References
Abramowicz, A., & Gos, M. (2018). Splicing mutations in human genetic disorders: examples, detection, and confirmation. Journal of Applied Genetics , Vol. 59, pp. 253–268. https://doi.org/10.1007/s13353-018-0444-7
Albert, S., Garanto, A., Sangermano, R., Khan, M., Bax, N. M., Hoyng, C. B., … Cremers, F. P. M. (2018). Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease. American Journal of Human Genetics ,102 (4), 517–527. https://doi.org/10.1016/j.ajhg.2018.02.008
Allikmets, R., Singh, N., Sun, H., Shroyer, N. F., Hutchinson, A., Chidambaram, A., … Lupski, J. R. (1997). A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nature Genetics ,15 (3), 236–246. https://doi.org/10.1038/ng0397-236
Bradley, K. J., Cavaco, B. M., Bowl, M. R., Harding, B., Young, A., & Thakker, R. V. (2005). Utilisation of a cryptic non-canonical donor splice site of the gene encoding PARAFIBROMIN is associated with familial isolated primary hyperparathyroidism. Journal of Medical Genetics , 42 (8). https://doi.org/10.1136/jmg.2005.032201
Cheng, J., Çelik, M. H., Kundaje, A., & Gagneur, J. (2020). MTSplice predicts effects of genetic variants on tissue-specific splicing.BioRxiv , 2020.06.07.138453. https://doi.org/10.1101/2020.06.07.138453
Cheng, J., Nguyen, T. Y. D., Cygan, K. J., Çelik, M. H., Fairbrother, W. G., Avsec, Ž., & Gagneur, J. (2019). MMSplice: Modular modeling improves the predictions of genetic variant effects on splicing.Genome Biology , 20 (1). https://doi.org/10.1186/s13059-019-1653-z
Cremers, F. P. M., Lee, W., Collin, R. W. J., & Allikmets, R. (2020). Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Progress in Retinal and Eye Research , 100861. https://doi.org/10.1016/j.preteyeres.2020.100861
Cremers, F. P. M., Van De Pol, D. J. R., Van Driel, M., Den Hollander, A. I., Van Haren, F. J. J., Knoers, N. V. A. M., … Hoyng, C. B. (1998). Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR.Human Molecular Genetics , 7 (3), 355–362. https://doi.org/10.1093/hmg/7.3.355
Dhir, A., & Buratti, E. (2010, February). Alternative splicing: Role of pseudoexons in human disease and potential therapeutic strategies: Minireview. FEBS Journal , Vol. 277, pp. 841–855. https://doi.org/10.1111/j.1742-4658.2009.07520.x
Ellingford, J. M., Thomas, H. B., Rowlands, C., Arno, G., Beaman, G., Gomes-Silva, B., … Black, G. C. (2019). Functional and in-silico interrogation of rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders. BioRxiv , 781088. https://doi.org/10.1101/781088
Fadaie, Z., Khan, M., Del Pozo-Valero, M., Cornelis, S. S., Ayuso, C., Cremers, F. P. M., … The, A. (2019). Identification of splice defects due to noncanonical splice site or deep-intronic variants in ABCA4. Human Mutation , 40 (12), 2365–2376. https://doi.org/10.1002/humu.23890
Fang, L. J., Simard, M. J., Vidaud, D., Assouline, B., Lemieux, B., Vidaud, M., … Thirion, J. P. (2001). A novel mutation in the neurofibromatosis type 1 (NF1) gene promotes skipping of two exons by preventing exon definition. Journal of Molecular Biology ,307 (5), 1261–1270. https://doi.org/10.1006/jmbi.2001.4561
Gao, K., Masuda, A., Matsuura, T., & Ohno, K. (2008). Human branch point consensus sequence is yUnAy. Nucleic Acids Research ,36 (7), 2257–2267. https://doi.org/10.1093/nar/gkn073
Glisovic, T., Bachorik, J. L., Yong, J., & Dreyfuss, G. (2008, June 18). RNA-binding proteins and post-transcriptional gene regulation.FEBS Letters , Vol. 582, pp. 1977–1986. https://doi.org/10.1016/j.febslet.2008.03.004
Grimm, D. G., Azencott, C. A., Aicheler, F., Gieraths, U., Macarthur, D. G., Samocha, K. E., … Borgwardt, K. M. (2015). The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. Human Mutation , 36 (5), 513–523. https://doi.org/10.1002/humu.22768
Hefferon, T. W., Broackes-Carter, F. C., Harris, A., & Cutting, G. R. (2002). Atypical 5′ splice sites cause CFTR exon 9 to be vulnerable to skipping. American Journal of Human Genetics , 71 (2), 294–303. https://doi.org/10.1086/341664
Ito, K., Patel, P. N., Gorham, J. M., McDonough, B., DePalma, S. R., Adler, E. E., … Seidman, J. G. (2017). Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing.Proceedings of the National Academy of Sciences of the United States of America , 114 (29), 7689–7694. https://doi.org/10.1073/pnas.1707741114
Jagadeesh, K. A., Paggi, J. M., Ye, J. S., Stenson, P. D., Cooper, D. N., Bernstein, J. A., & Bejerano, G. (2019). S-CAP extends pathogenicity prediction to genetic variants that affect RNA splicing.Nature Genetics , 51 (4), 755–763. https://doi.org/10.1038/s41588-019-0348-4
Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J. F., Darbandi, S. F., Knowles, D., Li, Y. I., … Farh, K. K. H. (2019). Predicting Splicing from Primary Sequence with Deep Learning.Cell , 176 (3), 535-548.e24. https://doi.org/10.1016/j.cell.2018.12.015
Jian, X., Boerwinkle, E., & Liu, X. (2014). In silico tools for splicing defect prediction: A survey from the viewpoint of end users.Genetics in Medicine , Vol. 16, pp. 497–503. https://doi.org/10.1038/gim.2013.176
Khan, M., Cornelis, S. S., Pozo-Valero, M. Del, Whelan, L., Runhart, E. H., Mishra, K., … Cremers, F. P. M. (2020). Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genetics in Medicine , 0 (0). https://doi.org/10.1038/s41436-020-0787-4
Khan, M., Cornelis, S. S., Sangermano, R., Post, I. J. M., Groesbeek, A. J., Amsu, J., … Cremers, F. P. M. (2020). In or out? New insights on exon recognition through splice-site interdependency.International Journal of Molecular Sciences , 21 (7), 2300. https://doi.org/10.3390/ijms21072300
Labonne, J. D. J., Chung, M. J., Jones, J. R., Anand, P., Wenzel, W., Iacoboni, D., … Kim, H. G. (2016). Concomitant partial exon skipping by a unique missense mutation of RPS6KA3 causes Coffin-Lowry syndrome. Gene , 575 (1), 42–47. https://doi.org/10.1016/j.gene.2015.08.032
López-Bigas, N., Audit, B., Ouzounis, C., Parra, G., & Guigó, R. (2005). Are splicing mutations the most frequent cause of hereditary disease? FEBS Letters , 579 (9), 1900–1903. https://doi.org/10.1016/j.febslet.2005.02.047
Marston, S., Copeland, O., Jacques, A., Livesey, K., Tsang, V., McKenna, W. J., … Watkins, H. (2009). Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency*. Circulation Research , 105 (3), 219–222. https://doi.org/10.1161/CIRCRESAHA.109.202440
Maugeri, A., Klevering, B. J., Rohrschneider, K., Blankenagel, A., Brunner, H. G., Deutman, A. F., … Cremers, F. P. M. (2000). Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. American Journal of Human Genetics ,67 (4), 960–966. https://doi.org/10.1086/303079
Molday, L. L., Rabin, A. R., & Molday, R. S. (2000). ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy.Nature Genetics , 25 (3), 257–258. https://doi.org/10.1038/77004
Moles-Fernández, A., Duran-Lozano, L., Montalban, G., Bonache, S., López-Perolio, I., Menéndez, M., … Gutiérrez-Enríquez, S. (2018). Computational Tools for Splicing Defect Prediction in Breast/Ovarian Cancer Genes: How Efficient Are They at Predicting RNA Alterations?Frontiers in Genetics , 9 (SEP), 366. https://doi.org/10.3389/fgene.2018.00366
Naito, T. (2019). Predicting the impact of single nucleotide variants on splicing via sequence-based deep neural networks and genomic features.Human Mutation , 40 (9), 1261–1269. https://doi.org/10.1002/humu.23794
Ohno, K., Takeda, J. I., & Masuda, A. (2018, January 1). Rules and tools to predict the splicing effects of exonic and intronic mutations.Wiley Interdisciplinary Reviews: RNA , Vol. 9, p. e1451. https://doi.org/10.1002/wrna.1451
Pan, Q., Shai, O., Lee, L. J., Frey, B. J., & Blencowe, B. J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics ,40 (12), 1413–1415. https://doi.org/10.1038/ng.259
Pertea, M. (2001). GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Research , 29 (5), 1185–1190. https://doi.org/10.1093/nar/29.5.1185
Ramalho, A. S., Beck, S., Penque, D., Gonska, T., Seydewitz, H. H., Mall, M., & Amaral, M. D. (2003). Transcript analysis of the cystic fibrosis splicing mutation 1525-1G>A shows use of multiple alternative splicing sites and suggests a putative role of exonic splicing enhancers. Journal of Medical Genetics , 40 (7), 88. https://doi.org/10.1136/jmg.40.7.e88
Reese, M. G., Eeckman, F. H., Kulp, D., & Haussler, D. (1997). Improved Splice Site Detection in Genie. Journal of Computational Biology ,4 (3), 311–323.
Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019). CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Research , 47 (D1), D886–D894. https://doi.org/10.1093/nar/gky1016
Rogan, P. K., Caminsky, N., & Mucaki, E. J. (2014, November 18). Interpretation of mRNA splicing mutations in genetic disease: Review of the literature and guidelines for information-theoretical analysis.F1000Research , Vol. 3. https://doi.org/10.12688/f1000research.5654.1
Romano, M., Buratti, E., & Baralle, D. (2013). Role of pseudoexons and pseudointrons in human cancer. International Journal of Cell Biology . https://doi.org/10.1155/2013/810572
Sangermano, R., Khan, M., Cornelis, S. S., Richelle, V., Albert, S., Garanto, A., … Cremers, F. P. M. (2018). ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Research , 28 (1), 100–110. https://doi.org/10.1101/gr.226621.117
Shapiro, M. B., & Senapathy, P. (1987). RNA splice junctions of different classes of eukaryotes: Sequence statistics and functional implications in gene expression. Nucleic Acids Research ,15 (17), 7155–7174. https://doi.org/10.1093/nar/15.17.7155
Shaw, M. A., Brunetti-Pierri, N., Kádasi, L., Kovácová, V., Van Maldergem, L., De Brasi, D., … Gécz, J. (2003). Identification of three novel SEDL mutations, including mutation in the rare, non-canonical splice site of exon 4. Clinical Genetics ,64 (3), 235–242. https://doi.org/10.1034/j.1399-0004.2003.00132.x
Sheth, N., Roca, X., Hastings, M. L., Roeder, T., Krainer, A. R., & Sachidanandam, R. (2006). Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Research , 34 (14), 3955–3967. https://doi.org/10.1093/nar/gkl556
Sobczyńska-Tomaszewska, A., Ołtarzewski, M., Czerska, K., Wertheim-Tysarowska, K., Sands, D., Walkowiak, J., … Mazurczak, T. (2013). Newborn screening for cystic fibrosis: Polish 4 years’ experience with CFTR sequencing strategy. European Journal of Human Genetics , 21 (4), 391–396. https://doi.org/10.1038/ejhg.2012.180
Sun, H., & Nathans, J. (1997). Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nature Genetics , Vol. 17, pp. 15–16. https://doi.org/10.1038/ng0997-15
Sun, Hanzhen, & Chasin, L. A. (2000). Multiple Splicing Defects in an Intronic False Exon. Molecular and Cellular Biology ,20 (17), 6414–6425. https://doi.org/10.1128/mcb.20.17.6414-6425.2000
Symoens, S., Malfait, F., Vlummens, P., Hermanns-Lê, T., Syx, D., & de Paepe, A. (2011). A novel splice variant in the N-propeptide of COL5A1 causes an EDS phenotype with severe kyphoscoliosis and eye involvement.PLoS ONE , 6 (5). https://doi.org/10.1371/journal.pone.0020121
Van Dijk, S. J., Dooijes, D., Remedios, C. Dos, Michels, M., Lamers, J. M. J., Winegrad, S., … Van Velden, J. Der. (2009). Cardiac myosin-binding protein C mutations and hypertrophic ardiomyopathy haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation , 119 (11), 1473–1483. https://doi.org/10.1161/CIRCULATIONAHA.108.838672
Wai, H. A., Lord, J., Lyon, M., Gunning, A., Kelly, H., Cibin, P., … Archer, L. (2020). Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance.Genetics in Medicine , 22 (6), 1005–1014. https://doi.org/10.1038/s41436-020-0766-9
Will, C. L., & Lührmann, R. (2011). Spliceosome structure and function.Cold Spring Harbor Perspectives in Biology , 3 (7), 1–2. https://doi.org/10.1101/cshperspect.a003707
Wimmer, K., Roca, X., Beiglböck, H., Callens, T., Etzler, J., Rao, A. R., … Messiaen, L. (2007). Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5′ splice-site disruption. Human Mutation , 28 (6), 599–612. https://doi.org/10.1002/humu.20493
Xiong, H. Y., Alipanahi, B., Lee, L. J., Bretschneider, H., Merico, D., Yuen, R. K. C., … Frey, B. J. (2015). The human splicing code reveals new insights into the genetic determinants of disease.Science , 347 (6218). https://doi.org/10.1126/science.1254806
Yeo, G., & Burge, C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. Journal of Computational Biology , 11 (2–3), 377–394. https://doi.org/10.1089/1066527041410418
Zuallaert, J., Godin, F., Kim, M., Soete, A., Saeys, Y., & De Neve, W. (2018). Splicerover: Interpretable convolutional neural networks for improved splice site prediction. Bioinformatics , 34 (24), 4180–4188. https://doi.org/10.1093/bioinformatics/bty497
Zuallaert, J., Godin, F., Kim, M., Soete, A., Saeys, Y., De Neve, W., … Xing, Y. (2019). Deep splicing code: Classifying alternative splicing events using deep learning. Journal of Computational Biology , 34 (8), 330–333. https://doi.org/10.3390/genes10080587