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1. Introduction

The theory of wavelet transforms have emanated as a broadly used tool in various disciplines
of science and engineering including image processing, spectrometry, turbulence, computer
graphics, optics and electromagnetism, telecommunications, DNA sequence analysis, quan-
tum physics, solution of differential equations. In context of signal processing, it has been
assumed that orthogonality is the key property for synthesis and analysing signals. In order
to study a higher-level signal processing, biorthogonality plays a vital role in which two sets
are incorporated: one serves for the analysis and the other one for synthesis. Towars the
culminating years of 1990’s, biorthogonal wavelets are considered as cornerstone technique
in image compression due to their natural feature of concentrating energy in a few transform
coefficients and advantageous over orthogonal wavelets, by relaxing orthonormal to biorthog-
onal, additional degrees of freedom are added to design problems. Biorthogonal wavelets in
L2(R) were investigated by Bownik and Garrigos [3], Cohen et al.[5], Chui and Wang [7] and
many others.

Multiresolution analysis is the heart of wavelet analysis as it gives a general framework
for analysing wavelet systems. These concepts are generalized to various settings [1, 4, 6, 11,
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12]. All these concepts are developed on regular lattices, that is the translation set is always
a group. All the signals in real life applications are not obtained from the uniform shifts. For
the analysis and decomposition of these signals by means of stable mathematical technique,
Gabardo and Nashed [8, 9] introduced a notion of nonuniform MRA where the translation
set acting on the scaling function associated with the MRA to generate the subspace V0

is no longer a group, but is the union of Z and a translate of Z. Shah and Abdullah
[13] established NUMRA on non-Archimedean local fields The development of biorthogonal
wavelets associated with MRA and NUMRA were carried by various researchers [2, 3, 10, 14].

In this article, we introduce the notion of biorthogonal wavelets on the spectrum and
obtain the characterization for the translates of a single function to form the Riesz bases for
their closed linear span. We also provide a complete characterization for the biorthogonal-
ity of the translates of scaling functions of two NUMRA’s and the associated biorthogonal
wavelet families. Moreover, under mild assumptions on the scaling functions and the cor-
responding wavelets, we show that the nonuniform wavelets can generate Reisz bases for
L2(R).

The article is structured as follows. In Section 2, we recall the basic definitions of MRA
and NUMRA . In Section 3, we establish necessary and sufficient conditions for the translates
of a function to form a Riesz basis for its closed linear span. In the concluding Section, we
show that the wavelets associated with dual MRA’s are biorthogonal and generate Riesz
bases for L2(R).

2. Preliminaries

Definition 2.1. A sequence of closed subspaces {Vj : j ∈ Z} of L2(R) is said to form an
MRA of L2(R) if it satisfies the following conditions:

(a) Vj ⊂ Vj+1 ∀ j ∈ Z;

(b)
⋃
j∈Z Vj is dense in L2(R);

(c)
⋂
j∈Z Vj = {0};

(d) g(x) ∈ Vj ⇐⇒ g(2x) ∈ Vj+1 ∀ j ∈ Z;

(e) There exists a function φ ∈ V0, known as scaling function, such that {φ(x−m) : m ∈ Z}
forms an orthonormal basis for V0.

In order to construct wavelets associated with MRA, we define a space Wj known as
wavelet space as the orthogonal complement of Vj in Vj+1, i.e., Vj+1 = Vj⊕Wj, j ∈ Z, where
Wj ⊥ Vj, j ∈ Z. It is easy to check that

g(x) ∈ Wj ⇐⇒ g(2x) ∈ Wj+1, j ∈ Z. (2.1)

These are mutually orthogonal and admit the following orthogonal decompositions:

L2(R) =
⊕
j∈Z

Wj = V0 ⊕

(⊕
j≥0

Wj

)
. (2.2)

Let N ≥ 1 be a given integer and r be an odd integer which are relatively prime such that
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1 ≤ r ≤ 2N − 1, we consider the translation set Λ as

Λ =
{

0,
r

N

}
+ 2Z =

{
r`

N
+ 2m : m ∈ Z, ` = 0, 1

}
. (2.3)

It can be easily seen that the translation set Λ is not necessarily a group nor a uniform
discrete set. The set Λn is the union of Z and a translate of Z. Furthermore, the translation
set Λ is the spectrum for the spectral set ΓN =

[
0, 1

2

)
∪
[
N
2
, N+1

2

)
and the pair (Λ,ΓN) is

called a spectral pair [8].

Definition 2.2. Let N ≥ 1 be a given integer and r be an odd integer which are relatively
prime such that 1 ≤ r ≤ 2N − 1, an associated nonuniform MRA is a sequence of closed
subspaces {Vj : j ∈ Z} of L2(R) satisfying the following properties:

(a) Vj ⊂ Vj+1 ∀ j ∈ Z;

(b)
⋃
j∈Z Vj is dense in L2(R);

(c)
⋂
j∈Z Vj = {0};

(d) g(x) ∈ Vj ⇐⇒ g(2Nx) ∈ Vj+1 ∀ j ∈ Z;

(e) There exists a function φ ∈ V0 such that {φ(x− σ) : σ ∈ Λ}, is a complete orthonormal
basis for V0.

It should be noted that the definition of dyadic dilation multiresolution analysis in one
dimension can be deduced from the above definitio when N = 1. For N > 1, the dilation
factor of 2N corroborates that 2NΛ ⊂ Z ⊂ Λ.

For every j ∈ Z, define Wj as the orthogonal complement of Vj in Vj+1. Thus we can
write

Vj+1 = Vj ⊕Wj and Wm ⊥ Wm′ if m 6= m′. (2.4)

Therefore, it implies that for j > M ,

Vj = VM ⊕
j−M−1⊕
m=0

Wj−m . (2.5)

By invoking Definition 2.2. (b), this follows that

L2(R) =
⊕
j∈Z

Wj, (2.6)

a decomposition of L2(R) into mutually orthogonal subspaces.

There exists 2N − 1 functions whose translated and dilated family form an orthonormal
basis for L2(R).

Definition 2.3. A set {ψ` : 1 ≤ ` ≤ 2N − 1} ⊂ L2(R) is said to be a set of basic wavelets
associated with the nonuniform multiresolution analysis {Vj : j ∈ Z} if the family of functions
{ψ`(x− σ) : 1 ≤ ` ≤ 2N − 1, σ ∈ Λ} forms an orthonormal basis for W0.
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3. Riesz Bases of Translates

Lemma 3.1. Let φ, φ̃ ∈ L2(R) be given. Then the collection
{
φ(x − σ) : σ ∈ Λ

}
is

biorthogonal to
{
φ̃(x− σ) : σ ∈ Λ

}
if and only if∑

σ∈Λ

φ̂(ζ + σ)
̂̃
φ(ζ + σ) = 1 a.e ζ ∈ R.

Proof. For γ ∈ Λ, it follows that
〈
φ(x− σ), φ̃(x− γ)

〉
= δσ,γ ⇔

〈
φ, φ̃(x− γ)

〉
= δ0,γ.

Moreover, we have〈
φ, φ̃(x− γ)

〉
=

〈
φ̂,
̂̃
φ(x− γ)

〉
=

∫
R
φ̂(ζ)

̂̃
φ(ζ)e−2πiγζdζ

=

∫ 1/2

0

{∑
m∈Z

φ̂
(
ζ +

m

2

) ̂̃
φ
(
ζ +

m

2

)
eπiγm

}
e−2πiγζdζ.

Using the fact that
{
e−2πiγζ : γ ∈ Λ

}
is an orthonormal basis of L2

[
0, 1

2

)
, we obtain the

desired result.

Now we proceed to establish a sufficient condition for the translates of a function to be
linearly independent.

Lemma 3.2. Let φ ∈ L2(R). Suppose there exists two constants C,D > 0 such that

C ≤
∑
σ∈Λ

∣∣∣φ̂(ζ + σ)
∣∣∣2 ≤ D for a.e ζ ∈ R. (3.1)

Then, the set
{
φ(x− σ) : σ ∈ Λ

}
is linearly independent.

Proof. For the proof of the lemma, it is sufficient to find another function say φ̃ whose
translates are biorthogonal to φ. To do this, we define the function φ̃ by

̂̃
φ(ζ) =

φ̂(ζ)∑
σ∈Λ

∣∣∣φ̂(ζ + σ)
∣∣∣2 .

Equation (3.1) implies that φ̃ is well defined and

∑
γ∈Λ

φ̂(ζ + γ)
̂̃
φ(ζ + γ) =

∑
γ∈Λ

φ̂(ζ + γ)
φ̂(ζ + γ)∑

σ∈Λ

∣∣∣φ̂(ζ + σ + γ)
∣∣∣2

=

∑
γ∈Λ

∣∣∣φ̂(ζ + γ)
∣∣∣2

∑
ν∈σ

∣∣∣φ̂(ζ + ν)
∣∣∣2

= 1.
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Applying Lemma 3.1, it follows that the set

{
φ(x − σ) : σ ∈ Λ

}
is linearly independent.

Thus the proof is completed .

Lemma 3.3. Assume that the scaling function φ satisfies inequality (3.1). Let g =
∑

σ∈Λ hσφ(x−
σ), where g ∈ span

{
φ(x − σ) : σ ∈ Λ

}
and

{
hσ
}

is a finite sequence. Define the Fourier

transform of h by ĥ(ζ) =
∑
σ∈Λ

hσe
−2πiσζ. Then

C

∫ 1/2

0

∣∣ĥ(ζ)
∣∣2dζ ≤ ∥∥g∥∥2

2
≤ D

∫ 1/2

0

∣∣ĥ(ζ)
∣∣2dζ.

Proof. By using Placherel’s theorem, we obtain∫
R

∣∣g(x)
∣∣2dx =

∫
R

∣∣∣∣∣∑
σ∈Λ

hσφ(x− σ)

∣∣∣∣∣
2

dx

=

∫
R

∣∣∣∣∣∑
σ∈Λ

hσφ̂(ζ)e−2πiσζ

∣∣∣∣∣
2

dζ

=

∫
R

∣∣φ̂(ζ)
∣∣2 ∣∣∣∣∣∑

σ∈Λ

hσe
−2πiσζ

∣∣∣∣∣
2

dζ

=

∫
R

∣∣φ̂(ζ)
∣∣2∣∣ĥ(ζ)

∣∣2dζ
=

∫ 1/2

0

∑
m∈Z

∣∣∣φ̂(ζ +
m

2

)∣∣∣2 ∣∣∣ĥ(ζ)
∣∣∣2 dζ.

Using identity (3.1), the result follows.

Theorem 3.4. Let
{
φ(x− σ) : σ ∈ Λ

}
be a Riesz basis for its closed linear span. Suppose

that there exists a function
{
φ̃(x− σ) : σ ∈ Λ

}
which is biorthogonal to

{
φ(x− σ) : σ ∈ Λ

}
.

Then, for every f ∈ span {φ(x− σ) : σ ∈ Λ}, we have

f =
∑
σ∈Λ

〈
f, φ̃(x− σ)

〉
φ(x− σ); (3.2)

and there exists constants C,D > 0 such that

C
∥∥f∥∥2

2
≤
∑
σ∈Λ

∣∣∣∣〈f, ̂̃φ(ζ − σ)

〉∣∣∣∣2 ≤ D
∥∥f∥∥2

2
. (3.3)

Proof. We first prove (3.2) and (3.3) for any f ∈ span
{
φ(x−σ) : σ ∈ Λ

}
and then generalize

it to span
{
φ(x − σ) : σ ∈ Λ

}
. Let f ∈ span

{
φ(x − σ) : σ ∈ Λ

}
, then there exists a finite

sequence
{
hσ : σ ∈ Λ

}
such that f =

∑
σ∈Λ hσφ(x− σ). Also, the biorthogonality condition

implies that 〈
f, φ̃(x− γ)

〉
=

〈∑
σ∈Λ

hσφ(x− σ), φ̃(x− γ)

〉
=

∑
σ∈Λ

hσ
〈
φ(x− σ), φ̃(x− γ)

〉
= hσ,
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which proves (3.2). In order to prove (3.3), we make the use of Lemma 3.3 to get

D−1
∥∥f∥∥2

2
≤
∫ 1/2

0

∣∣ĥ(ζ)
∣∣2dζ ≤ C−1

∥∥f∥∥2

2
.

Using the Placherel formula for Fourier series and the fact that hσ =
〈
f, φ̃(x− σ)

〉
, we

obtain ∫ 1/2

0

∣∣ĥ(ζ)
∣∣2dζ =

∑
σ∈Λ

∣∣hσ∣∣2 =
∑
σ∈Λ

∣∣∣〈f, φ̃(x− σ)
〉∣∣∣2 .

This proves (3.3). We now generalize the results to span {φ(x− σ) : σ ∈ Λ}. For f ∈
span

{
φ̃(x− σ) : σ ∈ Λ

}
, there exists a sequence {fm : m ∈ Z} in span

{
φ̃(x− σ) : σ ∈ Λ

}
such that ‖fm − f‖2 → 0 as m→∞. Thus, for each σ ∈ Λ, we have〈

fm, φ̃(x− σ)
〉
→
〈
f, φ̃(x− σ)

〉
as m→∞.

Hence, the result holds for each fm. Thus, we have∑
σ∈Λ

∣∣∣〈f, φ̃(x− σ)
〉∣∣∣2 =

∑
σ∈Λ

lim
m→∞

∣∣∣〈fm, φ̃(x− σ)
〉∣∣∣2

= lim
m→∞

∑
σ∈Λ

∣∣∣〈fm, φ̃(x− σ)
〉∣∣∣2

≤ D lim
m→∞

∥∥fm∥∥2

2

= D
∥∥f∥∥2

2
. (3.4)

Moreover, we have{∑
σ∈Λ

∣∣∣〈fm, φ̃(x− σ)
〉∣∣∣2}1/2

≤

{∑
σ∈Λ

∣∣∣〈fm − f, φ̃(x− σ)
〉∣∣∣2}1/2

+

{∑
σ∈Λ

∣∣∣〈f, φ̃(x− σ)
〉∣∣∣2}1/2

.

As the upper bound in (3.3) holds for fm − f and lower bound for each fm, we infer that

C1/2
∥∥f∥∥

2
≤ D1/2

∥∥fm − f∥∥2
+

(∑
σ∈Λ

∣∣∣〈fm, φ̃(x− σ)
〉∣∣∣2)1/2

,

from which we conclude that

C
∥∥f∥∥2

2
≤
∑
σ∈Λ

∣∣∣〈f, φ̃(x− σ)
〉∣∣∣2 . (3.5)

Combining (3.4) and (3.5), we obtain (3.3). Similarly, we can prove (3.2) for f ∈ span {φ(x− σ) : σ ∈ Λ}
and the proof is completed.

4. Properties of Biorthogonal Wavelets on the Spectrum

Let {Vj : j ∈ Z} and {Ṽj : j ∈ Z} be biorthogonal NUMRA’s with scaling functions φ

and φ̃. Then there exists integral periodic functions m0 and m̃0 with the property φ̂(ζ) =
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m0 (ζ/2N) φ̂ (ζ/2N) and

̂̃
φ(ζ) = m̃0 (ζ/2N)

̂̃
φ (ζ/2N). Suppose there exists integral periodic

functions m` and m̃`, 1 ≤ ` ≤ 2N − 1 such that

M(ζ)M̃(ζ) = I, (4.1)

where

M(ζ) =



m0

(
ζ

2N

)
m0

(
ζ

2N
+

1

4N

)
. . . m0

(
ζ

2N
+

2N − 1

4N

)
m1

(
ζ

2N

)
m2

(
ζ

2N
+

1

4N

)
. . . m2

(
ζ

2N
+

2N − 1

4N

)
...

...
. . .

...

m2N−1

(
ζ

2N

)
m2N−1

(
ζ

2N
+

1

4N

)
. . . m2N−1

(
ζ

2N
+

2N − 1

4N

)


and

M̃(ζ) =



m̃0

(
ζ

2N

)
m̃0

(
ζ

2N
+

1

4N

)
. . . m̃0

(
ζ

2N
+

2N − 1

4N

)
m̃1

(
ζ

2N

)
m̃2

(
ζ

2N
+

1

4N

)
. . . m̃2

(
ζ

2N
+

2N − 1

4N

)
...

...
. . .

...

m̃2N−1

(
ζ

2N

)
m̃2N−1

(
ζ

2N
+

1

4N

)
. . . m̃2N−1

(
ζ

2N
+

2N − 1

4N

)


.

For 1 ≤ ` ≤ 2N − 1, define the associated biorthgonal wavelets as ψ` and ψ̃` by

ψ̂`(ζ) = m` (ζ/2N) φ̂ (ζ/2N) and
̂̃
ψ`(ζ) = m̃` (ζ/2N)

̂̃
φ (ζ/2N) .

Definition 4.1. A pair of NUMRA’s {Vj : j ∈ Z} and {Ṽj : j ∈ Z} with scaling functions

φ and φ̃, respectively are said to be biorthogonal to each other if {φ(· − σ) : σ ∈ Λ} and

{φ̃(· − σ) : σ ∈ Λ} are biorthogonal.

Definition 4.2. Let φ and φ̃ be scaling functions for biorthogonal NUMRA’s. For each
j ∈ Z, define the operators Pj and P̃j on L2(R) by

Pjf =
∑
σ∈Λ

〈
f, φ̃j,σ

〉
φj,σ and P̃jf =

∑
σ∈Λ

〈
f, φj,σ

〉
φ̃j,σ,

respectively. It is easy to verify that these operators are uniformly bounded on L2(R) and
both the series are convergent in L2(R).

Remark 4.3. The operators Pj and P̃j satisfy the following properties.

(a) Pjf = f ⇐⇒ f ∈ Vj and P̃jf = f ⇐⇒ f ∈ Ṽj.

(b) lim
j→∞

∥∥Pjf − f∥∥2
= 0 and lim

j→−∞

∥∥Pjf∥∥2
= 0 for every f ∈ L2(R).
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Theorem 4.4. Let φ and φ̃ be the scaling functions for biorthogonal NUMRA’s and ψ` and
ψ̃`, 1 ≤ ` ≤ 2N − 1 be the associated wavelets satisfying (4.1). Then, we have the following

(a)
{
ψ`,0,σ : σ ∈ Λ

}
is biorthogonal to

{
ψ̃`,0,γ : γ ∈ Λ

}
,

(b)
〈
ψ`,0,σ, φ̃0,γ

〉
=
〈
ψ̃`,0,σ, φ0,γ

〉
, for all σ, γ ∈ Λ.

Proof. we have∑
t∈Z

ψ̂`

(
ζ +

t

2

) ̂̃
ψ`

(
ζ +

t

2

)

=
∑
t∈Z

{
m`

(
ζ

2N
+

t

4N

)
φ̂

(
ζ

2N
+

t

4N

)
m̃`

(
ζ

2N
+

t

4N

) ̂̃
φ

(
ζ

2N
+

t

4N

)}

=
2N−1∑
s=0

∑
t∈Z

{
m`

(
ζ

2N
+
t

2
+

s

4N

)
φ̂

(
ζ

2N
+
t

2
+

s

4N

)
m̃`

(
ζ

2N
+
t

2
+

s

4N

) ̂̃
φ

(
ζ

2N
+
t

2
+

s

4N

)}

=
2N−1∑
s=0

{
m`

(
ζ

2N
+

s

4N

)
m̃`

(
ζ

2N
+

s

4N

)}
= 1.

Hence, by Lemma 3.1,
{
ψ`,0,σ : σ ∈ Λ

}
is biorthogonal to

{
ψ̃`,0,σ : σ ∈ Λ

}
. This proves part

(a). To prove part (b), we have for, σ, γ ∈ Λ〈
ψ`,0,σ, φ̃0,γ

〉
=

〈
ψ`(x− σ), φ̃(x− γ)

〉
=

〈
ψ̂` e

−2πiσ,
̂̃
φ e−2πiγ

〉

=

∫
R
m`

(
ζ

2N

)
φ̂

(
ζ

2N

)
e−2πiσζ m̃0

(
ζ

2N

) ̂̃
φ

(
ζ

2N

)
e2πiγζdζ

=

∫ 1/2

0

∑
p∈Z

{
m`

(
ζ

2N
+

p

4N

)
φ̂

(
ζ

2N
+

p

4N

)
×m̃0

(
ζ

2N
+

p

4N

) ̂̃
φ

(
ζ

2N
+

p

4N

)}
e2πi(γ−σ)dζ

=

∫ 1/2

0

2N−1∑
s=0

∑
p∈Z

{
m`

(
ζ

2N
+
p

2
+

s

4N

)
φ̂

(
ζ

2N
+
p

2
+

s

4N

)
×m̃0

(
ζ

2N
+
p

2
+

s

4N

) ̂̃
φ

(
ζ

2N
+
p

2
+

s

4N

)}
e2πi(γ−σ)dζ

=

∫ 1/2

0

2N−1∑
s=0

{
m`

(
ζ

2N
+

s

4N

)
m̃0

(
ζ

2N
+

s

4N

)}
e2πi(γ−σ)dζ

= 0.
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The dual one can also be shown equal to zero in a similar manner. This proves part (b) and
hence the proof is completed.

Theorem 4.5. Let φ, φ̃, ψ` and ψ̃`, 1 ≤ ` ≤ 2N − 1 be as in Theorem 4.1. Let ψ0 = φ and
ψ̃0 = φ̃. Then, for every f ∈ L2(R), we have

P1f = P0f +
2N−1∑
`=1

∑
σ∈Λ

〈
f, ψ̃`,0,σ

〉
ψ`,0,σ (4.2)

and

P̃1f = P̃0f +
2N−1∑
`=1

∑
σ∈Λ

〈
f, ψ`,0,σ

〉
ψ̃`,0,σ. (4.3)

where the series in (4.2) and (4.3) converges in L2(R).

Proof. For the sake of convenience, we will only prove (4.2), as (4.3) is an easy consequence.
In particular, we will prove it in the weak sense only. For this, let f, g ∈ L2(R). Then, we
have

2N−1∑
`=0

∑
σ∈Λ

〈
f, ψ̃`,0,σ

〉 〈
g, ψ`,0,σ

〉

=
2N−1∑
`=0

∑
σ∈Λ

{∫
R
f̂(ζ)

̂̃
ψ`(ζ)e2πiσζdζ

}{∫
R
ĝ(ζ)ψ̂`(ζ)e−2πiσζdζ

}

=
2N−1∑
`=0

∑
σ∈Λ

{∫ 1/2

0

∑
p∈Z

f̂
(
ζ +

p

2

) ̂̃
ψ`

(
ζ +

p

2

)
e2πiσζdζ

}

×

{∫ 1/2

0

∑
q∈Z

ĝ
(
ζ +

q

2

)
ψ̂`

(
ζ +

q

2

)
e−2πiσζdζ

}

=
2N−1∑
`=0

∫ 1/2

0

{∑
p∈Z

f̂
(
ζ +

p

2

) ̂̃
ψ`

(
ζ +

p

2

)}{∑
q∈Z

ĝ
(
ζ +

q

2

)
ψ̂`

(
ζ +

q

2

)}
dζ

=

∫ 1/2

0

2N−1∑
`=0

{∑
p∈Z

f̂
(
ζ +

p

2

)
m̃`

(
ζ

2N
+

p

4N

) ̂̃
φ

(
ζ

2N
+

p

4N

)
×
∑
q∈Z

ĝ
(
ζ +

q

2

)
m`

(
ζ

2N
+

q

4N

)
φ̂

(
ζ

2N
+

q

4N

)}
dζ
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=

∫ 1/2

0

2N−1∑
`=0

{
2N−1∑
r=0

∑
p′∈Z

f̂

(
ζ +

p′

2
N +

r

2

)
m̃`

(
ζ

2N
+

r

4N
+
p′

2

) ̂̃
φ

(
ζ

2N
+

r

4N
+
p′

2

)

×
2N−1∑
s=0

∑
q′∈N0

ĝ

(
ζ +

q′

2
N +

s

2

)
m`

(
ζ

2N
+

s

4N
+
q′

2

)
φ̂

(
ζ

2N
+

s

4N
+
q′

2

)}
dζ

=

∫ 1/2

0

2N−1∑
r=0

∑
p′∈N0

2N−1∑
s=0

∑
q′∈N0

{
2N−1∑
`=0

m̃`

(
ζ

2N
+

r

4N

)
m`

(
ζ

2N
+

s

4N

)}

×f̂
(
ζ +

p′

2
N +

r

2

) ̂̃
φ

(
ζ

2N
+

r

4N
+
p′

2

)
ĝ

(
ζ +

q′

2
N +

s

2

)
φ̂

(
ζ

2N
+

s

4N
+
q′

2

)
dζ

=

∫ 1/2

0

∑
p′∈N0

∑
q′∈N0

2N−1∑
s=0

f̂

(
ζ +

p′

2
N +

s

2

) ̂̃
φ

(
ζ

2N
+

s

4N
+
p′

2

)
×ĝ
(
ζ +

q′

2
N +

s

2

)
φ̂

(
ζ

2N
+

s

4N
+
p′

2

)
dζ

=
2N−1∑
s=0

∫ s+1/2

0

∑
p′∈N0

∑
q′∈N0

f̂

(
ζ +

p′

2
N

) ̂̃
φ

(
ζ

2N
+
p′

2

)
ĝ

(
ζ +

q′

2
N

)
φ̂

(
ζ

2N
+
p′

2

)
dζ. (4.5)

Furthermore, we have∑
σ∈Λ

〈
f, φ̃1,σ

〉
〈g, φ1,σ〉

=
∑
σ∈Λ

{∫
R
f̂(ζ)

̂̃
φ

(
ζ

2N

)
e2πiζ/2Ndζ

}{∫
R
ĝ(ζ)φ̂

(
ζ

2N

)
e−2πiζ/2Ndζ

}

=

∫ 1/2

0

∑
p∈Z

f̂
(
ζ +

p

2
N
) ̂̃
φ

(
ζ

2N
+
p

2

)
dζ

∫ 1/2

0

∑
q∈Z

ĝ
(
ζ +

q

2
N
)
φ̂

(
ζ

2N
+
q

2

)
dζ

=

∫ 1/2

0

∑
p∈Z

f̂
(
ζ +

p

2
N
) ̂̃
φ

(
ζ

2N
+
p

2

)
dζ

∫ 1/2

0

∑
q∈Z

ĝ
(
ζ +

q

2
N
)
φ̂

(
ζ

2N
+
q

2

)
dζ

=

∫ 1/2

0

∑
p∈Z

∑
q∈Z

f̂
(
ζ +

p

2
N
) ̂̃
φ

(
ζ

2N
+
p

2

)
ĝ
(
ζ +

q

2
N
)
φ̂

(
ζ

2N
+
q

2

)
dζ. (4.5)

Combing (4.5) and (4.5), we get the desired result.

Theorem 4.6. Let φ, φ̃, ψ` and ψ̃`, 1 ≤ ` ≤ 2N − 1 be as in Theorem 4.1. Then, for every
f ∈ L2(R), we have

f =
2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

〈
f, ψ̃`,j,σ

〉
ψ`,j,σ =

2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

〈
f, ψ`,j,σ

〉
ψ̃`,j,σ, (4.6)
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where the series converges in L2(R).

Proof. Using Remark 4.3 and Theorem 4.5, proof of Theorem 4.6 follows.

Theorem 4.7. Let φ and φ̃ be the scaling functions for biorthogonal NUMRA’s and ψ` and
ψ̃`, 1 ≤ ` ≤ 2N−1 be the associated wavelets satisfying the matrix condition (4.1). Then, the

collection
{
ψ`,j,σ : 1 ≤ ` ≤ 2N − 1, j ∈ Z, σ ∈ Λ

}
and

{
ψ̃`,j,σ : 1 ≤ ` ≤ 2N − 1, j ∈ Z, σ ∈ Λ

}
are biorthogonal. Moreover, if∣∣φ̂(ζ)

∣∣ ≤ K(1 + |ζ|)−
1
2
−ε,
∣∣̂̃φ(ζ)

∣∣ ≤ K(1 + |ζ|)−
1
2
−ε,
∣∣ψ̂`(ζ)

∣∣ ≤ K|ζ| and
∣∣̂̃ψ(ζ)

∣∣ ≤ K|ζ|, (4.7)

for some constant K > 0, ε > 0 and for a.e. ζ ∈ R, then
{
ψ`,j,σ : 1 ≤ ` ≤ 2N − 1, j ∈ Z, σ ∈

Λ
}

and
{
ψ̃`,j,σ : 1 ≤ ` ≤ 2N − 1, j ∈ Z, σ ∈ Λ

}
form Riesz bases for L2(R).

Proof. First we show that
{
ψ`,j,σ : 1 ≤ ` ≤ 2N − 1, j ∈ Z, σ ∈ Λ

}
and

{
ψ̃`,j,σ : 1 ≤ ` ≤

2N − 1, j ∈ Z, σ ∈ Λ
}

are biorthogonal to each other. For this, we will show that for each
`, 1 ≤ ` ≤ 2N − 1 and j ∈ Z, 〈

ψ`,j,σ, ψ̃`,j,γ
〉

= δσ,γ. (4.8)

In fact, we have already proved (4.8) for j = 0. For j 6= 0, we have〈
ψ`,j,σ, ψ̃`,j,γ

〉
=
〈
D−jψ`,0,σ, D−jψ̃`,0,γ

〉
=
〈
ψ`,0,σ, ψ̃`,0,γ

〉
= δσ,γ.

Also, for fixed σ, γ ∈ Λ and j, j′ ∈ Z with j < j′, we claim that〈
ψ`,j,σ, ψ̃`′,j′,γ

〉
= 0. (4.9)

As ψ`,0,σ ∈ V1, hence ψ`,j,σ = D−jψ`,0,σ ∈ Vj+1 ⊆ Vj′ . Therefore, it is enough to show that

ψ̃`′,j′,γ is orthogonal to every element of Vj′ . Let g ∈ Vj′ . Since
{
φj′,σ : σ ∈ Λ

}
is a Riesz

basis for Vj′ , hence there exists an l2-sequence
{
dσ : σ ∈ Λ

}
such that g =

∑
σ∈Λ dσφj′,σ in

L2(R). Using part (b) of Lemma 4.1, we have〈
ψ̃`′,j′,γ, φj′,σ

〉
=
〈
D−j′ψ̃`′,0,γ, D−j′φ0,σ

〉
= 0.

Therefore, 〈
ψ̃`′,j′,γ, g

〉
=
〈
ψ̃`′,j′,γ,

∑
σ∈Λ

dσφj′,σ

〉
=
∑
σ∈Λ

dσ
〈
ψ̃`′,j′,γ, φj′,σ

〉
= 0.

We now show that these two collections form Riesz bases for L2(R). The linear independence
is clear from the fact that these collections are biorthogonal to each other. So, we have to
check the frame inequalities only i.e., there exists constants C, C̃,D, D̃ > 0 such that

C
∥∥g∥∥2

2
≤

2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

∣∣〈g, ψ`,j,σ〉∣∣2 ≤ D
∥∥g∥∥2

2
, ∀ f ∈ L2(R), (4.10)

and

C̃
∥∥g∥∥2

2
≤

2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

∣∣∣〈g, ψ̃`,j,σ〉∣∣∣2 ≤ D̃
∥∥g∥∥2

2
, ∀ f ∈ L2(R). (4.11)
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Let us first check the existence of the upper bounds in (4.10) and (4.1 ). For this, we have∑
σ∈Λ

∣∣∣〈g, ψ̃`,j,σ〉∣∣∣2 =
∑
σ∈Λ

∣∣∣∣∫
R
ĝ(ζ)(2N)−j/2 ψ̂`

(
(2N)−jζ

)
e2πiσ(2N)−jζdζ

∣∣∣∣2

= (2N)−j
∑
σ∈Λ

∣∣∣∣∣
∫ 1/2

0

∑
p∈Z

ĝ
(
ζ + (2N)j

p

2

)
ψ̂`

(
(2N)−jζ +

p

2

)
e2πiσ(2N)−jζdζ

∣∣∣∣∣
2

=

∫ 1/2

0

∣∣∣∣∣∑
p∈Z

ĝ
(
ζ + (2N)j

p

2

)
ψ̂`

(
(2N)−jζ +

p

2

)∣∣∣∣∣
2

dζ

=

∫ 1/2

0

{∑
p∈Z

∣∣∣ĝ (ζ + (2N)j
p

2

)∣∣∣2 ∣∣∣ψ̂` ((2N)−jζ +
p

2

)∣∣∣2δ}

×

{∑
q∈Z

∣∣∣ψ̂` ((2N)−jζ +
q

2

)∣∣∣2(1−δ)
}
dζ

=

∫
R
|ĝ(ζ)|2

∣∣ψ̂` ((2N)−jζ
) ∣∣2δ∑

q∈Z

∣∣∣ψ̂` ((2N)−jζ +
q

2

)∣∣∣2(1−δ)
dζ.

By our assumption (4.7), we have |ψ̂`(ζ)| ≤ K (1 + |(2N)−1ζ|)−1/2−ε
and therefore, it follows

that
∑

q∈Z

∣∣ψ̂` ((2N)−jζ + q/2)
∣∣2(1−δ)

is uniformly bounded if δ < 2ε(1 + 2ε)−1. Thus, there
exists a constant K > 0 such that∑

σ∈Λ

∣∣∣〈g, ψ̃`,j,σ〉∣∣∣2 ≤ K

∫
R

∣∣ĝ(ζ)
∣∣2∑

j∈Z

∣∣ψ̂` ((2N)−jζ
) ∣∣2δdζ

≤ K sup

{∑
j∈Z

∣∣ψ̂` ((2N)−jζ
) ∣∣2δ : 1 ≤ ζ ≤ 2N

}∥∥g∥∥2

2
.

Also for ζ ∈ [1, 2N ], we have

0∑
j=−∞

∣∣ψ̂` ((2N)−jζ
) ∣∣2δ ≤ 0∑

j=−∞

K2δ(
1 + |(2N)j−1ζ|

)δ(1+2ε)

≤
0∑

j=−∞

K2δ

(2N)(j−1)δ(1+2ε)

≤ K2δ qδ(1+2ε)

1− (2N)−δ(1+2ε)
.

Furthermore, we have

∞∑
j=1

∣∣ψ̂` ((2N)−jζ
) ∣∣2δ ≤ ∞∑

j=1

(
K(2N)−j|ζ|

)2δ ≤ K2δ

∞∑
j=1

(2N)(−j+1)2δ = K2δ 1

1− (2N)−2δ
,

and hence, it follows that sup
{∑

j∈Z

∣∣ψ̂` ((2N)−jζ)
∣∣2δ : 1 ≤ ζ ≤ 2N

}
is finite. Therefore,

there exist D > 0 such that of (4.10) holds. Similarly, we can show for dual one also. The
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existence of lower bounds for both the cases can be shown in similar fashion. Using Theorem
4.6, it follows that if g ∈ L2(R), then (4.6) holds. Thus, we have∥∥g∥∥2

2
=

〈
g, g
〉

=

〈
2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

〈
g, ψ̃`,j,σ

〉
ψ`,j,σ, g

〉

=
2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

〈
g, ψ̃`,j,σ

〉〈
ψ`,j,σ, g

〉

≤

(
2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

∣∣∣〈g, ψ̃`,j,σ〉∣∣∣2)1/2(2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

∣∣〈g, ψ`,j,σ〉∣∣2)1/2

≤ (D̃)1/2
∥∥g∥∥

2

(
2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

∣∣〈g, ψ`,j,σ〉∣∣2)1/2

.

Hence,

1

D̃

∥∥g∥∥2

2
≤

2N−1∑
`=1

∑
j∈Z

∑
σ∈Λ

∣∣〈g, ψ`,j,σ〉∣∣2 .
The dual case can be proved in similar lines. This completes the proof.

5. Conclusion

In this paper, we develop the comprehensive theory of biorthogonal wavelets on the spectrum.
We provide the complete characterization for the translates of a single function to form Reisz
basis and the associated biorthogonal families with respect to NUMRA. Under some mild
assuptions on wavelets associated with NUMRA and the scaling function, we show the
wavelets can generate Reisz bases.The results established in this paper are theoretical in
nature and will definitely provide new directions to the development of Wavelet analysis and
widen its field of applications.
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