Conclusion
Our study is the first of its kind to study heritable variation and
plasticity in branch nonstructural carbohydrate storage. NSC stores have
been demonstrated over the past decade to confer resilience to climate
stress in woody species and are likely critical for plant response to
future climate. In nearly all previous experiments on NSC variation, it
was simply assumed that the variation observed in the experiment is due
to predictable responses to environmental variation or perturbation (E).
We demonstrate that, in fact, a significant amount of biologically
meaningful variation in NSCs is due to genetic variation between trees.
This means that there are genetic mechanisms that regulate differences
in NSC storage, even between trees grown in the same environment. More
importantly, we find extensive variation across trees in their response
to environmental variation. Overall, we demonstrate that the
concentration of total NSCs that trees store as well as the degree to
which they partition these stores between soluble sugars and starch have
both adaptive genetic variation and plasticity, potentially bolstering
forest tree species against climate change in the short-and-long term.
Works Cited
Adams, H. D., Germino, M. J., Breshears, D. D., Barron-Gafford, G. A.,
Guardiola-Claramonte, M., Zou, C. B., & Huxman, T. E. (2013).
Nonstructural leaf carbohydrate dynamics of Pinus edulis during
drought-induced tree mortality reveal role for carbon metabolism in
mortality mechanism. New Phytol, 197 (4), 1142-1151.
doi:10.1111/nph.12102
Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H.,
Landhausser, S. M., Tissue, D. T., . . . McDowell, N. G. (2017). A
multi-species synthesis of physiological mechanisms in drought-induced
tree mortality. Nat Ecol Evol, 1 (9), 1285-1291.
doi:10.1038/s41559-017-0248-x
Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane,
S. (2008). Adaptation, migration or extirpation: climate change outcomes
for tree populations. Evol Appl, 1 (1), 95-111.
doi:10.1111/j.1752-4571.2007.00013.x
Alberto, F., Bouffier, L., Louvet, J. M., Lamy, J. B., Delzon, S., &
Kremer, A. (2011). Adaptive responses for seed and leaf phenology in
natural populations of sessile oak along an altitudinal gradient.J Evol Biol, 24 (7), 1442-1454.
doi:10.1111/j.1420-9101.2011.02277.x
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell,
N., Vennetier, M., . . . Cobb, N. (2010). A global overview of drought
and heat-induced tree mortality reveals emerging climate change risks
for forests. Forest Ecology and Management, 259 (4), 660-684.
doi:10.1016/j.foreco.2009.09.001
Anderegg, W. R., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J.,
Bentz, B., . . . Zeppel, M. (2015). Tree mortality from drought,
insects, and their interactions in a changing climate. New Phytol,
208 (3), 674-683. doi:10.1111/nph.13477
Anderegg, W. R., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F.,
Choat, B., & Jansen, S. (2016). Meta-analysis reveals that hydraulic
traits explain cross-species patterns of drought-induced tree mortality
across the globe. Proc Natl Acad Sci U S A, 113 (18), 5024-5029.
doi:10.1073/pnas.1525678113
Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., &
Mitchell-Olds, T. (2012). Phenotypic plasticity and adaptive evolution
contribute to advancing flowering phenology in response to climate
change. Proc Biol Sci, 279 (1743), 3843-3852.
doi:10.1098/rspb.2012.1051
Blumstein, M., Richardson, A. D., Weston, D. J., Zhang, J., Wellington,
M., & Hopkins, R. (2020). A new perspective on ecological prediction
reveals limits to climate adaptation in a temperate tree species.Current Biology, 30 , 1447-1453.
Chapin III, S., Schulze, E.-D., & Mooney, H. A. (1990). The ecology and
economics of storage in plants. Annual Reviews, 21 , 423-447.
Chen, H.-J., Chen, J.-Y., & Wang, S.-J. (2007). Molecular regulation of
starch accumulation in rice seedling leaves in response to salt stress.Acta Physiologiae Plantarum, 30 (2), 135-142.
doi:10.1007/s11738-007-0101-y
Chow, P. S., & Landhausser, S. M. (2004). A method for routine
measurements of total sugar and starch content in woody plant tissues.Tree Physiology, 24 , 1129-1136.
Davis, M. B., Shaw, R. G., & Etterson, J. R. (2005). Evolutionary
responses to changing climate. Ecology, 86 (7), 1704-1714.
Des Marais, D. L., Hernandez, K. M., & Juenger, T. E. (2013).
Genotype-by-Environment Interaction and Plasticity: Exploring Genomic
Responses of Plants to the Abiotic Environment. Annual Review of
Ecology, Evolution, and Systematics, 44 (1), 5-29.
doi:10.1146/annurev-ecolsys-110512-135806
Dietze, M. C., Sala, A., Carbone, M. S., Czimczik, C. I., Mantooth, J.
A., Richardson, A. D., & Vargas, R. (2014). Nonstructural carbon in
woody plants. Annu Rev Plant Biol, 65 , 667-687.
doi:10.1146/annurev-arplant-050213-040054
Evans, L. M., Slavov, G. T., Rodgers-Melnick, E., Martin, J., Ranjan,
P., Muchero, W., . . . DiFazio, S. P. (2014). Population genomics of
Populus trichocarpa identifies signatures of selection and adaptive
trait associations. Nat Genet, 46 (10), 1089-1096.
doi:10.1038/ng.3075
Furze, M. E., Huggett, B. A., Aubrecht, D. M., Stolz, C. D., Carbone, M.
S., & Richardson, A. D. (2019). Whole-tree nonstructural carbohydrate
storage and seasonal dynamics in five temperate species. New
Phytol, 221 (3), 1466-1477. doi:10.1111/nph.15462
Gibon, Y., Pyl, E. T., Sulpice, R., Lunn, J. E., Hohne, M., Gunther, M.,
& Stitt, M. (2009). Adjustment of growth, starch turnover, protein
content and central metabolism to a decrease of the carbon supply when
Arabidopsis is grown in very short photoperiods. Plant Cell
Environ, 32 (7), 859-874. doi:10.1111/j.1365-3040.2009.01965.x
Goodrich, B., Gabry, J., Ali, I., & Brilleman, S. (2019). rstanarm:
Bayesian applied regression modelin via Stan.
Goyal, A. (2007). Osmoregulation in Dunaliella, Part II: Photosynthesis
and starch contribute carbon for glycerol synthesis during a salt stress
in Dunaliella tertiolecta. Plant Physiol Biochem, 45 (9), 705-710.
doi:10.1016/j.plaphy.2007.05.009
Hall, D., Luquez, V., Garcia, V. M., St Onge, K. R., Jansson, S., &
Ingvarsson, P. K. (2007). Adaptive population differentiation in
phenology across a latitudinal gradient in European aspen (Populus
tremula, L.): a comparison of neutral markers, candidate genes and
phenotypic traits. Evolution, 61 (12), 2849-2860.
doi:10.1111/j.1558-5646.2007.00230.x
Hartmann, H., Adams, H. D., Hammond, W. M., Hoch, G., Landhäusser, S.
M., Wiley, E., & Zaehle, S. (2018). Identifying differences in
carbohydrate dynamics of seedlings and mature trees to improve carbon
allocation in models for trees and forests. Environmental and
Experimental Botany, 152 , 7-18. doi:10.1016/j.envexpbot.2018.03.011
Hartmann, H., & Trumbore, S. (2016). Understanding the roles of
nonstructural carbohydrates in forest trees - from what we can measure
to what we want to know. New Phytol, 211 (2), 386-403.
doi:10.1111/nph.13955
Hartmann, H., Ziegler, W., Trumbore, S., & Knapp, A. (2013). Lethal
drought leads to reduction in nonstructural carbohydrates in Norway
spruce tree roots but not in the canopy. Functional Ecology,
27 (2), 413-427. doi:10.1111/1365-2435.12046
Hoermiller, II, Naegele, T., Augustin, H., Stutz, S., Weckwerth, W., &
Heyer, A. G. (2017). Subcellular reprogramming of metabolism during cold
acclimation in Arabidopsis thaliana. Plant Cell Environ, 40 (5),
602-610. doi:10.1111/pce.12836
Hufkens, K., Basler, J. D., Milliman, T., Melaas, E., & Richardson, A.
D. (2018). An interated phenology modelling framework in R: Phenology
modelling with phenor. Methods in Ecology and Evolution, 9 , 1-10.
IPCC. (2013a). Annex I: Atlas of Global and Regional Climate Projections
In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J.
Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.),Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (pp. 1311–1394). Cambridge, United Kingdom and
New York, NY, USA: Cambridge University Press.
IPCC. (2013b). Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (T. F. Stocker, D. Qin, G.-K.
Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V.
Bex, & P. M. Midgley Eds.). Cambridge, United Kingdom and New York, NY,
USA: Cambridge University Press.
Josephs, E. B., Berg, J. J., Ross-Ibarra, J., & Coop, G. (2019).
Detecting adaptive differentiation in structured populations with
genomic data and common gardens. Genetics, 211 .
doi:10.1101/368506
Kanai, M., Higuchi, K., Hagihara, T., Konishi, T., Ishii, T., Fujita,
N., . . . Tadano, T. (2007). Common reed produces starch granules at the
shoot base in response to salt stress. New Phytol, 176 (3),
572-580. doi:10.1111/j.1469-8137.2007.02188.x
Kaplan, F., & Guy, C. L. (2004). beta-Amylase induction and the
protective role of maltose during temperature shock. Plant
Physiol, 135 (3), 1674-1684. doi:10.1104/pp.104.040808
Kaplan, F., & Guy, C. L. (2005). RNA interference of Arabidopsis
beta-amylase8 prevents maltose accumulation upon cold shock and
increases sensitivity of PSII photochemical efficiency to freezing
stress. Plant J, 44 (5), 730-743.
doi:10.1111/j.1365-313X.2005.02565.x
Keller, S. R., Soolanayakanahally, R. Y., Guy, R. D., Silim, S. N.,
Olson, M. S., & Tiffin, P. (2011). Climate-driven local adaptation of
ecophysiology and phenology in balsam poplar, Populus balsamifera L.
(Salicaceae). Am J Bot, 98 (1), 99-108. doi:10.3732/ajb.1000317
Kempa, S., Krasensky, J., Dal Santo, S., Kopka, J., & Jonak, C. (2008).
A central role of abscisic acid in stress-regulated carbohydrate
metabolism. PLoS One, 3 (12), e3935.
doi:10.1371/journal.pone.0003935
Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature
stress-induced metabolic rearrangements and regulatory networks. J
Exp Bot, 63 (4), 1593-1608. doi:10.1093/jxb/err460
Landhausser, S. M., Chow, P. S., Dickman, L. T., Furze, M. E., Kuhlman,
I., Schmid, S., . . . Adams, H. D. (2018). Standardized protocols and
procedures can precisely and accurately quantify non-structural
carbohydrates. Tree Physiol, 38 (12), 1764-1778.
doi:10.1093/treephys/tpy118
Landhäusser, S. M., & Lieffers, V. J. (2003). Seasonal changes in
carbohydrate reserves in mature northern Populus tremuloides clones.Trees, 17 (6), 471-476. doi:10.1007/s00468-003-0263-1
Landhäusser, S. M., & Lieffers, V. J. (2011). Defoliation increases
risk of carbon starvation in root systems of mature aspen. Trees,
26 (2), 653-661. doi:10.1007/s00468-011-0633-z
Ma, T., Wang, J., Zhou, G., Yue, Z., Hu, Q., Chen, Y., . . . Liu, J.
(2013). Genomic insights into salt adaptation in a desert poplar.Nat Commun, 4 , 2797. doi:10.1038/ncomms3797
Martínez-Vilalta, J., Sala, A., Asensio, D., Galiano, L., Hoch, G.,
Palacio, S., . . . Lloret, F. (2016). Dynamics of non-structural
carbohydrates in terrestrial plants: a global synthesis.Ecological Monographs, 86 (4), 495-516. doi:10.1002/ecm.1231
McDowell, N., Allen, C. D., Anderson-Teixeira, K., Brando, P., Brienen,
R., Chambers, J., . . . Xu, X. (2018). Drivers and mechanisms of tree
mortality in moist tropical forests. New Phytol, 219 (3), 851-869.
doi:10.1111/nph.15027
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N.,
Kolb, T., . . . Yepez, E. A. (2008). Mechanisms of plant survival and
mortality during drought: why do some plants survive while others
succumb to drought? New Phytol, 178 (4), 719-739.
doi:10.1111/j.1469-8137.2008.02436.x
Mitchell, P. J., O’Grady, A. P., Tissue, D. T., White, D. A.,
Ottenschlaeger, M. L., & Pinkard, E. A. (2013). Drought response
strategies define the relative contributions of hydraulic dysfunction
and carbohydrate depletion during tree mortality. New Phytol,
197 (3), 862-872. doi:10.1111/nph.12064
Nagao, M., Minami, A., Arakawa, K., Fujikawa, S., & Takezawa, D.
(2005). Rapid degradation of starch in chloroplasts and concomitant
accumulation of soluble sugars associated with ABA-induced freezing
tolerance in the moss Physcomitrella patens. J Plant Physiol,
162 (2), 169-180. doi:10.1016/j.jplph.2004.06.012
Nuismer, S. L., & Gandon, S. (2008). Moving beyond common-garden and
transplant designs: insight into the causes of local adaptation in
species interactions. Am Nat, 171 (5), 658-668. doi:10.1086/587077
Nychka, D., Furrer, R., Paige, J., & Sain, S. (2017). fields: Tools for
spatial data. Boulder, CO, USA: University Corporation for Atmospheric
Research. Retrieved from https://github.com/NCAR/Fields
O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J., & Hector, A.
(2014). Drought survival of tropical tree seedlings enhanced by
non-structural carbohydrate levels. Nature Climate Change, 4 (8),
710-714. doi:10.1038/nclimate2281
Oksanen, J., Blanchet, G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., . . . Wagner, H. (2018). vegan: Community Ecology Package.R Package. version 2.5-3. Retrieved from
https://CRAN.R-project.org/package=vegan
Oleksyn, J., Zytkowiak, R., Karolewski, P., Reich, P. B., & Tjoelker,
M. G. (1999). Genetic and environmental control of seasonal carbohydrate
dynamics in tress of diverse Pinus sylvestris populations. Tree
Physiology, 20 , 837-847.
Palacio, S., Gunter, H., Sala, A., Korner, C., & Millard, P. (2014).
Does carbon storage limit tree growth? New Phytologist, 201 ,
1096-1100.
Plavcová, L., & Jansen, S. (2015). The Role of Xylem Parenchyma in the
Storage and Utilization of Nonstructural Carbohydrates. InFunctional and Ecological Xylem Anatomy (pp. 209-234).
Pollock, C. J., & Lloyd, E. J. (1987). The effect of low temperatures
upon starch, sucrose, and fructan synthesis in leaves. Annals of
Botany, 60 , 231-235.
Pritzkow, C., Williamson, V., Szota, C., Trouve, R., & Arndt, S. K.
(2020). Phenotypic plasticity and genetic adaptation of functional
traits influences intra-specific variation in hydraulic efficiency and
safety. Tree Physiol, 40 (2), 215-229. doi:10.1093/treephys/tpz121
Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I.,
Hollinger, D. Y., Murakami, P., . . . Xu, X. (2013). Seasonal dynamics
and age of stemwood nonstructural carbohydrates in temperate forest
trees. New Phytol, 197 (3), 850-861. doi:10.1111/nph.12042
Sala, A., Woodruff, D. R., & Meinzer, F. C. (2012). Carbon dynamics in
trees: feast or famine? Tree Physiol, 32 (6), 764-775.
doi:10.1093/treephys/tpr143
Scheiner, S. M., & Goodnight, C. J. (1984). The comparison of
phenotypic plasticity and genetic variation in populations of the grass
Danthonia spicata. Evolution, 38 (4).
Scheiner, S. M., & Lyman, R. F. (1989). The genetics of phenotypic
plasticity. Journal of Evolutionary Biology, 2 , 95-107.
Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R., & Pockman, W.
T. (2014). How do trees die? A test of the hydraulic failure and carbon
starvation hypotheses. Plant Cell Environ, 37 (1), 153-161.
doi:10.1111/pce.12141
Slavov, G. T., DiFazio, S. P., Martin, J., Schackwitz, W., Muchero, W.,
Rodgers-Melnick, E., . . . Tuskan, G. A. (2012). Genome resequencing
reveals multiscale geographic structure and extensive linkage
disequilibrium in the forest tree Populus trichocarpa. New Phytol,
196 (3), 713-725. doi:10.1111/j.1469-8137.2012.04258.x
Smith, A. M., & Stitt, M. (2007). Coordination of carbon supply and
plant growth. Plant Cell Environ, 30 (9), 1126-1149.
doi:10.1111/j.1365-3040.2007.01708.x
Sperling, O., Silva, L. C. R., Tixier, A., Theroux-Rancourt, G., &
Zwieniecki, M. A. (2017). Temperature gradients assist carbohydrate
allocation within trees. Sci Rep, 7 (1), 3265.
doi:10.1038/s41598-017-03608-w
Spitze, K. (1993). Population structure in Daphnia obtusa :
quantitative genetic and allozymic variation. . Genetics,
135 (25), 367-374.
Stopher, K. V., Walling, C. A., Morris, A., Guinness, F. E.,
Clutton-Brock, T. H., Pemberton, J. M., & Nussey, D. H. (2012). Shared
spatial effects on quantitative genetic parameters: accounting for
spatial autocorrelation and home range overlap reduces estimates of
heritability in wild red deer. Evolution, 66 (8), 2411-2426.
doi:10.1111/j.1558-5646.2012.01620.x
Team, R. C. D. (2018). R: A Language and Environment for Statistical
Computing. Vienna, Austria. Retrieved from
https://www.R-project.org/
Team, T. S. D. (2014). RStan Getting Started. Retrieved from
http://mc-stan.org/
Thalmann, M., & Santelia, D. (2017). Starch as a determinant of plant
fitness under abiotic stress. New Phytol, 214 (3), 943-951.
doi:10.1111/nph.14491
Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda,
R., Vose, R. S., & Cook, R. B. (2018). Daymet: Daily Surface
Weather Data on a 1-km Grid for North America, Version 3 .
Tixier, A., Gambetta, G. A., Godfrey, J., Orozco, J., & Zwieniecki, M.
A. (2019). Non-structural Carbohydrates in Dormant Woody Perennials; The
Tale of Winter Survival and Spring Arrival. Frontiers in Forests
and Global Change, 2 . doi:10.3389/ffgc.2019.00018
Tixier, A., Orozco, J., Roxas, A. A., Earles, J. M., & Zwieniecki, M.
A. (2018). Diurnal Variation in Nonstructural Carbohydrate Storage in
Trees: Remobilization and Vertical Mixing. Plant Physiol, 178 (4),
1602-1613. doi:10.1104/pp.18.00923
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer,
L., Benito-Garzón, M., . . . Thuiller, W. (2014). The effects of
phenotypic plasticity and local adaptation on forecasts of species range
shifts under climate change. Ecology Letters, 17 (11), 1351-1364.
doi:10.1111/ele.12348
Valladares, F., Sanchez-Gomez, D., & Zavala, M. A. (2006). Quantitative
estimation of phenotypic plasticity: bridging the gap between the
evolutionary concept and its ecological applications. Journal of
Ecology, 94 (6), 1103-1116. doi:10.1111/j.1365-2745.2006.01176.x
Vasseur, F., Pantin, F., & Vile, D. (2011). Changes in light intensity
reveal a major role for carbon balance in Arabidopsis responses to high
temperature. Plant Cell Environ, 34 (9), 1563-1576.
doi:10.1111/j.1365-3040.2011.02353.x
Whitlock, M. C., & Gilbert, K. J. (2012). Q(ST) in a hierarchically
structured population. Molecular Ecology Resources, 12 (3),
481-483. doi:10.1111/j.1755-0998.2012.03122.x
Wiley, E., & Helliker, B. (2012). A re-evaluation of carbon stroage in
trees lends greater support for carbon limitation to growth. New
Phytologist, 195 , 285-289.
Wortemann, R., Herbette, S., Barigah, T. S., Fumanal, B., Alia, R.,
Ducousso, A., . . . Cochard, H. (2011). Genotypic variability and
phenotypic plasticity of cavitation resistance in Fagus sylvatica L.
across Europe. Tree Physiol, 31 (11), 1175-1182.
doi:10.1093/treephys/tpr101
Wurth, M. K., Pelaez-Riedl, S., Wright, S. J., & Korner, C. (2005).
Non-structural carbohydrate pools in a tropical forest. Oecologia,
143 (1), 11-24. doi:10.1007/s00442-004-1773-2
Zwieniecki, M. A., Tixier, A., & Sperling, O. (2015).
Temperature-assisted redistribution of carbohydrates in trees. Am
J Bot, 102 (8), 1216-1218. doi:10.3732/ajb.1500218