Conclusion
Our study is the first of its kind to study heritable variation and plasticity in branch nonstructural carbohydrate storage. NSC stores have been demonstrated over the past decade to confer resilience to climate stress in woody species and are likely critical for plant response to future climate. In nearly all previous experiments on NSC variation, it was simply assumed that the variation observed in the experiment is due to predictable responses to environmental variation or perturbation (E). We demonstrate that, in fact, a significant amount of biologically meaningful variation in NSCs is due to genetic variation between trees. This means that there are genetic mechanisms that regulate differences in NSC storage, even between trees grown in the same environment. More importantly, we find extensive variation across trees in their response to environmental variation. Overall, we demonstrate that the concentration of total NSCs that trees store as well as the degree to which they partition these stores between soluble sugars and starch have both adaptive genetic variation and plasticity, potentially bolstering forest tree species against climate change in the short-and-long term.
Works Cited
Adams, H. D., Germino, M. J., Breshears, D. D., Barron-Gafford, G. A., Guardiola-Claramonte, M., Zou, C. B., & Huxman, T. E. (2013). Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol, 197 (4), 1142-1151. doi:10.1111/nph.12102
Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H., Landhausser, S. M., Tissue, D. T., . . . McDowell, N. G. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol, 1 (9), 1285-1291. doi:10.1038/s41559-017-0248-x
Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl, 1 (1), 95-111. doi:10.1111/j.1752-4571.2007.00013.x
Alberto, F., Bouffier, L., Louvet, J. M., Lamy, J. B., Delzon, S., & Kremer, A. (2011). Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient.J Evol Biol, 24 (7), 1442-1454. doi:10.1111/j.1420-9101.2011.02277.x
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., . . . Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259 (4), 660-684. doi:10.1016/j.foreco.2009.09.001
Anderegg, W. R., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., . . . Zeppel, M. (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol, 208 (3), 674-683. doi:10.1111/nph.13477
Anderegg, W. R., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F., Choat, B., & Jansen, S. (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci U S A, 113 (18), 5024-5029. doi:10.1073/pnas.1525678113
Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., & Mitchell-Olds, T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc Biol Sci, 279 (1743), 3843-3852. doi:10.1098/rspb.2012.1051
Blumstein, M., Richardson, A. D., Weston, D. J., Zhang, J., Wellington, M., & Hopkins, R. (2020). A new perspective on ecological prediction reveals limits to climate adaptation in a temperate tree species.Current Biology, 30 , 1447-1453.
Chapin III, S., Schulze, E.-D., & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annual Reviews, 21 , 423-447.
Chen, H.-J., Chen, J.-Y., & Wang, S.-J. (2007). Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress.Acta Physiologiae Plantarum, 30 (2), 135-142. doi:10.1007/s11738-007-0101-y
Chow, P. S., & Landhausser, S. M. (2004). A method for routine measurements of total sugar and starch content in woody plant tissues.Tree Physiology, 24 , 1129-1136.
Davis, M. B., Shaw, R. G., & Etterson, J. R. (2005). Evolutionary responses to changing climate. Ecology, 86 (7), 1704-1714.
Des Marais, D. L., Hernandez, K. M., & Juenger, T. E. (2013). Genotype-by-Environment Interaction and Plasticity: Exploring Genomic Responses of Plants to the Abiotic Environment. Annual Review of Ecology, Evolution, and Systematics, 44 (1), 5-29. doi:10.1146/annurev-ecolsys-110512-135806
Dietze, M. C., Sala, A., Carbone, M. S., Czimczik, C. I., Mantooth, J. A., Richardson, A. D., & Vargas, R. (2014). Nonstructural carbon in woody plants. Annu Rev Plant Biol, 65 , 667-687. doi:10.1146/annurev-arplant-050213-040054
Evans, L. M., Slavov, G. T., Rodgers-Melnick, E., Martin, J., Ranjan, P., Muchero, W., . . . DiFazio, S. P. (2014). Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet, 46 (10), 1089-1096. doi:10.1038/ng.3075
Furze, M. E., Huggett, B. A., Aubrecht, D. M., Stolz, C. D., Carbone, M. S., & Richardson, A. D. (2019). Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytol, 221 (3), 1466-1477. doi:10.1111/nph.15462
Gibon, Y., Pyl, E. T., Sulpice, R., Lunn, J. E., Hohne, M., Gunther, M., & Stitt, M. (2009). Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ, 32 (7), 859-874. doi:10.1111/j.1365-3040.2009.01965.x
Goodrich, B., Gabry, J., Ali, I., & Brilleman, S. (2019). rstanarm: Bayesian applied regression modelin via Stan.
Goyal, A. (2007). Osmoregulation in Dunaliella, Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol Biochem, 45 (9), 705-710. doi:10.1016/j.plaphy.2007.05.009
Hall, D., Luquez, V., Garcia, V. M., St Onge, K. R., Jansson, S., & Ingvarsson, P. K. (2007). Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula, L.): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution, 61 (12), 2849-2860. doi:10.1111/j.1558-5646.2007.00230.x
Hartmann, H., Adams, H. D., Hammond, W. M., Hoch, G., Landhäusser, S. M., Wiley, E., & Zaehle, S. (2018). Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests. Environmental and Experimental Botany, 152 , 7-18. doi:10.1016/j.envexpbot.2018.03.011
Hartmann, H., & Trumbore, S. (2016). Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. New Phytol, 211 (2), 386-403. doi:10.1111/nph.13955
Hartmann, H., Ziegler, W., Trumbore, S., & Knapp, A. (2013). Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Functional Ecology, 27 (2), 413-427. doi:10.1111/1365-2435.12046
Hoermiller, II, Naegele, T., Augustin, H., Stutz, S., Weckwerth, W., & Heyer, A. G. (2017). Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell Environ, 40 (5), 602-610. doi:10.1111/pce.12836
Hufkens, K., Basler, J. D., Milliman, T., Melaas, E., & Richardson, A. D. (2018). An interated phenology modelling framework in R: Phenology modelling with phenor. Methods in Ecology and Evolution, 9 , 1-10.
IPCC. (2013a). Annex I: Atlas of Global and Regional Climate Projections In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.),Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1311–1394). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
IPCC. (2013b). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley Eds.). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Josephs, E. B., Berg, J. J., Ross-Ibarra, J., & Coop, G. (2019). Detecting adaptive differentiation in structured populations with genomic data and common gardens. Genetics, 211 . doi:10.1101/368506
Kanai, M., Higuchi, K., Hagihara, T., Konishi, T., Ishii, T., Fujita, N., . . . Tadano, T. (2007). Common reed produces starch granules at the shoot base in response to salt stress. New Phytol, 176 (3), 572-580. doi:10.1111/j.1469-8137.2007.02188.x
Kaplan, F., & Guy, C. L. (2004). beta-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol, 135 (3), 1674-1684. doi:10.1104/pp.104.040808
Kaplan, F., & Guy, C. L. (2005). RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J, 44 (5), 730-743. doi:10.1111/j.1365-313X.2005.02565.x
Keller, S. R., Soolanayakanahally, R. Y., Guy, R. D., Silim, S. N., Olson, M. S., & Tiffin, P. (2011). Climate-driven local adaptation of ecophysiology and phenology in balsam poplar, Populus balsamifera L. (Salicaceae). Am J Bot, 98 (1), 99-108. doi:10.3732/ajb.1000317
Kempa, S., Krasensky, J., Dal Santo, S., Kopka, J., & Jonak, C. (2008). A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One, 3 (12), e3935. doi:10.1371/journal.pone.0003935
Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot, 63 (4), 1593-1608. doi:10.1093/jxb/err460
Landhausser, S. M., Chow, P. S., Dickman, L. T., Furze, M. E., Kuhlman, I., Schmid, S., . . . Adams, H. D. (2018). Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiol, 38 (12), 1764-1778. doi:10.1093/treephys/tpy118
Landhäusser, S. M., & Lieffers, V. J. (2003). Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones.Trees, 17 (6), 471-476. doi:10.1007/s00468-003-0263-1
Landhäusser, S. M., & Lieffers, V. J. (2011). Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees, 26 (2), 653-661. doi:10.1007/s00468-011-0633-z
Ma, T., Wang, J., Zhou, G., Yue, Z., Hu, Q., Chen, Y., . . . Liu, J. (2013). Genomic insights into salt adaptation in a desert poplar.Nat Commun, 4 , 2797. doi:10.1038/ncomms3797
Martínez-Vilalta, J., Sala, A., Asensio, D., Galiano, L., Hoch, G., Palacio, S., . . . Lloret, F. (2016). Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis.Ecological Monographs, 86 (4), 495-516. doi:10.1002/ecm.1231
McDowell, N., Allen, C. D., Anderson-Teixeira, K., Brando, P., Brienen, R., Chambers, J., . . . Xu, X. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol, 219 (3), 851-869. doi:10.1111/nph.15027
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., . . . Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol, 178 (4), 719-739. doi:10.1111/j.1469-8137.2008.02436.x
Mitchell, P. J., O’Grady, A. P., Tissue, D. T., White, D. A., Ottenschlaeger, M. L., & Pinkard, E. A. (2013). Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol, 197 (3), 862-872. doi:10.1111/nph.12064
Nagao, M., Minami, A., Arakawa, K., Fujikawa, S., & Takezawa, D. (2005). Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J Plant Physiol, 162 (2), 169-180. doi:10.1016/j.jplph.2004.06.012
Nuismer, S. L., & Gandon, S. (2008). Moving beyond common-garden and transplant designs: insight into the causes of local adaptation in species interactions. Am Nat, 171 (5), 658-668. doi:10.1086/587077
Nychka, D., Furrer, R., Paige, J., & Sain, S. (2017). fields: Tools for spatial data. Boulder, CO, USA: University Corporation for Atmospheric Research. Retrieved from https://github.com/NCAR/Fields
O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J., & Hector, A. (2014). Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 4 (8), 710-714. doi:10.1038/nclimate2281
Oksanen, J., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., . . . Wagner, H. (2018). vegan: Community Ecology Package.R Package. version 2.5-3. Retrieved from https://CRAN.R-project.org/package=vegan
Oleksyn, J., Zytkowiak, R., Karolewski, P., Reich, P. B., & Tjoelker, M. G. (1999). Genetic and environmental control of seasonal carbohydrate dynamics in tress of diverse Pinus sylvestris populations. Tree Physiology, 20 , 837-847.
Palacio, S., Gunter, H., Sala, A., Korner, C., & Millard, P. (2014). Does carbon storage limit tree growth? New Phytologist, 201 , 1096-1100.
Plavcová, L., & Jansen, S. (2015). The Role of Xylem Parenchyma in the Storage and Utilization of Nonstructural Carbohydrates. InFunctional and Ecological Xylem Anatomy (pp. 209-234).
Pollock, C. J., & Lloyd, E. J. (1987). The effect of low temperatures upon starch, sucrose, and fructan synthesis in leaves. Annals of Botany, 60 , 231-235.
Pritzkow, C., Williamson, V., Szota, C., Trouve, R., & Arndt, S. K. (2020). Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific variation in hydraulic efficiency and safety. Tree Physiol, 40 (2), 215-229. doi:10.1093/treephys/tpz121
Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I., Hollinger, D. Y., Murakami, P., . . . Xu, X. (2013). Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol, 197 (3), 850-861. doi:10.1111/nph.12042
Sala, A., Woodruff, D. R., & Meinzer, F. C. (2012). Carbon dynamics in trees: feast or famine? Tree Physiol, 32 (6), 764-775. doi:10.1093/treephys/tpr143
Scheiner, S. M., & Goodnight, C. J. (1984). The comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata. Evolution, 38 (4).
Scheiner, S. M., & Lyman, R. F. (1989). The genetics of phenotypic plasticity. Journal of Evolutionary Biology, 2 , 95-107.
Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R., & Pockman, W. T. (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ, 37 (1), 153-161. doi:10.1111/pce.12141
Slavov, G. T., DiFazio, S. P., Martin, J., Schackwitz, W., Muchero, W., Rodgers-Melnick, E., . . . Tuskan, G. A. (2012). Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol, 196 (3), 713-725. doi:10.1111/j.1469-8137.2012.04258.x
Smith, A. M., & Stitt, M. (2007). Coordination of carbon supply and plant growth. Plant Cell Environ, 30 (9), 1126-1149. doi:10.1111/j.1365-3040.2007.01708.x
Sperling, O., Silva, L. C. R., Tixier, A., Theroux-Rancourt, G., & Zwieniecki, M. A. (2017). Temperature gradients assist carbohydrate allocation within trees. Sci Rep, 7 (1), 3265. doi:10.1038/s41598-017-03608-w
Spitze, K. (1993). Population structure in Daphnia obtusa : quantitative genetic and allozymic variation. . Genetics, 135 (25), 367-374.
Stopher, K. V., Walling, C. A., Morris, A., Guinness, F. E., Clutton-Brock, T. H., Pemberton, J. M., & Nussey, D. H. (2012). Shared spatial effects on quantitative genetic parameters: accounting for spatial autocorrelation and home range overlap reduces estimates of heritability in wild red deer. Evolution, 66 (8), 2411-2426. doi:10.1111/j.1558-5646.2012.01620.x
Team, R. C. D. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria. Retrieved from https://www.R-project.org/
Team, T. S. D. (2014). RStan Getting Started. Retrieved from http://mc-stan.org/
Thalmann, M., & Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytol, 214 (3), 943-951. doi:10.1111/nph.14491
Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R., Vose, R. S., & Cook, R. B. (2018). Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3 .
Tixier, A., Gambetta, G. A., Godfrey, J., Orozco, J., & Zwieniecki, M. A. (2019). Non-structural Carbohydrates in Dormant Woody Perennials; The Tale of Winter Survival and Spring Arrival. Frontiers in Forests and Global Change, 2 . doi:10.3389/ffgc.2019.00018
Tixier, A., Orozco, J., Roxas, A. A., Earles, J. M., & Zwieniecki, M. A. (2018). Diurnal Variation in Nonstructural Carbohydrate Storage in Trees: Remobilization and Vertical Mixing. Plant Physiol, 178 (4), 1602-1613. doi:10.1104/pp.18.00923
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer, L., Benito-Garzón, M., . . . Thuiller, W. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17 (11), 1351-1364. doi:10.1111/ele.12348
Valladares, F., Sanchez-Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94 (6), 1103-1116. doi:10.1111/j.1365-2745.2006.01176.x
Vasseur, F., Pantin, F., & Vile, D. (2011). Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ, 34 (9), 1563-1576. doi:10.1111/j.1365-3040.2011.02353.x
Whitlock, M. C., & Gilbert, K. J. (2012). Q(ST) in a hierarchically structured population. Molecular Ecology Resources, 12 (3), 481-483. doi:10.1111/j.1755-0998.2012.03122.x
Wiley, E., & Helliker, B. (2012). A re-evaluation of carbon stroage in trees lends greater support for carbon limitation to growth. New Phytologist, 195 , 285-289.
Wortemann, R., Herbette, S., Barigah, T. S., Fumanal, B., Alia, R., Ducousso, A., . . . Cochard, H. (2011). Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiol, 31 (11), 1175-1182. doi:10.1093/treephys/tpr101
Wurth, M. K., Pelaez-Riedl, S., Wright, S. J., & Korner, C. (2005). Non-structural carbohydrate pools in a tropical forest. Oecologia, 143 (1), 11-24. doi:10.1007/s00442-004-1773-2
Zwieniecki, M. A., Tixier, A., & Sperling, O. (2015). Temperature-assisted redistribution of carbohydrates in trees. Am J Bot, 102 (8), 1216-1218. doi:10.3732/ajb.1500218