.

.

Proof. By (2.9), we have

smL
j
m

2π
− γm+1

2π
− 1 =

1

4πsm

xj+1
m∫

xjm

q(s)ds+ o

(
1

m

)
or

q(x) =
4πsm

Ljm
(
smL

j
m

2π
− γm+1

2π
− 1) + o

(
1

m

)
Then, it is not difficult to complete the proof for x ∈

(
x1m + π

2
, x1m + π

)
. �
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Theorem 3.3. For the discontinuous anti-periodic problem, reconstruction of
the potential function can be written

q(x) = lim
m→∞

2s̃2m

(
s̃mL̃

j
m

2π
− 1

)
,

j = jm(x) and x ∈
(
x̃1m, x̃

1
m + π

2

)
q(x) = lim

m→∞
2s̃2m

(
s̃mL̃

j
m

2π
− γm+1

2π
− 1

)
j = jm(x) and x ∈

(
x̃1m + π

2
, x̃1m + π

)
,

where s̃m, L̃m are eigenvalues and nodal lengths of the anti-periodic problem.

4. Conclusion

In the present paper we propose a formula for solving inverse nodal problem
of Sturm–Liouville problem with periodic and anti periodic conditions. The
method works well for any considered in this type problem even if the use of
different type equations like Diffusion or Dirac equations. The main key in
this method is Prüfer substitution used in second order differential equations.
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